
entropy

Article

One- and Two-Phase Software Requirement Classification
Using Ensemble Deep Learning

Nouf Rahimi 1,2,* , Fathy Eassa 1 and Lamiaa Elrefaei 3

����������
�������

Citation: Rahimi, N.; Eassa, F.;

Elrefaei, L. One- and Two-Phase

Software Requirement Classification

Using Ensemble Deep Learning.

Entropy 2021, 23, 1264. https://

doi.org/10.3390/e23101264

Academic Editor: Gholamreza

Anbarjafari

Received: 8 August 2021

Accepted: 27 September 2021

Published: 28 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Computer Science Department, Faculty of Computing and Information Technology, King Abdul-Aziz
University, Jeddah 21589, Saudi Arabia; feassa@kau.edu.sa

2 Information System and Technology Department, Faculty of Computer Science and Engineering, University
of Jeddah, Jeddah 21959, Saudi Arabia

3 Electrical Engineering Department, Faculty of Engineering at Shoubra, Benha University, Cairo 11629, Egypt;
lamia.alrefaai@feng.bu.edu.eg

* Correspondence: rahiminouf@gmail.com; Tel.: +966-533535011

Abstract: Recently, deep learning (DL) has been utilized successfully in different fields, achieving
remarkable results. Thus, there is a noticeable focus on DL approaches to automate software
engineering (SE) tasks such as maintenance, requirement extraction, and classification. An advanced
utilization of DL is the ensemble approach, which aims to reduce error rates and learning time and
improve performance. In this research, three ensemble approaches were applied: accuracy as a
weight ensemble, mean ensemble, and accuracy per class as a weight ensemble with a combination of
four different DL models—long short-term memory (LSTM), bidirectional long short-term memory
(BiLSTM), a gated recurrent unit (GRU), and a convolutional neural network (CNN)—in order to
classify the software requirement (SR) specification, the binary classification of SRs into functional
requirement (FRs) or non-functional requirements (NFRs), and the multi-label classification of both
FRs and NFRs into further experimental classes. The models were trained and tested on the PROMISE
dataset. A one-phase classification system was developed to classify SRs directly into one of the
17 multi-classes of FRs and NFRs. In addition, a two-phase classification system was developed
to classify SRs first into FRs or NFRs and to pass the output to the second phase of multi-class
classification to 17 classes. The experimental results demonstrated that the proposed classification
systems can lead to a competitive classification performance compared to the state-of-the-art methods.
The two-phase classification system proved its robustness against the one-phase classification system,
as it obtained a 95.7% accuracy in the binary classification phase and a 93.4% accuracy in the second
phase of NFR and FR multi-class classification.

Keywords: software requirement; functional requirement; non-functional requirement; classification;
deep learning; ensemble; CNN; GRU; BiLSTM; LSTM

1. Introduction

Software requirement (SR) classification is carried out by software specialists to directly
determine the requirements that they need or are interested in. For example, user interface
designers are probably interested in “look and feel” requirements. The manual labeling or
classification of each requirement to determine which category it belongs to is expensive
and requires experts in different fields, which results in high costs. This provides motivation
for finding a complete system with high performance to label and classify SR into functional
requirements (FRs) or non-functional requirement (NFRs), as well as both FRs and NFRs
into further classes [1].

The main classes of SRs are FRs and NFRs. FRs are defined according to the IEEE
Standard Glossary of Software Engineering Terminology as a function carried out by a
system or its components [2]. On the contrary, NFRs are one of the restrictions on system

Entropy 2021, 23, 1264. https://doi.org/10.3390/e23101264 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-0862-1800
https://orcid.org/0000-0001-5781-2251
https://doi.org/10.3390/e23101264
https://doi.org/10.3390/e23101264
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23101264
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23101264?type=check_update&version=2

Entropy 2021, 23, 1264 2 of 30

behavior [3]. Additionally, there are subcategories of both FRs and NFRs, as shown in
Table 1 (FR subcategories [2]) and Table 2 (NFR subcategories [4]).

Table 1. Six different classes of functional requirements (FRs) [4].

Class Definition Example

Solution Includes actions that are expected to be
carried out by the system or different users.

“The system shall display completed worklist items to the Lab
Manager.”

Enablement

Includes the capabilities offered by the
system to different users. Subsystems that

offer these capabilities are optionally
specified.

“The Lab Manager shall be able to create worklist items.”

Attribute
Constraint

Constraints on attributes or entity
attributes are specified through this class.

“Search options must always be one of the following: Price,
destination, restaurant type, or specific dish.”

Action
Constraint

Allowed and non-allowed actions by the
system or the subsystems displayed using

this class.

“The loan subsystem may only delete a lender if there are no loans
in the portfolio associated with this lender.”

Policy
This class is responsible for specifying all

policies that have been decided for the
system.

“A loan is not computed in more than one bundle.”

Definition All entities are defined using this class. “The expected profit of a fixed-rate loan is defined as the amount of
interest received over the remaining life of the loan.”

Table 2. Non-functional requirement (NFR) subcategories [5].

Class Definition Example

Availability Related to users’ accessibility to a system at
a specific time.

“The product shall be available 24 h per day, seven days per
week.”

Fault Tolerance
Determines the degree to which the system

or product operates in the absence of
hardware or software faults.

“100% of saved user preferences shall be restored when the
system comes back online.”

Legal and
Licensing

Determines the licenses and certificates that
the system needs to obtain.

“All actions that modify an existing dispute case must be
recorded in the case history.”

Look and Feel Specifies the appearance and style. “The website design should be modern, clean, and concise.”

Maintainability Effectiveness and efficiency of a system
modified by maintainers.

“Application updates shall occur between 3:00 a.m. and 6:00 a.m.
CST on Wednesday morning during the middle of the NFL

season.”

Operability How easy to operate and control a system
through its attributes.

“The product shall run on the existing hardware for all
environments.”

Performance Related to required resources at a specific
condition.

“A customer shall be able to check the status of their prepaid card
by entering in the PIN number in under 5 s.”

Portability
The effectiveness and efficiency in

transferring the system from one hardware,
software, or environment to another.

“The product is expected to run on Windows CE and Palm
operating systems.”

Scalability

The degree to which a system adapts
effectively and efficiently from one

hardware, software, or environment to
another.

“The system shall be able to handle all of the user requests/usage
during business hours.”

Security Includes the protection of personal data
and authorized access. “The product shall provide authentication and authorization.”

Usability
The level of efficiency and effectiveness of a
system that can be used by specific users to

reach specific goals with satisfaction.

“The product shall be installed by an untrained realtor without
recourse to separately printed instructions.”

Entropy 2021, 23, 1264 3 of 30

Deep learning (DL) has been adopted to automate and facilitate the tasks of soft-
ware engineering (SE), such as maintenance, requirement extraction, and classification [6].
The results have been interesting, but some areas have not been extensively covered. SR clas-
sification plays a crucial role in software development as it facilitates the process and helps
in avoiding further modification costs [7]. Moreover, it is not the matter of classification but
the correct classification of SRs that is the crucial task in SE [3]. The correct classification of
SRs into FRs or NFRs and the subcategories of NFRs and FRs are described as challenges
due to many reasons related to the inconsistency among the different stakeholders and
engineers, as they use different structures for the different classes, and the terms are not
unified either. Thus, such automation of this classification is greatly needed [3].

Automation of the SR classification has been the main objective of a number of
previous studies. Some of these studies used traditional automation tools and implemented
simple software and tools, but there were disadvantages such as the complexity of the tools,
incomplete extraction and classification (as NFRs were the main concern for the majority),
unavailability, and low accuracy. ML or DL classifiers have been used in recent studies for
SR classification as well. However, weaknesses have been observed among ML and DL
solutions, such as incomplete solutions (as FRs have rarely been classified or ignored in
some studies), accuracy issues, and availability problems. To overcome the weaknesses
and the disadvantages of existing solutions, this study aimed to automate SR classification
using DL models, along with ensemble methods, to form a complete model that conducted
binary and multi-class classification for both FRs and NFRs.

The ensemble method is used more often than the DL method, although both are
assumed to be good in different ways and do not make similar prediction errors. However,
the results of the ensemble method are less sensitive to the specifications of training data.
Moreover, it has been confirmed that the performance of a group of models is better than
that of a single model [8]. Thus, ensemble learning was used in this research, mainly
because it is an approved method to enhance the accuracy in a variety of scientific fields.

The use of ensemble models for SR classification is rare, especially in the field. In this
work, different models were applied and the performance of the existing models and a new
recent ensemble model were evaluated for first time using DL models, with accuracy per
class as a weight. The results indicated its robustness in all experiments, achieving the best
accuracy. Complete SR classification is also provided using one- and two-phase systems.

The contributions of this paper include:

1. Summary, categorization, and comparison of published research on ML or DL use for
classifying SRs. The summarized categories involve classifying SRs into main classes,
classifying FRs into multi-classes, classifying NFRs into multi-classes, and complete
systems that classify SRs into main classes and FRs and NFRs into multi-classes.

2. Introduction of an ensemble learning framework based on DL models for classifying
different types of SRs. The conducted experiments present comparative results
between three different ensemble models—mean ensemble, accuracy as a weight
ensemble, and accuracy per class as a weight ensemble—and show that accuracy
per class as a weight ensemble learning classifier combining BiLSTM, LSTM, GRU,
and CNN has a stronger capability to correctly predict different types of SRs.

3. Proposition of a two-phase system using the ensemble DL method. The first phase
uses binary classification to classify SRs into FRs or NFRs, while the second phase
classifies the output of the first phase (FRs or NFRs) into multi-classes. FRs are
classified into six different labels: solution, enablement, action constraint, attribute
constraint, policy, and definition. On the contrary, NFRs are classified into 11 different
labels: availability, fault tolerance, legal and licensing, look and feel, maintainability,
operability, performance, portability, scalability, security, and usability.

4. Proposition of a one-phase system using the ensemble DL method. The input is SRs
and the output is 17 multi-classes of either FRs or NFRs (solution, enablement, action
constraint, attribute constraint, policy, definition, availability, fault tolerance, legal

Entropy 2021, 23, 1264 4 of 30

and licensing, look and feel, maintainability, operability, performance, portability,
scalability, security, and usability).

5. Investigation of the performance of each base DL classifier and a number of ensemble
DL classifiers in each phase of the system.

6. To the best of our knowledge there is no complete two-phase system to classify SRs
into FRs or NFRs, then to classify each FR and NFR into multi-classes using ensemble
DL methodology. In addition, there is no such similar categorized review summary
of the previous studies on classifying SRs.

