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Abstract: The university curriculum is a systematic and organic study complex with some immedi-

ate associated steps; the initial learning of each semester’s course is crucial, and significantly impacts 

the learning process of subsequent courses and further studies. However, the low teacher–student 

ratio makes it difficult for teachers to consistently follow up on the detail-oriented learning situation 

of individual students. The extant learning early warning system is committed to automatically de-

tecting whether students have potential difficulties—or even the risk of failing, or non-pass re-

ports—before starting the course. Previous related research has the following three problems: first 

of all, it mainly focused on e-learning platforms and relied on online activity data, which was not 

suitable for traditional teaching scenarios; secondly, most current methods can only proffer predic-

tions when the course is in progress, or even approaching the end; thirdly, few studies have focused 

on the feature redundancy in these learning data. Aiming at the traditional classroom teaching sce-

nario, this paper transforms the pre-class student performance prediction problem into a multi-label 

learning model, and uses the attribute reduction method to scientifically streamline the characteris-

tic information of the courses taken and explore the important relationship between the character-

istics of the previously learned courses and the attributes of the courses to be taken, in order to 

detect high-risk students in each course before the course begins. Extensive experiments were con-

ducted on 10 real-world datasets, and the results proved that the proposed approach achieves better 

performance than most other advanced methods in multi-label classification evaluation metrics. 

Keywords: educational data mining; academic early warning system; student performance predic-

tion; multi-label learning; attribute selection 

1. Introduction

One of the key indicators of high-level education quality is students’ performance in 

the setting of the learning environment. Studies have shown that the early learning stage 

of the course is crucial [1–3], in which the students are able to nurture their interests in the 

relevant learning through the understanding and digestion of the syllabus structure and 

content organization, forming a solid foundation for the subsequent learning stages [4,5]. 

Adelman et al. [6] conducted a long-term and systematic statistical study on behalf of the 

National Center for Education Statistics in the US, in order to reveal the constellational 

correlation and significance of the class attainment, attendance, curriculum, and student 

performance with the elucidation of what, when, where, and how they study. However, 

the teachers’ failure to follow up with the class’ progress, or the incomprehensibility of 

the learning materials, may cause some students to lose interest in learning or eventually 
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give up, seriously affecting their learning behavior for subsequent courses. In addition, 

due to the low ratio of teachers to students in university courses, it is a great challenge for 

the teachers to pay close attention to each student. Thus, teaching management tasks—

such as teaching in an individual orientation or early warning of academic dysfunction at 

the beginning of the course—are particularly necessary. 

At present, a great number of student performance and transcript-related data are 

stored in the relevant information systems of educational institutions, which are often 

dormant in the data system, without being fully utilized and referenced. With the contin-

uous advancement of artificial intelligence technology, various fields—such as medicine 

[7,8], manufacturing [9], engineering optimization [10], speech recognition [11], and im-

age processing [12]—have adopted and applied the combination of big data analysis and 

artificial intelligence algorithms radiating novel, cause-driven vitality [13,14]. With the 

advancement of education informatization and the promotion of smart campuses, col-

leges and universities have gradually accumulated massive educational data resources 

[15]. A compelling need has arisen to extract valuable information from these educational 

informational data in order to better serve and support education and teaching manage-

ment. As a new branch of research, educational data mining has drawn more attention of 

late—especially in the prediction of student performance. 

As a key component in the development of an academic early warning system, stu-

dent performance prediction aims to uncover information from various aspects, such as 

the learning situation of different courses, including selective and compulsory courses, 

training courses, and other types of lectures, academic exchanges, etc. Despite extensive 

research on student performance prediction, the extant approaches still have several ma-

jor limitations. 

First of all, many studies are related to e-learning platforms, which have a consider-

able reliance on students’ online learning behaviors and activities, which the traditional 

classroom teaching scenarios may not be able to provide [16]. Secondly, most existing 

methods can only predict either during [16,17] or near the end of a course [18,19], which 

is ineffective and inadequate for helping students with early learning issues. Similarly, the 

subsequent courses are often submodules of a complete course syllabus, or advanced 

courses; therefore, the predicted content 10 datasets functions as a multiple-course meas-

urement. Multi-course prediction essentially belongs to the multi-label problem. The sin-

gle-label methods often fail to consider the correlation between labels when dealing with 

multi-label problems. In reality, not only are the follow-up courses and the previous 

courses related, the following courses are often coupled as well. Lastly, very few studies 

have focused on the redundant features in the learning data. For example, some selective 

courses have limited impact on subsequent professional courses, and even some public 

courses—such as physical education—may not be relevant to most professional courses, 

but may have indirect relevance to some majors, such as automobiles or engineering in-

dustry design. Therefore, redundant features in student performance data will affect the 

prediction results. 

In order to solve the above-mentioned problems, this paper focuses on constructing 

a multi-label attribute selection model to predict the performance of pre-class students. 