The rest of the paper is organized as follows: Section 2 presents a review of the state
of automated SR classification using the ML and DL methods. Section 3 displays the used
methodology in detail, while Section 4 explains the details of the conducted experiments.
Section 5 provides a comparative analysis, and Section 6 concludes this research.

2. Related Work

This section summarizes previous work regarding the ML and DL methods that try
to automate the classification of SRs into different categories: the binary classification
of SRs into FRs or NFRs (Section 2.1), the multi-class classification of FRs (Section 2.2),
the multi-class classification of NFRs (Section 2.3), and the complete systems that classify
SRs into FRs or NFRs and both FRs and NFRs into subcategories (Section 2.4).

2.1. Classifying SRs into Main Classes

In [9], the authors assigned software requirements to multiple topics. The support
vector machine (SVM) and multinomial naïve Bayes (MNB) models were used for classifi-
cation purposes. Two German specifications by Mercedes-Benz were used, one of which
was public and the other a confidential dataset. The results of these experiments recorded
a maximum recall of 0.94 by the MNB classifier and a maximum precision of 0.86 by the
SVM classifier.

In [10], a convolutional neural network (CNN) was used to classify text as either
a software requirement or information. The Data Object Oriented Repository System
(DOORS) dataset document, which was collected from 89 requirement specifications,
was used to train and test the model. Using the CNN model to achieve the desired goal of
classification recorded an accuracy of 81%, a precision of 0.73, and a recall of 0.89.

2.2. Classifying FRs into Multi-Classes

The ensemble ML approach introduced in [11] aimed to classify FRs into six cate-
gories: Solution, enablement, action constraint, attribute constraint, definition, and policy.
The ensemble method was an enhancement of accuracy as weight, as it used the accuracy
per class as a weight to find the best classifier for each class. The ensemble combined five
ML classifiers: SVM, naïve Bayes, logistic regression (LR), support vector classification
(SVC), and decision tree. The model was trained and tested on a collected dataset that
contained 600 FR statements with the same number of FRs from each class. The use of the
most accurate three classifiers (SVM, SVC, and LR) outperformed the technique using all
classifiers and achieved a 99.45% accuracy in 0.7 s.

2.3. Classifying NFRs into Multi-Classes

In [12], NFRs were categorized into approximately 14 categories, such as capacity,
reliability, and security. The model was based on the K-nearest neighbor classifier and was
tested on 11 different documents related to electronic health records (EHRs). The classifier
was compared to the naïve Bayes and support vector machine classifiers and scored higher
results with an F1 score of approximately 0.54.

In [13], NFRs were categorized into different categories: Availability, look and feel, le-
gal, maintainability, operational, performance, scalability, security, and usability. However,
FRs were not categorized into deeper categories, and any software requirement that did
not belong to any category was classified as an FR. The proposed classifier was designed

Entropy 2021, 23, 1264 5 of 30

to classify based on the frequency of terms that belonged to each category and calculated
their weight using term frequency–inverse document frequency (TF-IDF). The classifier
was trained and tested on 15 project documents that included 326 NFRs and 358 FRs.
The results showed that considering only the top 15 frequent terms was the best technique,
with a recall of 0.7669.

In [14], the authors used the same dataset as that used in [13] but a different method-
ology. The naïve Bayes classifier was used, trained, and tested on more than 600 instances.
To boost the classification, the expectation maximization algorithm was used to label
untrained data. The overall accuracy was approximately 97%.

In [15], the authors conducted a number of experiments to compare the classification
of FRs and NFRs using an ensemble that combined two ML techniques: Random forest and
gradient boosting. Raw data were in the of SQL and CSV formats. NFRs were classified
into approximately 10 labels such as security, performance, and usability. FRs were not
classified into further classes. The experiments aimed to measure the accuracy of FR and
NFR classification. The results showed that for classifying NFRs, the gradient boosting
algorithm performed better than random forest (0.826), while random forest was better at
classifying FRs (0.591).

In [16], SRs were categorized as FRs or NFRs using the naïve Bayes classifier. Then,
NFRs were further categorized into classes such as security, availability, and scalability.
The collected data for the experiment by the authors included 255 FRs, and the number of
NFRs ranged from 10 to 67 per category. The classifier scored a 75% precision for NFRs.

In [17], the PROMISE software engineering repository dataset was used to compare
the performance of five ML algorithms (multinomial naïve Bayes (MNB), Gaussian naïve
Bayes (GNB), Bernoulli naïve Bayes (BNB), K-nearest neighbor (KNN), support vector
machine (SVM), stochastic gradient descent SVM (SGD SVM), and decision tree (Dtree)),
along with different feature extraction techniques. Eleven categories were used to label
NFRs into the categories of availability, legal, look and feel, maintainability, operational,
performance, scalability, security, usability, fault tolerance, and portability. SGD SVM with
TF-IDF scored the highest results of all of the classifiers, with a precision of 0.66, a recall of
0.61, an F1 score of 0.61, and an accuracy of 0.76.

In [7], the authors also used CNN for classification purposes. The authors classified
SRs into the categories of functional, availability, legal, look and feel, maintainability,
operational, performance, scalability, security, usability, fault tolerance, and portability.
The PROMISE corpus dataset was used for the experiment with the proposed DL model.
The evaluation of the performance was measured using precession, recall, and F score; the
results for these measures were 0.80, 0.785, and 0.77, respectively.

In [18], a Master’s thesis was presented, which conducted experiments to perform
a number of classifications: The binary classification of SRs into FRs or NFRs, the binary
classification of NFRs (security-related and non-security-related), and the multi-label clas-
sification of NFRs (availability, legal, maintainability, operational, performance, scalability,
look and feel, security, and usability). The PROMISE dataset was used to train and test the
proposed CNN model. The results showed that the CNN classifier scored recall values
of 0.945, 0.911, and 0.772 for the binary option of FRs or NFRs, the bidirectional encoder
representations from transformers binary option of being security-related or not, and for
NFR multi-label classification, respectively.

In [19], the authors classified NFRs into multi-classes using a specific type of tree
classifier trained and tested using the Certification Commission for Healthcare Information
Technology (CCHIT) dataset, achieving 93.92%.

2.4. Complete System (Classifying NFRs and FRs into Multi-Classes)

In [20], the authors experimented with different classifications: Classifying SRs into
FRs or NFRs, classifying NFRs into different categories (usability, security, operational,
and performance), and classifying FRs into the categories of functions, data, and behavior.
The model was a tuned (BERT) model named “NoRBERT”. Then, it was trained and tested

Entropy 2021, 23, 1264 6 of 30

on the PROMISE dataset for all experiments. The model recorded satisfactory F1 scores
compared to existing state-of-the-art methods for the first classification objective (90% for
FRs and 93% for NFRs). In NFR classification, it scored F1 scores of 76% and 92% for FR
classification.

Analysis of the existing research on SR classification using the ML and DL methods,
as summarized in Table 3, shows that different classifiers have been utilized, such as
SVM, naïve Bayes, and CNN. However, binary classification or NFR classification into
subcategories has been the main concern of the majority of studies, while FRs have attracted
less attention and have rarely been classified into further classes. In addition, a complete
system that classifies both FRs and NFRs into multi-classes has rarely been introduced,
providing the motivation to conduct this piece of work.

Table 3. Summary of related work.

Reference #
Year

Classification Methodology Dataset Results Advantages Disadvantages
Input Classes

1. Classifying SRs into Main Classes

[9] 2013

Software
require-
ments
(SRs)

Topics

Support Vector
Machine (SVM) and
Multinomial Naïve

Bayes (MNB)

Two German
specifications by
Mercedes-Benz

(public and
confidential)

Recall: 0.94
(MNB)
Precision: 0.86
(SVM)

Reliable results.
Improves
technical
review to

enhance SRs.

No enough
training data.

[10] 2017 Text
Requirement

OR
Information

Convolutional Neural
Network (CNN)

DOORS document
database

Accuracy: 81%
Precision: 0.73
Recall: 0.89

One of the first
studies that
used CNN.

Does not point
to wrongly
classified

input.

2. Classifying FRs into Multi-Classes

[11] 2020

Functional
require-
ments
(FRs)

Solution
Enablement

Action constraint
Attribute constraint

Definition
Policy

Ensemble (accuracy
per class as a weight)

includes support
vector classification,

support vector
machine, decision

tree, logistic
regression, and naïve

Bayes

Collected dataset that
has 600 FR statements

with 100 FRs from
each category

Accuracy:
99.45%
Time: 0.07 s

Novel ensemble
approach.

New
introduced FR

dataset.

Limited to
FRs.

3. Classifying Non-Functional Requirements (NFRs) into Multi-Classes

[7] 2017 SRs

Functional Availability
Legal

Look and feel
Maintainability

Operational
Performance Scalability

Security
Usability

Fault tolerance
Portability

CNN PROMISE
corpus

Precession: 0.80
Recall: 0.785
F-measure: 0.77

SRs classified
into 12 classes

using DL.
SRs prepared
simply using
the proposed
reprocessing

method.
DL evaluated to

support RE.

Limited to
CNN only,
while other

models could
be used.

[18] 2018
1. SRs
2. NFRs
3. NFRs

1. FRs
NFRs

2. Availability
Legal

Maintainability
Operational
Performance

Scalability
Look and feel

Security usability
3. Security

Not Security

CNN PROMISE
corpus

1. F1 score:
0.945
2. F1 score:
0.911
3. F1 score:
0.772

Utilizing word
embedding in
vectorization

leads to
improvement in

SR
classification.

Various
aspects

unexplored in
the method

and
validation.

Entropy 2021, 23, 1264 7 of 30

Table 3. Cont.

Reference #
Year

Classification Methodology Dataset Results Advantages Disadvantages
Input Classes

[19] 2014 SRs

FR
Access control

Person authentication
Security encryption
Decryption Audit

control
Automatic Logoff
Integrity controls

Unique user
Identification
Transmission

Encryption Decryption
Emergency Access

procedure
Transmission Security

WekaClassifiersTrees
REPTree

J48

Certification
Commission for

Healthcare
Information

Technology (CCHIT)
dataset

Accuracy:
93.92%

ML algorithms
combined to
solve 2 RE
problems,
and more

problems can
be solved.

Additional
components
required to

solve RE
problems with

Tracelab.

[12] 2013 NFRs

14 NFR classes such as:
Capacity

Reliability
Security

K-nearest neighbor
classifier

11 documents related
to electronic health

records (EHRs)
F1: 0.54

Ability to
extract relevant

NFRs from
documents.

Limited to
NFRs.

Specific data
field.

[13] 2007 SR

FRs
Availability

Look and-feel
legal

Maintainability
Operational
Performance

Scalability
Security
Usability

Classification based
on key words for each
category, along with
finding the weight
based on frequency
for each keyword
used by TF-IDF

Labeled 326 NFRs
and 358 FRs from 15

different projects

Considering
only the top 15
keywords for
each category
scored the
highest
Recall: 0.7669

Provided an
incremental
approach for

training a
classifier in new

domains.

More efforts to
improve
stopping

conditions.
Run time

needs to be
improved to
be used by a
real analyst.

[14] 2010 SR

FRs
Availability

Look and feel
Legal

Maintainability
Operational

Performance Scalability
Security
Usability

Naïve Bayes classifier
Labeled 326 NFRs

and 358 FRs from 15
different projects

Accuracy: 97%

Feasibility of
using semi-
supervised

learning in NFR
classification.

Dataset is
limited to the

top-ranked
examples.

[15] 2019 SR

FRs
NFRs categorized into
10 categories such as:

Security
Performance

Usability

Ensemble method
consists of random
forest and gradient

boosting

Text files in a format
of SQL and CSV files

NFR accuracy:
0.826 (gradient
boosting)
FR accuracy:
0.591 (random
forest)

Highly accurate
algorithms for

SR
classification.

Limited study
due to limited

data.
Could not

determine the
number of SRs
in a sentence.

Could not
read input
from .docx

and .txt files.

[16] 2010 SR

FRs
NFRs categorized into

categories such as:
Security

Availability
Scalability

Naïve Bayes classifier

Collected SRs by
interviews and other

methods
(255 FRs, NFRFR

range from 10 to 67
per category)

NFR precision:
75%

Reduced
manual labeling

efforts.

Limited to
NFR

multi-class
classification

[17] 2019 SR

FRs
Availability

Legal
Look and feel

Maintainability
Operational
Performance

Scalability
Security
Usability

Fault tolerance
Portability

Multinomial naïve
Bayes (MNB)

Gaussian naïve Bayes
(GNB)

Bernoulli naïve Bayes
(BNB)

K-nearest neighbor
(KNN)

Support vector
machine (SVM)

Stochastic gradient
descent SVM (SGD

SVM)
Decision tree (Dtree)

PROMISE dataset
(625 requirement

sentences: 255 FRs
and 370 NFRs)

Precision: 0.66
Recall: 0.61
F1 score: 0.61
Accuracy: 0.76
Using SGD
SVM classifier
and TF-IDF for
feature
extraction

Seven
algorithms

used.

Need to apply
other

classification
techniques

such as
boosting and

bagging.

Entropy 2021, 23, 1264 8 of 30

Table 3. Cont.

Reference #
Year

Classification Methodology Dataset Results Advantages Disadvantages
Input Classes

4. Complete System (Classifying NFRs and FRs into Multi-Classes)

[20] 2020
1. SRs
2. NFRs
3. FRs

1. FRs
NFRs

2. Usability
Security

Operational
Performance
3. Functions

Data Behavior

Fine-tuned BERT
(NoRBERT) PROMISE

1. F1 score: 90%
FRs and 93%
NFRs
2. F1 score: 76%
3. F1 score: 92%

Novelty in FR
classification.

Modern
algorithm used
with transfer

learning.

Multi-class or
multi-label

classification
for FRs not
considered.

3. Materials and Methods
3.1. Phases of Classification

In this section, the phases of classifications are explained, as shown in Figure 1. First,
SRs are classified into FRs or NFRs, and this is called binary classification. Second, FRs are
classified into six different classes, as explained in detail in Table 1. The multi-classes of FRs
include: solution, enablement, action constraint, attribute constraint, policy, and Definition.
Third, NFRs are classified into 11 different classes, as summarized in Table 2. The multi-
classes of NFRs include availability, fault tolerance, Legal, look and feel, maintainability,
operational, performance, portability, scalability, usability, and security. In order to conduct
these classifications, two experiments were conducted and are explained in the following
sections.

Entropy 2021, 23, 1264 8 of 30

Definition. Third, NFRs are classified into 11 different classes, as summarized in Table 2.
The multi-classes of NFRs include availability, fault tolerance, Legal, look and feel, main-
tainability, operational, performance, portability, scalability, usability, and security. In or-
der to conduct these classifications, two experiments were conducted and are explained
in the following sections.

Figure 1. Phases of software requirement (SR) classification.

3.2. Methodology
In this section, the proposed models are explained in detail. Figure 2 depicts the two

models, which include the following phases, and the details are included in the subse-
quent sections:
• Data preprocessing;
• Text classification phase 1 (binary);
• Text classification phase 2 (multi-classes);
• Evaluation.

Figure 1. Phases of software requirement (SR) classification.

3.2. Methodology

In this section, the proposed models are explained in detail. Figure 2 depicts the two
models, which include the following phases, and the details are included in the subsequent
sections:

Entropy 2021, 23, 1264 9 of 30

• Data preprocessing;
• Text classification phase 1 (binary);
• Text classification phase 2 (multi-classes);
• Evaluation.

Entropy 2021, 23, 1264 9 of 30

(a)

(b)

Figure 2. Proposed models (a) One phase (b) Two phases.

3.2.1. Data Preprocessing
This process is conducted only once at the beginning before phase 1 classification.

Data preprocessing is a crucial step in DL models, as it affects the accuracy and quality of
results. The preprocessing for the DL models was performed in a unified way. The pre-
processing included four steps: (a) Case folding, (b) tokenization, (c) lemmatization, and
(d) padding. The text was converted to lowercase in order to avoid having two dimensions
for the same words [7]. Tokenization refers to converting the text to tokens of words [19].
Lemmatization means returning each word to its root and finding the correct base word

Figure 2. Proposed models (a) One phase (b) Two phases.

Entropy 2021, 23, 1264 10 of 30

3.2.1. Data Preprocessing

This process is conducted only once at the beginning before phase 1 classification.
Data preprocessing is a crucial step in DL models, as it affects the accuracy and quality of
results. The preprocessing for the DL models was performed in a unified way. The prepro-
cessing included four steps: (a) Case folding, (b) tokenization, (c) lemmatization, and (d)
padding. The text was converted to lowercase in order to avoid having two dimensions
for the same words [7]. Tokenization refers to converting the text to tokens of words [19].
Lemmatization means returning each word to its root and finding the correct base word
for it, and it was selected because it outperforms stemming [21]. Finally, padding was used
to unify the length of the sentences, since they had different numbers of words. This was
carried out by finding the maximum length of the sentence and then adding zeros to the
end of the sequence of tokens for any sentence that was shorter than the maximum length
specified according to the input [20]. Algorithm 1 summarizes the preprocessing and
Figure 3 gives an example of preprocessing of one SR from the dataset.

Algorithm 1 (Data preprocessing step)

Input: X: A data stream of sentences inserted from a file.
Y: a label for the inserted sentences

Output:
Train_data: a section of the X and Y to train the algorithms.
Validation_data: a section of the X and Y to validate the algorithms.
Test_data: a section of the X and Y to test the algorithms.

X < Tokenize sentences in X
X < Remove spaces and stop words.
X < Convector(X) // convert sentences into numbers
Y < Convector (Y) // convert labels (classes) into numbers
// split data into training, validation and testing portions
train_data (x, y), validation data(x,y), test_data(x,y) < Split (X, Y)

Entropy 2021, 23, 1264 10 of 30

for it, and it was selected because it outperforms stemming [21]. Finally, padding was
used to unify the length of the sentences, since they had different numbers of words. This
was carried out by finding the maximum length of the sentence and then adding zeros to
the end of the sequence of tokens for any sentence that was shorter than the maximum
length specified according to the input [20]. Algorithm 1 summarizes the preprocessing
and Figure 3 gives an example of preprocessing of one SR from the dataset.

Algorithm 1 (Data preprocessing step)
Input: X: A data stream of sentences inserted from a file.
 Y: a label for the inserted sentences
Output:
 Train_data: a section of the X and Y to train the algorithms.
 Validation_data: a section of the X and Y to validate the algorithms.
 Test_data: a section of the X and Y to test the algorithms.
X < Tokenize sentences in X
X < Remove spaces and stop words.
X < Convector(X) // convert sentences into numbers
Y < Convector (Y) // convert labels (classes) into numbers
// split data into training, validation and testing portions
train_data (x, y), validation data(x,y), test_data(x,y) < Split (X, Y)

Figure 3. Preprocessing example.

3.2.2. Text Classification
A. Base DL Classifiers:

The following are the used base DL classifiers in both the binary and multi-class clas-
sifications:

Figure 3. Preprocessing example.

Entropy 2021, 23, 1264 11 of 30

3.2.2. Text Classification

A. Base DL Classifiers:

The following are the used base DL classifiers in both the binary and multi-class
classifications:

• LSTM is a type of recurrent neural network (RNN) that uses memory blocks to solve
the vanishing gradient problem in RNN using memory blocks. The model’s first layer
is the input layer, which receives preprocessed data in a time step. Each component is
passed to the embedding layer at first, which is represented to generate feature vectors.
Then, the LSTM hidden layer follows the forward path only. LSTM has three main
gates, namely, input, forget, and output gates, to control the cell state and update the
weights [22].

• BiLSTM includes two hidden layers connected with both the input and the output.
BiLSTM includes a forward LSTM layer and a backward LSTM layer to utilize the
next tokens for learning information, and better predictions can be achieved. The best
way to benefit from the BiLSTM is to stack LSTM layers. Forward layers are iterated
from t = 1 to T. On the contrary, backward layers are iterated from t = T to 1 [23].

• CNNs involve producing local features by applying the convolutional concept [24].
Using filters with a width determined by the word embedding vector size, different
vertical local regions allow different filter sizes of L = 2, 3, and 4. This is helpful for
learning many features. Active convoluted results are used to generate feature maps
with varied dimensions on the filters [25].

• GRU is type of RNN known for its fast conversions compared to LSTM. In addition,
it requires fewer parameters [26]. It has two types of gates: An update gate and a reset
gate. Since it has no memory to store information, it only deals with unit information.
The update gate decides the amount of data to be updated and the reset gate decides
the amount of past data to forget. If the gate is set to zero, it reads input data and
ignores the previously calculated state [27].

B. Ensemble Models:

A number of ensemble methods are applied to the specified dataset (PROMISE).
Then, the performance is compared. Details of each ensemble model are explained in the
subsections of section B (B.1, B.2, and B.3).