As far as we know, this is the first study to use a multi-label attribute selection algorithm 

based on multi-objective optimization to predict the performance of pre-course students. 

This paper constructs a multi-label attribute selection algorithm by using interclass recog-

nition and intraclass domain recognition. At the same time, it considers the association 

between features, labels, and the correlation between features and labels, and improves 

the expressive ability of features by reducing attributes and enhancing the prediction ef-

fect. 

The main contributions can be summarized in the following three aspects: 

 For the first time, we used the multi-label attribute selection method to transform the 

pre-class student performance prediction problem into a multi-label learning model, 



Entropy 2021, 23, 1252 3 of 16 
 

 

and then applied the attribute reduction method to scientifically streamline the char-

acteristic information of the courses taken, along with mining the characteristics of 

the previous courses for the upcoming advanced or upper courses. The attributes of 

the curriculum were significant in studying academic early warning from a new per-

spective, from pre-class student performance prediction to subsequent courses; 

 We perceived the task as a multi-label learning problem, which can fully uncover the 

correlation between the students’ previous course information and multiple target 

courses, so as to detect and screen out high-risk students in each course prior to the 

start of the course; 

 We collected a new set of student performance prediction data, and proposed a novel 

multi-label attribute selection method, which improved the ability to express feature 

information of the previously completed courses. 

The layout of this article is organized as follows: Section 2 conducts a comprehensive 

literature review of the related work. Section 3 introduces our discriminable pre-course 

student achievement prediction framework in detail. Experimental results and analysis 

reports are in Section 4, followed by conclusions and future prospects in Section 5. 

2. Related Work 

Set in the context of the traditional classroom teaching scenario, the existing research 

on course performance prediction is mainly based on students’ performance in the target 

course (the course to be predicted) [20], such as attendance, homework completion, peri-

odical exam scores, etc. Since the data are remarkably dependent on information obtained 

in the process of the target course, modeling work is often carried out during the course 

[17,20], or even near its end [21]. Marbouti et al. [16] used attendance, tests, and weekly 

homework five weeks after the beginning of the course to predict whether students were 

at risk of failing the course. Meier et al. [17] used homework, test scores, and course project 

completion information to predict students’ final grades four weeks after the course 

started. Some studies [22,23] considered students’ performance in the midterm exams of 

the course, leading to the prediction of performance only after halfway through the teach-

ing process. 

In sum, the above-mentioned studies have shown significantly severe hysteresis in 

the prediction of course performance, such that they cannot provide effective support for 

teaching management at the early stage of the course taught. Sweeney et al. [4] regarded 

the students as users and the selected courses as commodities from the perspective of the 

recommendation system, and predicted students’ course grades in the following semester 

by decomposing and completing the course grade matrix. Although such an approach 

was able to predict the course performance before its start, it often encountered the prob-

lem of cold start, and has high requirements on the number of users (sample volume) as 

well as being difficult to use for modeling tasks on small-scale data. 

As one of the most important and popular topics in educational data mining, student 

performance prediction has attracted a lot of research attention in recent decades. Due to 

the convenience of data collection, most existing studies on this topic are related to e-

learning platforms, including MOOCs (massive open online courses) [24,25], ITSs (intelli-

gent tutoring systems) [26], LMSs (learning management systems) [27–30], HOU (the Hel-

lenic Open University) [31,32], and other such platforms [33–35]. For example, Ren et al. 

applied the data in the MOOC server log to predict results such as the average daily learn-

ing time, the total hours of video-watching, the number of videos watched by students, 

and the number of tests t conducted [25]. Conijn et al. [36] explored the associations of 

different MOOC data—including the frequency of MOOC activities, specific course items, 

and activities—with learner grades in order to predict student performance and, thus, 

discover the potential for MOOC improvement. Based on LMS tracking data, Macfadyen 

and Dawson developed a predictive model for students’ final grades, including the num-
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ber of discussion messages posted, the number of emails sent, and the number of com-

pleted evaluations [29]. Zafra et al. predicted students’ performance (i.e., pass or fail) with 

the information about quizzes, assignments, and forums stored in Moodle, which is a free 

learning management system [30]. Oswaldo et al. [37] compared different educational 

data mining (EDM) algorithms on student data from a private computer science college 

to assess the effectiveness of educational data in improving decision making, while the 

core of the analysis was to discover research trends and patterns in graduation rate indi-

cators [38]. It is safe to conclude that the above-mentioned research on e-learning plat-

forms mainly relies on the data of students’ online activities, and these data are virtually 

inaccessible in traditional classroom teaching scenarios. 

Sweeny et al. [4] developed matrix completion methods and used them to predict 

grades for each student for the next enrollment term based on information on grades that 

students earned on completed courses. Although this model can predict student perfor-

mance prior to a course’s commencement, it works from the perspective of recommender 

systems, and significantly differs from our study. 