B.1. Mean Ensemble:

This ensemble is also called simple averaging. The output is the average prediction
from base classifiers that have equal weights [28]. The mean ensemble is explained in
Algorithm 2.

Algorithm 2 (Mean ensemble for base DL classifiers)

Input: X: Preprocessed data.
Y: labels of the sentences.

NNAL(i): Number of Neural Network algorithms used [BiLSTM, CNN, GRU,
LSTM].
Output:
Mean_ Accuracy: Represents the Mean ensemble model.
For each model in NNAL(i):

NNL(i) < fit (train_data (X, Y), validation(X,Y))
P(y′) < Predict (test data(X))
Result< Compare (p(y′), Y)
Conf(i)< Calculate (Confusion matrix)
Accuracy(i) < Result/Y*100

End
//Final prediction
Mean_Accuracy < mean(P(y′))/4

Entropy 2021, 23, 1264 12 of 30

B.2. Accuracy as a weight:

This method is a combination of weight ensemble and simple averaging ensemble.
The prediction of each model is multiplied by its weight, which is the accuracy in this
case. Then, the average is calculated [29]. Algorithm 3 displays the accuracy as a weight
ensemble.

Algorithm 3 Accuracy as a weight ensemble for base DL classifiers

Input: X: Preprocessed data.
Y: labels of the sentences.

NNAL(i): Number of Neural Network algorithms used [BiLSTM, CNN, GRU,
LSTM].
Output:

W: Weight for each NNAL which is its accuracy.
Voting_ Accuracy: Represents the weight as accuracy ensemble voting model.
For each model in NNAL(i):

NNL(i) < fit (train_data (X, Y), validation(X,Y))
P(y′) < Predict (test data(X))
Result< Compare(p(y′), Y)
Conf(i)< Calculate (Confusion matrix)
Accuracy(i) < Result/Y*100
W(i) < Accuracy(i)

End
// Find the final prediction
V_result< Voting_algorithm (NNAL(i), W(i))
Voting_ Accuracy < V_Result/Y*100

B.3. Accuracy per class as a weight:

This ensemble classifier is an enhancement of the voting ensemble, considering the
accuracy as a weight. The enhancement consists of calculating the accuracy per class
and passing it to the voting ensemble, rather than the overall accuracy, as other authors
have done. This method of ensemble was proposed by [11], who applied the concept
to ML classifiers. Figure 3 explains this ensemble method as having two base classifiers:
Classifiers A and B. The type of classification is multi-class classification into class 0, 1, or 2.
As per the example in Figure 4, the confusion matrices are created for base classifiers. Then,
predictions for each class by each base classifier are stored as a matrix to be compared.
For this example, for class 0, Classifier A prediction is better than Classifier B, so it is
considered. For class 1, both classifiers have the same predictions, so one of them is
selected randomly. Classifier B scores better prediction for class 2, resulting in it being
considered. The better predictions for each class are considered to form the final confusion
matrix. Algorithm 4 explains the accuracy per class as a weight ensemble model.

Algorithm 4 Accuracy per class as a weight ensemble

Input: X: Preprocessed data.
Y: labels of the sentences
NNAL(i): Number of Neural Network algorithms used [BiLSTM, CNN, GRU,

LSTM].
Output:
W: An array of weights assigned for each NNAL(i)
Voting_ Accuracy: Represents the proposed ensemble voting model.

Entropy 2021, 23, 1264 13 of 30

For each model in NNAL(i):
NNL(i) < fit (train_data (X, Y), validation_data (X, Y))
P(y′) < Predict (test data(X))
Result < Compare(p(y′), Y)
Conf(i) < Calculate (Confusion matrix)
Accuracy(i) < Result/Y*100

End
// Give a weight for each model
// combine the diagonals of all confusion matrices into one matrix
Conf_matrix < [[Conf (i. diagonal]]
// find the maximum of each column that will represent the algorithm weight
W < max_coloumn (Conf_matrix(i))
V_result< Voting_algorithm (NNAL(i), W(i))
Voting_ Accuracy < V_Result/Y*100

Entropy 2021, 23, 1264 13 of 30

(a)

(b)

(c)

Figure 4. Example of accuracy per class as a weight. (a) confusion matrices for base classifiers; (b)
matrix to store predictions of each class by each classifier (diagonals of confusion matrices); (c) con-
fusion matrix of the final ensemble.

Algorithm 4: Accuracy per class as a weight ensemble
Input: X: Preprocessed data.

 Y: labels of the sentences
 NNAL(i): Number of Neural Network algorithms used [BiLSTM, CNN, GRU,
LSTM].
Output:

W: An array of weights assigned for each NNAL(i)

Voting_ Accuracy: Represents the proposed ensemble voting model.

For each model in NNAL(i):

 NNL(i) < fit (train_data (X, Y), validation_data (X, Y))

 P(y′) < Predict (test data(X))

 Result < Compare(p(y′), Y)

 Conf(i) < Calculate (Confusion matrix)

 Accuracy(i) < Result/Y*100

End

// Give a weight for each model

Figure 4. Example of accuracy per class as a weight. (a) confusion matrices for base classifiers;
(b) matrix to store predictions of each class by each classifier (diagonals of confusion matrices); (c)
confusion matrix of the final ensemble.

3.2.3. Evaluation Methods

Evaluation was conducted using different performance measures:

A. Confusion Matrix

The evaluation of each DL classifier was based on the confusion matrix, which summa-
rized the correct and incorrect predictions of each classifier for each class, showing a ratio of

Entropy 2021, 23, 1264 14 of 30

correct predictions to the total predictions made by the classifier. The parameters that were
required to calculate the other evaluation matrices were calculated through the confusion
matrix. These parameters were the true positive (tp), false positive (fp), true negative (tn),
and false negative (fn). The predicted classes are represented in rows, while actual classes
are represented in columns [30].

B. Accuracy

Accuracy is one of the most important evaluation matrices, showing the overall
performance of a classifier. The following formula was used to calculate the accuracy [31]:

Accuracy =
tp + tn

tp + tn + fp + fn
(1)

where tp refers to true positive predictions, tn refers to true negative predictions, fp refers
to false positive predictions, and fn refers to false negative predictions [31].

C. Loss

Loss was used to calculate the difference between predictions and true values. In the case
that each input belonged to one category from the multiple categories, “sparse_categorical_
crossentropy” was used. The following formula clarifies this calculation, where S refers
samples, C refers to classes, and (SεC) represents the samples belonging to class C [32]:

Loss = − log p(SεC) (2)

D. Precision

The precision is the total of the positive prediction values and was calculated using
the following formula [32]:

Precision =
tp

tp + fp
(3)

where tp refers to true positive predictions and fp refers to false positive predictions.

E. Recall

Recall is defined as sensitivity or the true positive rate and was calculated using the
following formula [32]:

Recall =
tp

tp + fn
(4)

where tp refers to true positive predictions and fn refers to false negative predictions.

F. F1 Score

The F1 score is a relationship metric between recall and precision. It can be high
only if both recall and precision are high. The F1 score was calculated using the following
formula [32]:

F1− Score = 2 ∗ Precision ∗ Recall
Precision + Recall

(5)

4. Experiment Details
4.1. Hardware and Software Details

Python 3.6 was used for implementing the base and ensemble classifier. We used the
PyCharm tool, which is user-friendly, and its dataset allows for easy uploading. This is
true for various dataset file formats, such as CSV.

Scikit learn was also chosen, as it includes many libraries that can facilitate building
ML classifiers and calculating the factors used in the evaluations. Ensemble models are
widely supported by all types of classifiers.

The computer used was an ASUS Laptop, with an x64 Inter(R) Core (TM) i7-9750H
processor and 17.0 GB of RAM, running a 64-bit Windows Operating System.

Entropy 2021, 23, 1264 15 of 30

4.2. PROMISE Dataset

This is a widely used dataset for SR classification in most previous work. It consists of
FRs and NFRs labeled into 11 different categories, as explained in Table 1, with a different
number of statements in each class. The content of the found and used version of the
PROMISE dataset is detailed in Table 4.

Table 4. PROMISE dataset details.

Classes Number of Statements

Availability (A) 29
Fault tolerance (FT) 12

Legal (L) 14
Look and feel (LF) 42

Maintainability (MN) 17
Operational (O) 68

Performance (PE) 54
Portability (PO) 2
Scalability (SC) 21

Security (SE) 67
Usability (US) 67

FRs 266
Total 659

The FRs were labeled into six classes by the authors to be used in the experiments,
containing different numbers in each class, as shown in Table 5.

Table 5. Details of the PROMISE FR classes.

FR Classes Number of Statements

Policy (P) 41
Solution (S) 116

Enablement (E) 71
Action constraint (AC) 25

Attribute constraint (AT) 7
Definition (D) 6

Total 266

The split of the dataset into training, validation, and testing was unified for all systems
and experiments to 35% training, 35% validation, and 30% testing. An imbalanced dataset
has different solutions to form a balanced dataset for experiments. The selected solution
according to the available dataset was random oversampling. This technique duplicates
minority classes in training datasets and is repeated until satisfaction of class distribution
is reached [32].

4.3. One-Phase Classification System

A. Training

This system classifies SRs into one of the FR or NFR classes (17 classes) directly without
passing the phase of binary classification at the beginning. The validation dataset was
used to ensure that there is no overfitting in each base DL classifier. The hyperparameters
were left to the default and some were justified to the values that help to avoid overfitting.
The Adam optimizer was used with a 0.001 default learning rate. The suitable number
of epochs was 30 with batch size of 50. Dropout was justified to 0.2 for all classifiers.
The architecture of each base DL model is summarized in Tables 6–9.

Figure 5 shows the accuracy and loss for DL models during 60 epochs to find the
optimal number of epochs. As it was noticed that 30 epochs is optimal for all DL models,
this number of epochs was selected for all experiments.

Entropy 2021, 23, 1264 16 of 30

B. Test Results and Discussion

Table 10 summarizes the evaluation parameters in the testing phase for SR multi-class
classification. The base DL models reached a 91% accuracy, a 0.92 precision, a 0.92 recall,
and a 0.92 F1 score by the CNN model. The applied ensemble methods reached a 92.56%
accuracy, a 0.93 precision, a 0.93 recall, a 0.93 F1 score by accuracy per class as a weight
ensemble method. The confusion matrices of all models and methods applied on the
PROMISE dataset are displayed in Figure 6, where it can be noticed that the most accurate
predictions for all classes were reached by the accuracy per class as a weight ensemble
method. The ensemble method was able to enhance the accuracy of the SR classification,
but the authors would prefer to examine the application phases of classification on the
PROMISE dataset to find the best approach—either a one- or two-phase system.

Table 6. One-phase system: architecture of the BiLSTM DL model.

Layer Output Shape Number of Parameters

Embedding_64 (None, None, 46) 77,280
Spatial_dropout1d_39 (None, None, 46) 0

Bidirectional_39 (None, 92) 34,224
Dense_149 (None, 46) 4278

Dropout_95 (None, 46) 0
Dense_150 (None, 46) 2162

Dropout_96 (None, 46) 0
Dense_151 (None, 17) 799

Activation_39 (None, 17) 0

Table 7. One-phase system: Architecture of the CNN model.

Layer Output Shape Number of Parameters

Embedding_65 (None, None, 46) 77,280
Dropout_97 (None, None, 46) 0
Conv1d_10 (None, None, 46) 6394

Global_max_pooling1d_10 (None, 46) 0
Dense_152 (None, 128) 6016

Dropout_98 (None, 128) 0
Dense_153 (None, 17) 2193

Table 8. One-phase system: architecture of the GRU model.

Layer Output Shape Number of Parameters

Embedding_66 (None, None, 46) 77,280
Gru_17 (None, None, 46) 12,834
Gru_18 (None, 32) 7584

Dense_154 (None, 17) 561

Table 9. One-phase system: Architecture of the LSTM model.

Layer Output Shape Number of Parameters

Embedding_67 (None, None, 46) 77,280
Lstm_56 (None, None, 46) 17,112
Lstm_57 (None, 32) 10,112

Dense_155 (None, 17) 561

Entropy 2021, 23, 1264 17 of 30

Table 10. One-phase system: evaluation parameters for the DL models.

DL Models Accuracy
(%) Precision Recall F1 Score

BiLSTM 84.022 0.84 0.85 0.84
LSTM 74.656 0.75 0.74 0.72
CNN 91 0.92 0.92 0.92
GRU 78.78 0.79 0.79 0.78

Mean ensemble 88.15 0.88 0.89 0.88
Accuracy as a weight ensemble 90.63 0.91 0.91 0.91
Accuracy per class as a weight 92.56 0.93 0.93 0.93

Entropy 2021, 23, 1264 17 of 30

Table 9. One-phase system: Architecture of the LSTM model.

Layer Output Shape Number of Parameters
Embedding_67 (None, None, 46) 77,280

Lstm_56 (None, None, 46) 17,112
Lstm_57 (None, 32) 10,112

Dense_155 (None, 17) 561

Figure 5 shows the accuracy and loss for DL models during 60 epochs to find the
optimal number of epochs. As it was noticed that 30 epochs is optimal for all DL models,
this number of epochs was selected for all experiments.

Figure 5. Accuracy–loss curves for the DL models in 60 epochs. Figure 5. Accuracy–loss curves for the DL models in 60 epochs.

Entropy 2021, 23, 1264 18 of 30

Entropy 2021, 23, 1264 18 of 30

(B) Test Results and Discussion
Table 10 summarizes the evaluation parameters in the testing phase for SR multi-

class classification. The base DL models reached a 91% accuracy, a 0.92 precision, a 0.92
recall, and a 0.92 F1 score by the CNN model. The applied ensemble methods reached a
92.56% accuracy, a 0.93 precision, a 0.93 recall, a 0.93 F1 score by accuracy per class as a
weight ensemble method. The confusion matrices of all models and methods applied on
the PROMISE dataset are displayed in Figure 6, where it can be noticed that the most
accurate predictions for all classes were reached by the accuracy per class as a weight
ensemble method. The ensemble method was able to enhance the accuracy of the SR clas-
sification, but the authors would prefer to examine the application phases of classification
on the PROMISE dataset to find the best approach—either a one- or two-phase system.

Table 10. One-phase system: evaluation parameters for the DL models.

DL Models Accuracy
(%)

Precision Recall F1 Score

BiLSTM 84.022 0.84 0.85 0.84
LSTM 74.656 0.75 0.74 0.72
CNN 91 0.92 0.92 0.92
GRU 78.78 0.79 0.79 0.78

Mean ensemble 88.15 0.88 0.89 0.88
Accuracy as a weight ensemble 90.63 0.91 0.91 0.91
Accuracy per class as a weight 92.56 0.93 0.93 0.93

(a) BiLSTM (b) CNN

(c) GRU (d) LSTM

Entropy 2021, 23, 1264 19 of 30

(e) Mean ensemble (f) Accuracy as a weight ensemble

(g) Accuracy per class as a weight ensemble

Figure 6. One-phase system confusion matrices for the DL classifiers.

4.4. Two-Phase Classification System
4.4.1. Binary Classification of SRs into an FR or NFR Phase
(A) Training

This system classifies SRs into FRs or NFRs as the first phase, and the preprocessed
and binary-classified SRs are then passed to the second phase for multi-class classification.
The validation dataset was used to ensure that there was no overfitting in each base DL
classifier. The hyperparameters were left as default, and some were justified to values that
help to avoid overfitting. The Adam optimizer was used with a 0.001 default learning rate.
The suitable number of epochs was 30 with a batch size of 50. Dropout was justified to 0.2
for all classifiers. The architecture of each base DL model is summarized in Tables 11–14.

Table 11. Two-phase system: architecture of the BiLSTM model in the binary classification phase.

Layer Output Shape Number of Parameters
Embedding_68 (None, None, 46) 60,858

Spatial_dropout1d_40 (None, None, 46) 0
Bidirectional_40 (None, 92) 34,224

Dense_156 (None, 46) 4278
Dropout_99 (None, 46) 0
Dense_157 (None, 46) 2162

Dropout_100 (None, 46) 0
Dense_158 (None, 3) 141

Activation_40 (None, 3) 0

Figure 6. One-phase system confusion matrices for the DL classifiers.

Entropy 2021, 23, 1264 19 of 30

4.4. Two-Phase Classification System
4.4.1. Binary Classification of SRs into an FR or NFR Phase

A. Training

This system classifies SRs into FRs or NFRs as the first phase, and the preprocessed
and binary-classified SRs are then passed to the second phase for multi-class classification.
The validation dataset was used to ensure that there was no overfitting in each base DL
classifier. The hyperparameters were left as default, and some were justified to values that
help to avoid overfitting. The Adam optimizer was used with a 0.001 default learning rate.
The suitable number of epochs was 30 with a batch size of 50. Dropout was justified to 0.2
for all classifiers. The architecture of each base DL model is summarized in Tables 11–14.

Table 11. Two-phase system: architecture of the BiLSTM model in the binary classification phase.

Layer Output Shape Number of Parameters

Embedding_68 (None, None, 46) 60,858
Spatial_dropout1d_40 (None, None, 46) 0

Bidirectional_40 (None, 92) 34,224
Dense_156 (None, 46) 4278

Dropout_99 (None, 46) 0
Dense_157 (None, 46) 2162

Dropout_100 (None, 46) 0
Dense_158 (None, 3) 141

Activation_40 (None, 3) 0

Table 12. Two-phase system: architecture of the CNN model in the binary classification phase.

Layer Output Shape Number of Parameters

Embedding_69 (None, None, 46) 60,858
Dropout_101 (None, None, 46) 0
Conv1d_11 (None, None, 46) 6394

Global_max_pooling1d_11 (None, 46) 0
Dense_159 (None, 128) 6016

Dropout_102 (None, 128) 0
Dense_160 (None, 2) 258

Table 13. Two-phase system: architecture of the GRU model in the binary classification phase.

Layer Output Shape Number of Parameters

Embedding_70 (None, None, 46) 60,858
Gru_19 (None, None, 46) 12,834
Gru_20 (None, 32) 7584

Dense_161 (None, 2) 66

Table 14. Two-phase system: architecture of the LSTM model in the binary classification phase.

Layer Output Shape Number of Parameters

Embedding_71 (None, None, 46) 60,858
Lstm_59 (None, None, 46) 17,112
Lstm_60 (None, 32) 10,112

Dense_162 (None, 2) 66

B. Test Results and discussion

Table 15 displays the performance attributes of each DL model and ensemble method
applied to the PROMISE dataset during the binary classification phase of SRs. The DL
models were able to reach close results of 94.49%, 93.22%, 93.22%, and 92.37% by BiLSTM,

Entropy 2021, 23, 1264 20 of 30

LSTM, CNN, and GRU, respectively. However, in terms of the ensemble methods, the ac-
curacy as a weight and accuracy per class as a weight were able to enhance the accuracy
by achieving 94.9% and 95.7%, respectively. The other performance evaluation attributes
achieved 0.96 by using accuracy per class as a weight ensemble method. Figure 7 shows the
confusion matrices for all of the DL models and ensemble methods and clarifies that the
best prediction accuracy was achieved by accuracy per class as a weight ensemble method.

Table 15. Two-phase system evaluation parameters for the DL models in the binary classification
phase.

DL Models Accuracy
(%) Precision Recall F1 Score

BiLSTM 95.00 0.94 0.95 0.94
LSTM 93.22 0.93 0.93 0.93
CNN 93.22 0.93 0.94 0.93
GRU 92.37 0.92 0.92 0.92

Mean ensemble 94.4 0.94 0.95 0.94
Accuracy as a weight ensemble 94.9 0.95 0.95 0.95

Accuracy per class as a weight ensemble 96 0.96 0.96 0.96
Entropy 2021, 23, 1264 21 of 30

(a) BiLSTM (b) CNN

(c) GRU (d) LSTM

(e) Mean ensemble (f) Accuracy as a weight ensemble

(g) Accuracy per class as a weight ensemble

Figure 7. Two-phase system: Confusion matrices for the DL models in the binary classification phase.

Figure 7. Cont.

Entropy 2021, 23, 1264 21 of 30

Entropy 2021, 23, 1264 21 of 30

(a) BiLSTM (b) CNN

(c) GRU (d) LSTM

(e) Mean ensemble (f) Accuracy as a weight ensemble

(g) Accuracy per class as a weight ensemble

Figure 7. Two-phase system: Confusion matrices for the DL models in the binary classification phase. Figure 7. Two-phase system: Confusion matrices for the DL models in the binary classification phase.

4.4.2. Multi-Class Classification Phase of NFRs and FRs into 17 Classes

A. Training

Training the model to handle FRs and NFRs requires different parameters to be tuned
and justified to achieve acceptable results, as the model should be trained to modify itself
to search FR classes if the input from the first phase (binary classification) is FRs and to
search in the NFR classes if the input from the first phase is NFRs. Tables 16–19 summarize
the parameters of the base DL models in the training phase for FRs, and Tables 20–23
summarize the parameters of the base DL models in the training phase of NFRs.