The work most related to ours is that by Ma et al. [22,39], who used a multi-label 

multi-instance algorithm to predict pre-class student performance, but during data pre-

processing, some curriculum features that were considered irrelevant were forcefully re-

moved, and the correlation among features, and between features and labels, was not fully 

considered, and some possible relevant course feature information was directly ignored. 

For example, some selective courses may have a certain effect on subsequent professional 

ones, and the direct deletion of selective course information may lead to some feature 

effects that weaken the predictive performance. The recent studies are summarized in Ta-

ble 1. 

Table 1. Related studies for student performance prediction task. 

Authors Year Features 

Macfadyen and 

Dawson [29] 
2010 

Predictive modeling of students’ final grades using fac-

tors such as student discussion information, number of 

emails sent, and test completion. 

Zafra et al. [30] 2011 

Use of information such as quizzes, assignments, fo-

rums, etc., to predict whether a student will pass or fail 

the course. 

Sweeny et al. [4] 2015 
Predicting grades for the next semester based on infor-

mation about students’ grades in completed courses. 

Ren et al. [25] 2016 
Applying data from MOOC server logs to predict learn-

ing outcomes. 

Conijn et al. [36] 2018 
Predicting student performance and discovering the 

potential for MOOC improvements. 

Oswaldo et al.[37] 2019 

Comparing different educational data mining (EDM) 

algorithms to discover research trends and patterns in 

graduation rate indicators. 

Ma et al. [22] 2020 
Multi-instance multi-label learning for pre-course stu-

dent performance prediction. 

Ma et al. [36] 2020 
Multi-instance multi-label learning with multi-task 

learning for pre-course student performance prediction. 

3. Methods 

In this study, we develop a pre-processing solution of attribute selection methods 

with a multi-label course, with a focus on more realistic course data, combined with a 

portfolio of classifiers to develop more time-sensitive student performance prediction 
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models. A brief introduction to the basics of multi-label learning is first presented, fol-

lowed by the basic concepts and model framework of the proposed multi-label attribute 

selection algorithm. Comparative experiments are then conducted in 10 real course da-

tasets and analyzed accordingly. 

3.1. Multi-Label Learning 

In traditional supervised learning, each sample of the dataset possesses only one cat-

egory label; this is the single-label problem. For example, the handwritten number recog-

nition task corresponds to only one digital label per image sample. In the diagnosis of 

benign and malignant tumors, each single datum or group of patient data often corre-

sponds to a tumor label that needs to be diagnosed. However, the real world is complex, 

and the samples in many tasks are inherently ambiguous [40]. It is quite common that in 

the classification of news topics, a piece of news is likely to belong to multiple labels—

such as sports, entertainment, business, and education—at the same time; similarly, in the 

course performance prediction problem, the previous recorded performance of a non-fi-

nal-year student majoring in automation can correspond to the performance prediction of 

multiple courses in the future (such as process control technology, robot control technol-

ogy, pattern recognition and intelligent systems, etc.). 

From the perspective of modeling methods, the existing multi-label learning meth-

ods can generally be divided into the following two categories: (1) Converting multi-label 

issues into other known issues, such as binary classification, multi-class problems, and 

ranking problems. Take the multi-label learning algorithm ML-SVM [41] as an example; 

the algorithm reuses each multi-label sample, and trains the model for each label belong-

ing to the sample. The sample is treated as a positive example during model training, and 

then based on the idea of one-vs.-all, which is transformed into multiple binary classifica-

tion problems as well as modeling, and classified by using SVM. (2) Modifying existing 

algorithms (such as supervised learning algorithms) to make them suitable for handling 

multi-label problems. Take ML-KNN [42] as an example, which modifies the k-nearest 

neighbor algorithm to adapt to multi-label scenarios. Given a new sample P, first find the 

k-nearest neighbor samples of P in the training set, and then count the number of neighbor 

samples for each category with a final step to estimate the label of P with the maximum a 

posteriori probability (MAP) method. 

3.2. Multi-Label Attribute Selection 

In the multi-label feature selection problem, an ideal feature is one that is highly as-

sociated with the label. Based on the aforementioned analysis, a certain function may have 

a higher correlation with a specific label, which at the same time could have a lower rele-

vance with other labels. When it comes to the influence of each feature on each label sep-

arately, the multi-label feature selection problem is transformed into a multi-objective op-

timization problem, and the objective function is regarded as the association between each 

element and the existing label. In this context, we propose an attribute selection method 

for the multi-label (AMuL) data processing problem. The basic architecture is shown in 

Figure 1. Firstly, the course information is feature-extracted to obtain a multidimensional 

space with a multi-attribute and multi-label structure. Next, all features are distributed 

into the constructed target space based on the correlation between all features and labels. 

The next step is attribute selection via a multi-label method, which detects non-dominated 

solutions (features) in the deterministic space that correspond to the Pareto optimal set in 

the target space and, finally, performs multi-label prediction. 
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Figure 1. Structure of multi-label attribute selection for pre-class student performance prediction. 

To find the correlation between attributes and labels, the symmetric uncertainty (SU) 

indicator [43] is applied. It is common sense that multi-label attribute selection aims to 

select a set of attributes with the greatest dependence on all classified labels. Therefore, 

this strategy is called the maximum dependence criterion. The maximum dependency 

comes from the concepts of entropy and information gain. The entropy can be used to 

evaluate the uncertainty of a random variable, and one effective method for evaluating 

random variables is Shannon’s entropy [44]. If we take a discrete random variable X 

whose value belongs to a domain Vx, and the probability density function is 𝑝(𝑥) =

𝑃(𝑋 = 𝑥), 𝑥 ∈ 𝑉the X entropy is defined as follows: 

𝐻(𝑋) = −∑𝑝(𝑋𝑖)𝑙𝑜𝑔2 𝑝(𝑋𝑖)

𝑛

𝑖=1

, 𝐻(𝑋) ≥ 0 (1) 

If X and Y are two discrete random variables with joint probability density function 

p(x,y), then the joint entropy of X and Y is defined. When X is known, the conditional 

entropy is defined as follows: 

𝐻(𝑌|𝑋) = − ∑ ∑ 𝑝(𝑥, 𝑦) log2 𝑝(𝑥, 𝑦)

𝑦∈𝑉𝑦𝑥∈𝑉𝑥

 (2) 

The mutual information that can be used to measure the relevance between the two 

variables X and Y is defined as follows: 

𝐻(𝑌|𝑋) = − ∑ 𝑝(𝑥)𝐻(𝑌|𝑋 = 𝑥) =

𝑥∈𝑉𝑥

− ∑ ∑ 𝑝(𝑥, 𝑦) log2 𝑝(𝑦|𝑥)

𝑥∈𝑉𝑦𝑥∈𝑉𝑥

 (3) 

If the mutual information of X and Y is large (small), it means that X and Y are closely 

(not closely) related. If I (X,Y) = 0, then X and Y are totally unrelated, or are independent. 

For continuous random variables, the differential entropy and mutual information are de-

fined as follows: 
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𝐼(𝑋, 𝑌) = −∫𝑝(𝑥, 𝑦) log2

𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
𝑑𝑥𝑑𝑦 (4) 

However, the attributes selected based on the maximum dependency relationship 

may be redundant; that is, the new candidate features may be related to some previously 

selected features. In addition, it is known that if two attributes are highly correlated, and 

one of the attribute is deleted, the corresponding category discrimination ability will not 

change drastically. Accordingly, the redundancy between attributes should be fully con-

sidered in the process of multi-label attribute selection. This differs from traditional sin-

gle-label attribute selection in that multi-label attribute selection involves not only redun-

dancy between attributes, but also pairwise dependencies between attributes of each class 

of labels that need to be considered. 

Based on our previous study [45], the membership of an object x∈U (U denotes a non-

empty set with finite objects) in the fuzzy positive region is represented as POSB(D)(x). 

With the definition of the fuzzy positive region, the fuzzy dependency function can be 

computed by using the following formula: 

B

( )( )

( )
| |

B

x U

POS D x

D
U

 


 
(5) 

If B ( )D  = 0, then the set of decision features D is independent of the set of condition 

features B. If B ( )D  = 1, then the set of decision features D depends completely on the set 

of condition features B. If 0 < B ( )D  < 1, then the set of decision features D depends partially 

on the set of condition features B. 

Firstly, the framework we proposed establishes a multi-label representation model 

from the completed courses. For example, course 1 contains several crucial information 

features, such as the number of hours, credits, attendance, and mid-term and final grades. 

The second step is the attribute reduction process. Due to the large amount of feature 

information, some features may be weakly correlated with the predicted label, or have 

high repetitive feature importance. Therefore, after attribute reduction, features with 

more attribute representation ability and predictive value are retained. The last step is to 

perform multi-label prediction. 

In the multi-objective optimization objective function, the previously mentioned mu-

tual information and fuzzy dependency are applied to assess the independence and de-

pendency among attributes, and between attributes and labels, respectively. Given that 

an instance x belongs to a group of training examples with values of labels, the attribute 

𝐹𝑖 is a discriminative feature, 𝛾𝐹𝑖
𝐿𝑘(𝑥) is the distinguishing ability of the attribute 𝐹𝑖 with 

respect to the label L, and the quality of the attribute 𝐹𝑖 is defined as: 

𝐹𝐷(𝐹𝑖, 𝐿) = {

𝐼(𝐹𝑖: 𝐿)

1 − 𝛾𝐹𝑖
𝐿 (𝑥)

,   𝛾𝐹𝑖
𝐿 (𝑥) ≠ 1

+∞,                𝑒𝑙𝑠𝑒

 (6) 

where 𝑍(𝐹𝑖, 𝐿) denotes the ability of 𝐹𝑖 to discriminate between labels L. A larger value 

of 𝐹𝐷 indicates a stronger feature discrimination capacity. 