Table 16. Two-phase system: architecture of the BiLSTM model in the FR multi-class classification
phase.

Layer Output Shape Number of Parameters

Embedding_8 (None, None, 46) 28,106
Spatial_dropout1d_3 (None, None, 46) 0

Bidirectional_3 (None, 92) 34,224
Dense_14 (None, 46) 4278

Dropout_9 (None, 46) 0
Dense_15 (None, 46) 2162

Dropout_10 (None, 46) 0
Dense_16 (None, 6) 282

Activation_3 (None, 6) 0

Entropy 2021, 23, 1264 22 of 30

Table 17. Two-phase system: architecture of the CNN model in the FR multi-class classification
phase.

Layer Output Shape Number of Parameters

Embedding_9 (None, None, 46) 28,106
Dropout1d_11 (None, None, 46) 0

Conv1d_3 (None, None, 46) 6394
Global_max_pooling1d_3 (None, 46) 0

Dense_17 (None, 128) 6016
Dropout_12 (None, 128) 0

Dense_18 (None, 6) 774

Table 18. Two-phase system: architecture of the GRU model in the FR multi-class classification phase.

Layer Output Shape Number of Parameters

Embedding_10 (None, None, 46) 28,106
GRU_5 (None, None, 46) 12,834
GRU_6 (None, 32) 7584

Dense_19 (None, 6) 198

Table 19. Two-phase system: architecture of the LSTM model in the FR multi-class classification
phase.

Layer Output Shape Number of Parameters

Embedding_11 (None, None, 46) 28,106
Lstm_6 (None, None, 46) 17,112
Lstm_7 (None, 32) 10,112

Dense_20 (None, 6) 198

Table 20. Two-phase system: architecture of the BiLSTM model in the NFR multi-class classification
phase.

Layer Output Shape Number of Parameters

Embedding_4 (None, None, 46) 53,958
Spatial_dropout1d_4 (None, None, 46) 0

Bidirectional_4 (None, 92) 34,224
Dense_21 (None, 46) 4278

Dropout_13 (None, 46) 0
Dense_22 (None, 46) 2162

Dropout_14 (None, 46) 0
Dense_23 (None, 11) 517

Activation_4 (None, 11) 0

Table 21. Two-phase system: architecture of the CNN model in the NFR multi-class classification
phase.

Layer Output Shape Number of Parameters

Embedding_13 (None, None, 46) 53,958
Dropout_15 (None, None, 46) 0
Conv1d_4 (None, None, 46) 6394

Global_max_pooling1d_4 (None, 46) 0
Dense_24 (None, 128) 6016

Dropout_16 (None, 128) 0
Dense_25 (None, 11) 1419

Entropy 2021, 23, 1264 23 of 30

Table 22. Two-phase system: architecture of the GRU model in the NFR multi-class classification
phase.

Layer Output Shape Number of Parameters

Embedding_14 (None, None, 46) 53,958
GRU_7 (None, None, 46) 12,834
GRU_8 (None, 32) 7584

Dense_26 (None, 11) 363

Table 23. Two-phase system: architecture of the LSTM model in the NFR multi-class classification
phase.

Layer Output Shape Number of Parameters

Embedding_15 (None, None, 46) 53,958
Lstm_9 (None, None, 46) 17,112
Lstm_10 (None, 32) 10,112
Dense_27 (None, 11) 363

B. Test Results and discussion

Table 24 clarifies the results of all of the used DL models and ensemble methods that
have been applied to classify FRs from the PROMISE dataset after being preprocessed and
binary classified by the same model in the previous phase. The base DL models performed
successfully in the case of BiLSTM and CNN, as they achieved accuracies of 96.8% and
96.0%, respectively. However, the LSTM and GRU models only achieved accuracies of
78.91% and 58.59%, respectively, indicating lower performance than the other DL models.
The ensemble methods achieved equal accuracy percentages as BiLSTM model (96.8%).
All confusion matrices for all DL models and ensemble methods are displayed in Figure 8.
It can be clearly seen that the best predictions for all FR classes were achieved by accuracy
per class as a weight ensemble method.

Table 24. Two-phase system evaluation parameters of the DL classifiers for FRs in the multi-class
classification phase.

DL Models Accuracy
(%) Precision Recall F1 Score

BiLSTM 96.8 0.97 0.97 0.97
LSTM 78.91 0.79 0.79 0.79
CNN 96.0 0.96 0.96 0.96
GRU 58.59 0.59 0.59 0.59

Mean ensemble 96.8 0.97 0.97 0.97
Accuracy as a weight ensemble 96.8 0.97 0.97 0.97

Accuracy per class as a weight ensemble 98 0.98 0.98 0.98

Table 25 displays the performance of all the applied classifiers: DL models and ensem-
ble methods in the NFR multi-class classification phase, which comes after the binary phase.
In terms of the base DL models, BiLSTM and CNN achieved accuracies of approximately
83%, while LSTM and GRU achieved accuracies of 63% and 56%, respectively. All ensemble
methods successfully improved the accuracy. However, the best accuracy was achieved by
accuracy per class ensemble method (86.5%). The recall and F1 score were 0.86 and 0.87,
respectively, but the precision was 0.89. Moreover, Figure 9 displays the predictions of each
DL model and ensemble method with a clear indication that accuracy per class as a weight
ensemble method has the maximum prediction values among the others.

Entropy 2021, 23, 1264 24 of 30

Entropy 2021, 23, 1264 24 of 30

Table 24. Two-phase system evaluation parameters of the DL classifiers for FRs in the multi-class
classification phase.

DL Models Accuracy
(%) Precision Recall F1 Score

BiLSTM 96.8 0.97 0.97 0.97
LSTM 78.91 0.79 0.79 0.79
CNN 96.0 0.96 0.96 0.96
GRU 58.59 0.59 0.59 0.59

Mean ensemble 96.8 0.97 0.97 0.97
Accuracy as a weight ensemble 96.8 0.97 0.97 0.97

Accuracy per class as a weight ensemble 98 0.98 0.98 0.98

(a) BiLSTM (b) CNN

(c) GRU (d) LSTM

(e) Mean ensemble (f) Accuracy as a weight ensemble

Entropy 2021, 23, 1264 25 of 30

(g) Accuracy per class as a weight ensemble

Figure 8. Two-phases system: confusion matrices of the FR DL classifiers in the multi-class classification phase.

Table 25 displays the performance of all the applied classifiers: DL models and en-
semble methods in the NFR multi-class classification phase, which comes after the binary
phase. In terms of the base DL models, BiLSTM and CNN achieved accuracies of approx-
imately 83%, while LSTM and GRU achieved accuracies of 63% and 56%, respectively. All
ensemble methods successfully improved the accuracy. However, the best accuracy was
achieved by accuracy per class ensemble method (86.5%). The recall and F1 score were
0.86 and 0.87, respectively, but the precision was 0.89. Moreover, Figure 9 displays the
predictions of each DL model and ensemble method with a clear indication that accuracy
per class as a weight ensemble method has the maximum prediction values among the
others.

Table 25. Two-phase system: evaluation parameters for the NFR DL classifiers in the multi-class
classification phase.

DL Models
Accuracy

(%) Precision Recall F1 Score

BiLSTM 83.7 0.84 0.85 0.84
LSTM 63.0 0.64 0.63 0.64
CNN 83.3 0.83 0.83 0.83
GRU 56.0 0.57 0.56 0.55

Mean ensemble 85.0 0.85 0.84 0.85
Accuracy as a weight ensemble 85.1 0.85 0.85 0.85
Accuracy per class as a weight 86.5 0.89 0.86 0.87

(a) BiLSTM (b) CNN

Figure 8. Two-phases system: confusion matrices of the FR DL classifiers in the multi-class classification phase.

Entropy 2021, 23, 1264 25 of 30

Table 25. Two-phase system: evaluation parameters for the NFR DL classifiers in the multi-class
classification phase.

DL Models Accuracy
(%) Precision Recall F1 Score

BiLSTM 83.7 0.84 0.85 0.84
LSTM 63.0 0.64 0.63 0.64
CNN 83.3 0.83 0.83 0.83
GRU 56.0 0.57 0.56 0.55

Mean ensemble 85.0 0.85 0.84 0.85
Accuracy as a weight ensemble 85.1 0.85 0.85 0.85
Accuracy per class as a weight 86.5 0.89 0.86 0.87

Entropy 2021, 23, 1264 25 of 30

(g) Accuracy per class as a weight ensemble

Figure 8. Two-phases system: confusion matrices of the FR DL classifiers in the multi-class classification phase.

Table 25 displays the performance of all the applied classifiers: DL models and en-
semble methods in the NFR multi-class classification phase, which comes after the binary
phase. In terms of the base DL models, BiLSTM and CNN achieved accuracies of approx-
imately 83%, while LSTM and GRU achieved accuracies of 63% and 56%, respectively. All
ensemble methods successfully improved the accuracy. However, the best accuracy was
achieved by accuracy per class ensemble method (86.5%). The recall and F1 score were
0.86 and 0.87, respectively, but the precision was 0.89. Moreover, Figure 9 displays the
predictions of each DL model and ensemble method with a clear indication that accuracy
per class as a weight ensemble method has the maximum prediction values among the
others.

Table 25. Two-phase system: evaluation parameters for the NFR DL classifiers in the multi-class
classification phase.

DL Models
Accuracy

(%) Precision Recall F1 Score

BiLSTM 83.7 0.84 0.85 0.84
LSTM 63.0 0.64 0.63 0.64
CNN 83.3 0.83 0.83 0.83
GRU 56.0 0.57 0.56 0.55

Mean ensemble 85.0 0.85 0.84 0.85
Accuracy as a weight ensemble 85.1 0.85 0.85 0.85
Accuracy per class as a weight 86.5 0.89 0.86 0.87

(a) BiLSTM (b) CNN

Entropy 2021, 23, 1264 26 of 30

(c) GRU (d) LSTM

(e) Mean ensemble (f) Accuracy as a weight ensemble

(g) Accuracy per class as a weight ensemble

Figure 9. Two-phase system: Confusion matrices of the NFR DL classifiers in the multi-class classification phase.