In the multi-label dataset, calculate the symmetric uncertainty among each attribute 

and each label to construct the matrix FD, as follows [46]: 

𝐹𝐷 =

[
 
 
 
𝐹𝐷𝑓1,𝑙1 𝐹𝐷𝑓2,𝑙1 … 𝐹𝐷𝑓𝑛,𝑙1

𝐹𝐷𝑓1,𝑙2 𝐹𝐷𝑓2,𝑙2 … 𝐹𝐷𝑓𝑛,𝑙2

⋮ ⋮ ⋱ ⋮
𝐹𝐷𝑓1,𝑙𝑚 𝐹𝐷𝑓2,𝑙𝑚 … 𝐹𝐷𝑓𝑛,𝑙𝑚]

 
 
 

 (7) 

where FD(i,j) shows the distinction between the i-th label and the j-th attribute. To follow 

up, construct an m-dimensional space, and expand features in these spaces based on the 

value of the matrix. Figure 2 shows the characteristics of a multi-label dataset with 3 labels 

in the construction space (m = 3). 
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Figure 2. An instance of a Pareto optimal frontier for a multi-label dataset with 20 attributes and 3 

labels. 

Circles represent elements, from which we select the most prominent one. As men-

tioned earlier, it is suggested to find and select those features that belong to the Pareto 

optimal set as the final features in the multi-objective issues, as well as deleting other fea-

tures. In Figure 2, the blue circles correspond to the non-dominant attributes, consisting 

of the Pareto optimal subsets and the neighboring dominant attributes (red circles). Ac-

cording to the legend, each point has a larger FD compared to the other two points, and 

has the largest value in at least one dimension; therefore, these attributes are not preferred 

to one another, and should not be removed. In addition, Figure 2 presents a scenario in 

which a red circle is associated with at least one blue circle that possesses a larger FD value 

in all dimensions; in short, the blue circle contains more specific features than the red cir-

cle. 

The red circles (features) and blue circles (features) are redundant, and since the blue 

features have a higher FD value, they have more information that leads to the elimination 

of the red features. For a better understanding, a Pareto optimal front, resembling a spher-

ical surface, is drawn, which separates the dominant and non-dominant features. 

The red circles indicate dominant attributes, while the blue circles indicate non-dom-

inant features. Compared with other recent multi-label feature selection approaches, this 

is a fast and accurate method. As mentioned in the first section, although there is a very 

limited number of works that use multi-objective concepts for multi-label feature selection 

[47,48], this method is unlike them in that it is intended for multi-label issues. Moreover, 

this method can be easily used for incremental attribute selection, which means that the 

new instances and attributes will arrive in sequence [49]. 

Figure 3 shows the flowchart of the multi-label attribute selection method. Pre-course 

student performance data with multiple attributes and labels are used as the input matrix, 

and then the attributes and labels are evaluated simultaneously with correlations and de-

pendencies based on the Pareto frontier multi-objective optimization method, resulting in 

attributes of high importance, as shown in the right-hand matrix, wherein the columns 

with more colored squares represent the attributes of high importance. 

 

Figure 3. Flowchart of the multi-label attribute selection method. 
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4. Results 

In this section, we will empirically evaluate the proposed method with several of the 

latest multi-label attribute selection algorithms. To begin with, the features and compari-

son methods of multi-label datasets are introduced, followed by reporting of the perfor-

mance of the AMuL through graphs and tables. Subsequently, we analyze and discuss the 

experimental results. 

4.1. Data Preparation 

This experiment was based on a dataset collected by higher education institutions. 

The dataset contains a total of more than 1000 students in 10 majors. For example, CEE 

comprises the three majors of the School of Mechanical and Electrical Engineering, in-

stances represent the number of students in the major, and features represent the charac-

teristics of each course of the major. For example, the electrical and electronic technology 

courses include the number of teaching hours (theoretical and experimental hours), at-

tendance rate, mid-term and final grades, training grades, and other characteristics. Labels 

indicate the label of the course to be taken in the future semester, which is to predict the 

grade of the student in the upcoming course, along with their chance of “failure”. In ad-

dition, 85% of all samples are used for training, and 15% for testing. 

4.2. Evaluation Indicators 

As described in the previous section, we regard predicting the performance of stu-

dents in each major as a task, and each task has multiple courses to predict. Compared 

with traditional supervised learning, the performance evaluation function of multi-label 

learning is somewhat complicated, because each instance belongs to a set of labels simul-

taneously. In this study, we evaluate each algorithm based on the average performance of 

all target courses [50]. 