4.4.3. All Together Two-Phase Classification System
Table 26 displays the final results of the evaluation parameters for the two-phase

classification system all together. All DL models and ensemble methods performed better
when using the two-phase classification system, as the binary phase facilitates the multi-
class classification phase because it carries out the preprocessing and informs each model
to justify itself to either focus on FR or NFR classes. Better evaluation parameters were
achieved, but the accuracy per class as a weight ensemble recorded the best parameter
values among the other DL models and ensemble methods, and even compared to itself
in one-phase classification system, as it scored a 93.4% accuracy, a 0.94 precision, a 0.94
recall, and a 0.93 F1 score.

Figure 9. Cont.

Entropy 2021, 23, 1264 26 of 30

Entropy 2021, 23, 1264 26 of 30

(c) GRU (d) LSTM

(e) Mean ensemble (f) Accuracy as a weight ensemble

(g) Accuracy per class as a weight ensemble

Figure 9. Two-phase system: Confusion matrices of the NFR DL classifiers in the multi-class classification phase.

4.4.3. All Together Two-Phase Classification System
Table 26 displays the final results of the evaluation parameters for the two-phase

classification system all together. All DL models and ensemble methods performed better
when using the two-phase classification system, as the binary phase facilitates the multi-
class classification phase because it carries out the preprocessing and informs each model
to justify itself to either focus on FR or NFR classes. Better evaluation parameters were
achieved, but the accuracy per class as a weight ensemble recorded the best parameter
values among the other DL models and ensemble methods, and even compared to itself
in one-phase classification system, as it scored a 93.4% accuracy, a 0.94 precision, a 0.94
recall, and a 0.93 F1 score.

Figure 9. Two-phase system: Confusion matrices of the NFR DL classifiers in the multi-class classification phase.

4.4.3. All Together Two-Phase Classification System

Table 26 displays the final results of the evaluation parameters for the two-phase
classification system all together. All DL models and ensemble methods performed better
when using the two-phase classification system, as the binary phase facilitates the multi-
class classification phase because it carries out the preprocessing and informs each model
to justify itself to either focus on FR or NFR classes. Better evaluation parameters were
achieved, but the accuracy per class as a weight ensemble recorded the best parameter
values among the other DL models and ensemble methods, and even compared to itself in
one-phase classification system, as it scored a 93.4% accuracy, a 0.94 precision, a 0.94 recall,
and a 0.93 F1 score.

Table 26. Two-phase classification system: Evaluation parameters of all phases together.

DL Models
Average
Accuracy

(%)

Average
Precision

Average
Recall

Average F1
Score

BiLSTM 91.66 0.91 0.92 0.91
LSTM 78.37 0.78 0.78 0.78
CNN 90.84 0.90 0.91 0.90
GRU 68.98 0.69 0.69 0.68

Mean ensemble 92.06 0.92 0.92 0.92
Accuracy as a weight ensemble 92.26 0.92 0.92 0.92
Accuracy per class as a weight 93.4 0.94 0.93 0.93

Entropy 2021, 23, 1264 27 of 30

5. Comparative Analysis

In order to prove that the two-phase classification system using the ensemble method
based on DL models has an impact on the field and shows the best performance among
the existing state-of-the-art methodologies, it was compared experimentally with other
approaches applied on the same dataset (PROMISE). Table 27 summarizes the results
of previous studies that have applied their suggested methodology using ML or DL on
PROMISE dataset and the proposed system. In [7], the authors achieved a 0.80 precision
in classifying SRs into 11 classes of NFRs or FRs if it does not belong to one of the eleven
classes using the CNN model. However, in [19], the authors started by binary classification
of SRs, recording a 0.94 F1 score. Then, NFRs were classified using a smaller number of
classes, as used in [20], achieving a 0.91 F1 score, but NFRs were also classified into security-
related or non-security-related, with a 0.77 F1 score. In [17], the authors classified NFRs
into 11 classes, scoring a 76% accuracy. Only [20] provided a complete classification system.
SRs were classified into FRs or NFRs with an average F1 score of 91.5%. Then, NFRs were
classified into four classes only: Usability, security, operational, and performance, with a
76% F1 score. FRs were also classified into FRs or data behavior, with a 92% F1 score.
Although a complete system was presented, the proposed classification systems herein
outperform this system. Moreover, it only classifies NFRs into four classes, while the
proposed classification system here classifies NFRs into 11 classes. In addition, using the
previously mentioned system, FRs are classified into two classes, but our proposed system
classifies FRs into six classes. The main comparison attribute is the performance, as the
proposed one-phase classification system achieved a 92.56% accuracy, which has not been
achieved before. Moreover, the proposed two-phase classification system achieved a 95.7%
accuracy in the binary phase, which is the highest among all previous studies’ results
in binary classification. In the second phase of the multi-class classification, it scored a
93.4% accuracy. This is clear confirmation that the proposed systems are better than others,
with the two-phase classification system being better than the one-phase classification
system.

Table 27. Comparison of the proposed system with other state-of-the-art systems.

Reference # Classification Methodology Dataset Results
Year Input Classes

1. Classifying NFRs into Multi-Classes

[7] 2017 SRs

Functional Availability

CNN PROMISE corpus

Precession: 0.80
Legal Recall: 0.785

Look and feel
Maintainability Operational F measure: 0.77

Performance Scalability
Security
Usability

Fault tolerance Portability

[18] 2018
1. SR
2. NFRs
3. NFRs

1. FRs
NFRs

2. Availability
Legal

Maintainability
Operational
Performance

Scalability
Look and feel

Security
Usability

3. Security
Non-security

CNN PROM corpus
1. F1 score: 0.945
2. F1 score: 0.911
3. F1 score: 0.772

[17] 2019 SRs

FR
Availability

Legal
Look and feel

Maintainability
Operational
Performance

Scalability
Security
Usability

Fault tolerance
Portability

Multinomial naïve
Bayes (MNB)

Gaussian naïve Bayes
(GNB)

Bernoulli naïve Bayes
(BNB)

K-nearest neighbor
(KNN)

Support vector machine
(SVM)

Stochastic gradient
descent SVM (SGD

SVM)
Decision tree (Dtree)

PROMISE dataset

Precision: 0.66
Recall: 0.61

F1 score: 0.61
Accuracy: 0.76

Using the SGD SVM
classifier and TF-IDF for

feature extraction

Entropy 2021, 23, 1264 28 of 30

Table 27. Cont.

Reference # Classification Methodology Dataset Results
Year Input Classes

2. Complete System (classifying NFRs and FRs into Multi-Classes)

[20] 2020
1. SRs

2. NFRs
3. FRs

1. FRs–NFRs
2. Usability

Security
Operational
Performance

3. ions
Data behavior

Fine-tuned BERT
(NoRBERT) PROMISE

1. F1 Score: 90% FRs
and 93% NFRs

2. F1 Score: 76%
3. F1 Score: 92%

2021
Proposed
one-phase
classifica-

tion
system

SRs
17 classes of FRs and NFRs

(6 classes of FRs and 11
classes of NFRs)

Ensemble DL-based
model (BiLSTM-LSTM-

CNN-GRU)
PROMISE

Accuracy: 92.56%
Precision: 0.93

Recall: 0.93
F1 Score: 0.93

2021
Proposed
two-phase
classifica-

tion
system

SRs

1. Phase one: Binary
classification into FRs or

NFRs
2. Phase two: Multi-class

classification of FRs (6
classes) and NFRs (11

classes)

Ensemble DL-based
model (BiLSTM–LSTM–

CNN–GRU)
PROMISE

1.Accuracy: 95.7%
Precision: 0.96

Recall: 0.96
F1 Score: 0.96

2. Accuracy: 93.4%
Precision: 0.94

Recall: 0.93
F1 Score: 0.93

Comparing the proposed systems with the existing state-of-the-art methods proved
that it improved the accuracy and outperformed the other approaches. The conducted ex-
periments proved the success of the proposed systems using the ensemble DL approach in
the binary classification of SRs into FRs or NFRs, subcategories of NFRs, and subcategories
of FRs, which have received the least attention from authors previously.

6. Conclusions and Future Work

This study utilized ensemble DL methods to develop one- and two-phases classifica-
tion systems to classify SRs in different ways: Binary and 17 multi-class classification of FRs
and NFRs. The main objective was to enhance the accuracy and availability. The BiLSTM,
CNN, LSTM, and GRU ensemble models were used as base DL models. Compared to a
number of existing state-of-the-art ensemble methods, it was found that accuracy per class
as a weight ensemble method was the best among the other ensembles. The proposed
systems are considered from the few complete SR classification systems. The systems
provide binary and multi-class classification with a high accuracy, as the one-phase system
achieved a 92.56% accuracy, while the two-phase classification system reached 95.75% in
the binary phase and 93.4% in the multi-class classification phase. Thus, it can be concluded
that both of the proposed systems have leading performance results, with the two-phase
classification system being better than the one-phase classification system.

The goal of this work was to introduce and provide SR classification systems that
would help software engineers, developers, and analysts to produce complete SRs to build
reliable software systems. These SR classification systems are based on the ensemble ap-
proach, which was applied using DL models for the first-time. These systems are complete
systems, as they include binary classification, multi-class classification of FRs, and multi-
class classification of NFRs, with a maximum number of classes. The accuracy is high,
and its robustness was confirmed compared to the existing state-of-the-art approaches.

The limitations of the proposed model and the classification systems that are based
on it include supporting one language, as it could support multiple languages. Moreover,
it can be upgraded to deal with a whole document that is unstructured and can extract
sentences of SRs from it instead of dealing with extracted structured sentences.

Entropy 2021, 23, 1264 29 of 30

Author Contributions: Conceptualization, F.E. and N.R.; methodology, N.R., F.E. and L.E.; software,
N.R.; validation, N.R., F.E. and L.E.; formal analysis, L.E.; investigation, F.E.; resources, L.E. and N.R.;
data curation, N.R.; writing—original draft preparation, N.R.; writing—review and editing, L.E.;
visualization, N.R.; supervision, F.E. and L.E.; project administration, L.E.; funding acquisition, N.R.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tiun, S.; Mokhtar, U.A.; Bakar, S.H.; Saad, S. Classification of functional and non-functional requirement in software requirement

using Word2vec and fast Text. J. Phys. Conf. Ser. 2020, 1529, 042077. [CrossRef]
2. IEEE Standard Glossary of Software Engineering Terminology. In IEEE Std 729-1983; IEEE: Manhattan, NY, USA, 1990; pp. 1–84.

[CrossRef]
3. Canedo, E.D.; Mendes, B.C. Software requirements classification using machine learning algorithms. Entropy 2020, 22, 1057.