Given a set of n multi-label training instances, 𝒟 = {(𝑥𝑖 , 𝑌𝑖)|1 ≤ 𝑖 ≤ 𝑛}, where 𝑥𝑖 is 

described by a d-dimensional feature vector 𝐹 = {𝐹1,𝐹2,...,𝐹𝑑,} , which means that 𝑌𝑖 =

{𝐿1, 𝐿2, . . . , 𝐿𝑘} is a sequence of labels associated with 𝑥𝑖 that are presented in sequential 

order. The task of multi-label feature selection is to select a compact feature subset from F 

without decreasing the predictive classification performance. To evaluate the perfor-

mance of multi-label feature selection algorithms, we select average precision, ranking 

loss, Hamming loss, coverage, and one-error as evaluation metrics [40]. Given a test set 
𝑇 = {(𝑥𝑖 , 𝑌𝑖)|1 ≤ 𝑖 ≤ 𝑚}, and the family of q learned functions, 𝑓 = {𝑓1,𝑓2,...,𝑓𝑞,}. 

Average precision (𝐴𝑃) evaluates the average proportion of relevant labels ranked 

higher than a particular label 𝐿𝑘 ∈ 𝑌𝑖. 

𝐴𝑃 =
1

𝑚
∑

1

|𝑌𝑖|

𝑚

𝑖=1
∑

|{𝐿𝑘 ∈ 𝑌𝑖: 𝑟(𝑥𝑖 , 𝐿𝑗) ≤ 𝑟(𝑥𝑖 , 𝐿𝑘)}|

𝑟(𝑥𝑖 , 𝐿𝑘)𝐿𝑘∈𝑌𝑖

 (8) 

The larger the value of the AP metric, the higher the performance. 

Ranking loss (RL) evaluates the average proportion of reversely ordered label pairs. 

𝑅𝐿 =
1

𝑚
∑

1

|𝑌𝑖||𝑌ĩ|

𝑚

𝑖=1

|{(𝐿𝑘, 𝐿𝑗)|𝑓𝑘(𝑥𝑖) ≤ 𝑓𝑗(𝑥𝑖), (𝐿𝑘, 𝐿𝑗) ∈ 𝑌𝑖 × 𝑌ĩ}| (9) 

where 𝑌ĩ  means the complementary set of label space L on a given instance 𝑥𝑖 . The 

smaller value of 𝑅𝐿 indicates the better performance of the method. 

Hamming loss (HL) evaluates the proportion of misclassified example–label pairs. 

𝐻𝐿 =
1

𝑚
∑

|𝑝(𝑥𝑖)⨁𝑌𝑖|

𝑘

𝑚

𝑖=1

 (10) 
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where ⨁ means the symmetric difference between the true label set 𝑌𝑖 and the predicted 

label set 𝑝(𝑥𝑖). Here, the smaller the value of 𝐻𝐿 , the better the performance of the 

method. 

Coverage (CV) evaluates the average distance we need to go down the list of labels 

in order to cover all of the appropriate labels of a given sample 𝑥𝑖. 

𝐶𝑉 =
1

𝑞
(
1

𝑚
∑ max

𝐿𝑘∈𝑌𝑖

𝑟(𝑥𝑖 , 𝐿𝑘) − 1)

𝑚

𝑖=1

 (11) 

where the definition of 𝑟(𝑥𝑖 , 𝐿𝑘) =  
1

𝑞
[[𝑓𝑘(𝑥𝑖) ≤ 𝑓𝑗(𝑥𝑖)]] is consistent with the above defi-

nition of 𝑟(𝑥𝑖 , 𝐿𝑘)  in AP. A smaller value of CV indicates better performance of the 

method. 

One-error (OE) calculates the number of occurrences in which the top ranked label is 

not in the appropriate multi-label set of a sample 𝑥𝑖. 

𝑂𝐸 =
1

𝑚
∑⟦[𝑎𝑟𝑔 max

𝐿𝑘∈𝐿
𝑓(𝑥𝑖 , 𝐿𝑘)] ∉ 𝑌𝑖⟧

𝑚

𝑖=1

 (12) 

A smaller value of 𝑂𝐸 indicates better performance of the method. In particular, if 

𝑂𝐸 = 0, the performance of the method is perfect. 

For these evaluation metrics, Hamming loss focuses on evaluating the label set pre-

diction performance for each instance, while the other four evaluation metrics are more 

concerned with the performance of label ranking. 

4.3. Experimental Results 

In order to prove the effectiveness of AMuL, we compare our algorithm with MLNB 

[51], MDDMproj [52], MLFRS [53], MFNMI [54], RF-ML [55], and AMI [56]. Figure 4 

shows the comparison of the number of selected features in the original attributes, 

MDDMproj, and AMuL. It can be seen that, compared with the number of original attrib-

utes, MDDMproj and AMuL obtained a more streamlined feature set through attribute 

reduction. On average, our proposed AMuL method has a higher reduction rate than 

MDDMproj in most professional data samples. Thus, a question emerges as to whether it 

possesses the same predictive accuracy on a more condensed feature set. For the sake of 

fairness, we used the reduced feature set of the above six comparison methods for classi-

fication. We then used a fivefold cross-validation method in the experiments to record the 

best results of the parameters in terms of classification performance. The different class 

groups k were set to 10 in order to prevent overfitting of the data, and to balance the 

complexity of the model according to the literature [57]. All methods were fully imple-

mented in MATLAB and tested on a PC equipped with an 8-core 1.80 GHz Intel Core 

processor and 16 GB RAM. 

 

Figure 4. The number of selected features (The labels of the x-axis from 1 to 10 denote the 10 datasets 

described in Table 2. 
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Table 2. Characteristics of multi-label datasets. 

Data Sets Instances Features Labels Train Test 

CEE01 102 164 4 87 15 

CEE02 58 153 3 49 9 

CEE03 64 153 3 54 10 

CAE01 83 175 5 71 12 

CAE02 61 164 4 52 9 

CFE01 205 142 4 174 31 

CFE02 137 153 5 116 21 

CBC01 92 186 7 78 14 

CBC02 86 175 6 73 13 

CAL01 317 231 10 269 48 

Tables 3–7 show the predictive performance of the seven comparison algorithms in 

five metrics: AP, RL, HL, CV, and OE, respectively. The symbol ↑ indicates a larger value 

for better performance; the symbol ↓ indicates a smaller value for better performance. For 

the results of all methods under each dataset, special comments in bold are used for easy 

identification. The last row of each table summarizes the statistics of the cases in which 

the AMuL algorithm is better than (Win), equivalent to (Draw), or less than (Loss) the 

comparison algorithms in this performance evaluation. 

In Table 3, it is safe to conclude the following: (1) Among the 10 major curriculum 

datasets, the proposed AMuL has eight superiorities to the comparison algorithms on av-

erage, and one equivalency to the comparison algorithms. (2) In terms of average predic-

tion performance with different evaluation indicators, AMuL is significantly better than 

all comparison algorithms. (3) In addition, the count of victory/failure records shows that 

in terms of each evaluation index, AMuL is more competitive than the six comparison 

algorithms. For example, in the AP evaluation index, the AMuL algorithm achieved four 

wins, one draw, and one loss in a contest with six comparison algorithms. 

Table 3. Predictive performance of each comparison algorithm in terms of average precision (↑). 

Datasets AMI [56] RF-ML [55] 
MFNMI  

[54] 
MDDMproj [52] MLFRS [53] MLNB [51] AMuL 

CEE01 0.81 0.81 0.81 0.80 0.81 0.81 0.81 

CEE02 0.84 0.78 0.83 0.81 0.80 0.83 0.84 

CEE03 0.78 0.78 0.79 0.77 0.80 0.74 0.80 

CAE01 0.75 0.75 0.74 0.51 0.74 0.75 0.75 

CAE02 0.75 0.76 0.74 0.75 0.75 0.77 0.77 

CFE01 0.61 0.99 0.83 0.61 0.85 0.69 0.89 

CFE02 0.80 0.80 0.80 0.80 0.81 0.81 0.81 

CBC01 0.88 0.89 0.88 0.85 0.89 0.89 0.89 

CBC02 0.85 0.86 0.87 0.86 0.86 0.82 0.88 

CAL01 0.76 0.73 0.75 0.78 0.81 0.80 0.80 

Win/Draw/Loss 10/0/0 10/0/0 10/0/0 10/0/0 9/0/1 9/1/0 - 

Table 4. Predictive performance of each comparison algorithm in terms of ranking loss (↓). 

Datasets AMI [56] RF-ML [55] MFNMI [54] 
MDDMproj  

[52] 
MLFRS [53] MLNB [51] AMuL 

CEE01 0.17 0.17 0.17 0.17 0.17 0.17 0.17 

CEE02 0.16 0.21 0.17 0.19 0.19 0.20 0.16 

CEE03 0.23 0.24 0.23 0.25 0.23 0.23 0.23 

CAE01 0.16 0.14 0.12 0.12 0.10 0.10 0.10 
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CAE02 0.17 0.16 0.16 0.16 0.17 0.16 0.16 

CFE01 0.08 0.07 0.07 0.07 0.07 0.07 0.07 

CFE02 0.07 0.07 0.07 0.08 0.07 0.07 0.07 

CBC01 0.13 0.13 0.14 0.14 0.13 0.13 0.10 

CBC02 0.11 0.10 0.10 0.10 0.11 0.12 0.10 

CAL01 0.17 0.18 0.17 0.16 0.17 0.17 0.16 

Win/Draw/Loss 10/0/0 10/0/0 10/0/0 10/0/0 9/0/1 9/1/0 - 

Table 5. Predictive performance of each comparison algorithm in terms of Hamming loss (↓). 