[CrossRef] [PubMed]
4. Alomari, R.; Elazhary, H. Implementation of a formal software requirements ambiguity prevention tool. Int. J. Adv. Comput. Sci.

Appl. 2018, 9, 424–432. [CrossRef]
5. Kurtanovic, Z.; Maalej, W. Automatically Classifying Functional and Non-functional Requirements Using Supervised Machine

Learning. In Proceedings of the 2017 IEEE 25th International Requirements Engineering Conference (RE), Lisbon, Portugal, 4–8
September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 490–495.

6. Del Carpio, A.F.; Angarita, L.B. Trends in Software Engineering Processes using Deep Learning: A Systematic Literature Review.
In Proceedings of the 2020 46th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), Portoroz,
Slovenia, 26–28 August 2020; IEEE: Piscataway, NJ, USA, 2020; Volume 33, pp. 445–454.

7. Navarro-Almanza, R.; Juarez-Ramirez, R.; Licea, G. Towards Supporting Software Engineering Using Deep Learning: A Case of
Software Requirements Classification. In Proceedings of the 2017 5th International Conference in Software Engineering Research
and Innovation (CONISOFT), Merida, Mexico, 25–27 October 2017; IEEE: Piscataway, NJ, USA, 2017; Volume 2018, pp. 116–120.

8. Brownlee, J. Ensemble Learning Methods for Deep Learning Neural Networks. Available online: https://machinelearningmastery.
com/ensemble-methods-for-deep-learning-neural-networks/ (accessed on 2 March 2021).

9. Ott, D. Automatic Requirement Categorization of Large Natural Language Specifications at Mercedes-Benz for Review Improve-
ments. In Proceedings of the 19th International Conference on Requirements Engineering: Foundation for Software Quality, ser.
REFSQ, Essen, Germany, 8–11 April 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 50–64.

10. Winkler, J.; Vogelsang, A. Automatic Classification of Requirements Based on Convolutional Neural Networks. In Proceedings of
the 2016 IEEE 24th International Requirements Engineering Conference Workshops (REW), Beijing, China, 12–16 September 2016;
IEEE: Piscataway, NJ, USA, 2016; pp. 39–45.

11. Rahimi, N.; Eassa, F.; Elrefaei, L. An Ensemble Machine Learning Technique for Functional Requirement Classification. Symmetry
2020, 12, 1601. [CrossRef]

12. Slankas, J.; Williams, L. Automated extraction of non-functional requirements in available documentation. In Proceedings of the
2013 1st International Workshop on Natural Language Analysis in Software Engineering (NaturaLiSE), San Francisco, CA, USA,
25 May 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 9–16. [CrossRef]

13. Cleland-Huang, J.; Settimi, R.; Zou, X.; Solc, P. Automated classification of non-functional requirements. Requir. Eng. 2007, 12,
103–120. [CrossRef]

14. Casamayor, A.; Godoy, D.; Campo, M. Identification of non-functional requirements in textual specifications: A semi-supervised
learning approach. Inf. Softw. Technol. 2010, 52, 436–445. [CrossRef]

15. Li, L.F.; Jin-An, N.C.; Kasirun, Z.M.; Piaw, C.Y. An Empirical comparison of machine learning algorithms for classification of
software requirements. Int. J. Adv. Comput. Sci. Appl. 2019, 10, 258–263. [CrossRef]

16. Casamayor, A.; Godoy, D.; Campo, M. Semi-Supervised Classification of Non-Functional Requirements: An Empirical Analysis.
Intel. Artif. 2010, 13, 35–45. [CrossRef]

17. Haque, M.A.; Rahman, M.A.; Siddik, M.S. Non-Functional Requirements Classification with Feature Extraction and Machine
Learning: An Empirical Study. In Proceedings of the 1st International Conference on Advances in Science, Engineering and
Robotics Technology 2019, Dhaka, Bangladesh, 3–5 May 2019.

18. Fong, V. Software Requirements Classification Using Word Embeddings and Convolutional Neural Networks. Master’s Thesis,
California Polytechnic State University, San Luis Obispo, CA, USA, June 2018.

19. Hayes, J.; Li, W.; Rahimi, M. Weka meets TraceLab: Toward Convenient Classification: Machine Learning for Requirements
Engineering Problems: A Position Paper. In Proceedings of the 2014 IEEE 1st International Workshop on Artificial Intelligence for
Requirements Engineering (AIRE), Karlskrona, Sweden, 26 August 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 9–12.

http://doi.org/10.1088/1742-6596/1529/4/042077
http://doi.org/10.1109/IEEESTD.1990.101064
http://doi.org/10.3390/e22091057
http://www.ncbi.nlm.nih.gov/pubmed/33286826
http://doi.org/10.14569/IJACSA.2018.090854
https://machinelearningmastery.com/ensemble-methods-for-deep-learning-neural-networks/
https://machinelearningmastery.com/ensemble-methods-for-deep-learning-neural-networks/
http://doi.org/10.3390/sym12101601
http://doi.org/10.1109/NAturaLiSE.2013.6611715
http://doi.org/10.1007/s00766-007-0045-1
http://doi.org/10.1016/j.infsof.2009.10.010
http://doi.org/10.14569/IJACSA.2019.0101135
http://doi.org/10.4114/ia.v13i44.1044

Entropy 2021, 23, 1264 30 of 30

20. Hey, T.; Keim, J.; Koziolek, A.; Tichy, W.F. NoRBERT: Transfer Learning for Requirements Classification. In Proceedings of the
28th IEEE International Conference on Requirements Engineering, Zurich, Switzerland, 31 August–4 September 2020.

21. Zhang, K.; Liu, N.; Yuan, X.; Guo, X.; Gao, C.; Zhao, Z.; Ma, Z. Fine-Grained Age Estimation in the Wild with Attention LSTM
Networks. In IEEE Transactions on Circuits and Systems for Video Technology; IEEE: Piscataway, NJ, USA, 2019; pp. 3140–3152.
[CrossRef]

22. Khayyat, M.M.; Elrefaei, L.A. Manuscripts Image Retrieval Using Deep Learning Incorporating a Variety of Fusion Levels. IEEE
Access 2020, 8, 136460–136486. [CrossRef]

23. Luo, L.; Yang, Z.; Lin, H.; Wang, J. Document triage for identifying protein-protein interactions affected by mutations: A neural
network ensemble approach. Database 2018, 2018, bay097. [CrossRef] [PubMed]

24. Nguyen, V.Q.; Anh, T.N.; Yang, H.-J. Real-time event detection using recurrent neural network in social sensors. Int. J. Distrib.
Sens. Netw. 2019, 15, 155014771985649. [CrossRef]

25. Pan, M.; Zhou, H.; Cao, J.; Liu, Y.; Hao, J.; Li, S.; Chen, C.H. Water Level Prediction Model Based on GRU and CNN. IEEE Access
2020, 8, 60090–60100. [CrossRef]

26. Shahid, F.; Zameer, A.; Muneeb, M. Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM. Chaos
Solitons Fractals 2020, 140, 110212. [CrossRef] [PubMed]

27. Demir, N. Ensemble Methods: Elegant Techniques to Produce Improved Machine Learning Results. Available online: https:
//www.toptal.com/machine-learning/ensemble-methods-machine-learning (accessed on 10 October 2020).

28. Brownlee, J. What is a Confusion Matrix in Machine Learning? Available online: https://machinelearningmastery.com/confusion-
matrix-machine-learning/ (accessed on 1 October 2020).

29. Baccouche, A.; Garcia-Zapirain, B.; Olea, C.C.; Elmaghraby, A. Ensemble deep learning models for heart disease classification: A
case study from Mexico. Information 2020, 11, 207. [CrossRef]

30. Jethwani, T. Difference Between Categorical and Sparse Categorical Cross Entropy Loss Function. Available online: https:
//leakyrelu.com/2020/01/01/difference-between-categorical-and-sparse-categorical-cross-entropy-loss-function/ (accessed on
11 November 2020).

31. Harikrishnan, N.B. Confusion Matrix, Accuracy, Precision, Recall, F1 Score. Available online: https://medium.com/analytics-
vidhya/confusion-matrix-accuracy-precision-recall-f1-score-ade299cf63cd (accessed on 28 May 2021).

32. Brownlee, J. Random Oversampling and Undersampling for Imbalanced Classification. Available online: https://
machinelearningmastery.com/random-oversampling-and-undersampling-for-imbalanced-classification/ (accessed on 5
June 2021).

http://doi.org/10.1109/TCSVT.2019.2936410
http://doi.org/10.1109/ACCESS.2020.3010882
http://doi.org/10.1093/database/bay097
http://www.ncbi.nlm.nih.gov/pubmed/30295718
http://doi.org/10.1177/1550147719856492
http://doi.org/10.1109/ACCESS.2020.2982433
http://doi.org/10.1016/j.chaos.2020.110212
http://www.ncbi.nlm.nih.gov/pubmed/32839642
https://www.toptal.com/machine-learning/ensemble-methods-machine-learning
https://www.toptal.com/machine-learning/ensemble-methods-machine-learning
https://machinelearningmastery.com/confusion-matrix-machine-learning/
https://machinelearningmastery.com/confusion-matrix-machine-learning/
http://doi.org/10.3390/info11040207
https://leakyrelu.com/2020/01/01/difference-between-categorical-and-sparse-categorical-cross-entropy-loss-function/
https://leakyrelu.com/2020/01/01/difference-between-categorical-and-sparse-categorical-cross-entropy-loss-function/
https://medium.com/analytics-vidhya/confusion-matrix-accuracy-precision-recall-f1-score-ade299cf63cd
https://medium.com/analytics-vidhya/confusion-matrix-accuracy-precision-recall-f1-score-ade299cf63cd
https://machinelearningmastery.com/random-oversampling-and-undersampling-for-imbalanced-classification/
https://machinelearningmastery.com/random-oversampling-and-undersampling-for-imbalanced-classification/

	Introduction
	Related Work
	Classifying SRs into Main Classes
	Classifying FRs into Multi-Classes
	Classifying NFRs into Multi-Classes
	Complete System (Classifying NFRs and FRs into Multi-Classes)

	Materials and Methods
	Phases of Classification
	Methodology
	Data Preprocessing
	Text Classification
	Evaluation Methods

	Experiment Details
	Hardware and Software Details
	PROMISE Dataset
	One-Phase Classification System
	Two-Phase Classification System
	Binary Classification of SRs into an FR or NFR Phase
	Multi-Class Classification Phase of NFRs and FRs into 17 Classes
	All Together Two-Phase Classification System

	Comparative Analysis
	Conclusions and Future Work
	References