Datasets AMI [56] RF-ML [55] MFNMI [54] 
MDDMproj  

[52] 
MLFRS [53] MLNB [51] AMuL 

CEE01 0.072 0.069 0.065 0.064 0.061 0.057 0.057 

CEE02 0.060 0.064 0.066 0.067 0.059 0.063 0.057 

CEE03 0.055 0.060 0.052 0.062 0.064 0.058 0.052 

CAE01 0.075 0.072 0.078 0.064 0.076 0.074 0.066 

CAE02 0.083 0.083 0.087 0.086 0.078 0.079 0.078 

CFE01 0.044 0.045 0.048 0.048 0.056 0.043 0.050 

CFE02 0.049 0.054 0.052 0.047 0.058 0.049 0.046 

CBC01 0.036 0.026 0.031 0.035 0.033 0.029 0.028 

CBC02 0.041 0.045 0.035 0.047 0.035 0.040 0.034 

CAL01 0.088 0.074 0.081 0.070 0.076 0.082 0.070 

Win/Draw/Loss 10/0/0 9/0/1 10/0/0 9/0/1 10/0/0 08/1/1 - 

Table 6. Predictive performance of each comparison algorithm in terms of coverage (↓). 

Datasets AMI [56] RF-ML [55] MFNMI [54] 
MDDMproj  

[52] 
MLFRS [53] MLNB [51] AMuL 

CEE01 3.86 3.78 3.84 3.83 3.83 3.82 3.75 

CEE02 4.61 4.51 3.83 4.10 4.11 4.33 3.55 

CEE03 5.08 5.26 4.95 5.41 5.25 5.05 4.95 

CAE01 3.65 3.18 3.55 3.71 3.46 3.06 2.78 

CAE02 3.50 3.56 3.52 3.64 3.74 3.52 3.50 

CFE01 3.09 3.04 3.11 3.10 3.08 2.93 2.93 

CFE02 2.53 2.47 2.46 2.50 2.51 2.70 2.42 

CBC01 1.85 1.82 1.88 1.95 1.84 1.82 1.81 

CBC02 1.88 1.86 1.87 1.84 1.82 1.85 1.79 

CAL01 3.79 3.94 3.80 3.56 3.76 3.58 3.25 

Win/Draw/Loss 10/0/0 10/0/0 9/0/1 10/0/0 10/0/0 9/1/0 - 

Table 7. Predictive performance of each comparison algorithm in terms of one-error (↓). 

Datasets AMI [56] RF-ML [55] MFNMI [54] 
MDDMproj  

[52] 
MLFRS [53] MLNB [51] AMuL 

CEE01 0.36 0.34 0.33 0.32 0.30 0.29 0.28 

CEE02 0.30 0.32 0.33 0.33 0.30 0.32 0.29 

CEE03 0.27 0.30 0.26 0.31 0.32 0.29 0.26 

CAE01 0.38 0.36 0.39 0.32 0.38 0.37 0.33 

CAE02 0.41 0.42 0.44 0.43 0.39 0.38 0.39 

CFE01 0.22 0.23 0.24 0.24 0.28 0.22 0.25 

CFE02 0.25 0.27 0.26 0.24 0.29 0.25 0.23 

CBC01 0.18 0.13 0.15 0.17 0.17 0.15 0.19 

CBC02 0.20 0.22 0.18 0.24 0.18 0.20 0.17 
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CAL01 0.44 0.27 0.41 0.35 0.38 0.41 0.35 

Win/Draw/Loss 10/0/0 9/0/1 9/1/0 10/0/0 10/0/0 9/0/1 - 

The above-mentioned experiment was dedicated to dealing with the problem of pre-

dicting the performance of students in the pre-class setting, attempting to use students’ 

learning in previous courses to predict their risk of failing in the new semester’s relevant 

advanced course, so as to assist teachers or administrators in teaching, studying, and re-

search in accordance with their aptitude in the early stages of the course. Compared with 

six advanced methods, the proposed AMuL obtains competitive prediction performance 

and improves predictability. Traditional modeling work is often carried out during the 

course in question, or even near to its end. Therefore, most of the “risky students” detected 

by the model have already displayed poor learning performance on the course (risk has 

already occurred). 

At this time, the academic warning is issued. Even if the student can pass the course 

exam, they still lack the overall mastery of the relevant background and pre-knowledge. 

The method proposed in this article can be modeled before the start of the course, and the 

detected “risk students” are only “potential risks” (risks have not yet occurred). If the 

teachers at the beginning of the course give extra attention and guidance to risky students, 

they can not only avert the transformation of “potential risks” into “actual risks”, but can 

also cultivate students’ interest in learning and enhance their confidence in the curricu-

lum, thereby improving students’ overall mastery of the curriculum. 

In addition, by transforming the pre-class student performance prediction problem 

into a multi-label processing issue, the AMuL method fully integrates the actual situation 

of pre-class student performance prediction, which is more in line with the prediction re-

quirements. In terms of the modeling method, considering that there is a certain correla-

tion between multiple target courses, as well as between target courses and pre-order 

courses, a multi-label attribute reduction algorithm is introduced to improve the expres-

sive ability of features. In the 10 different professional student courses of the dataset, the 

effectiveness of this method was verified. 

Although the proposed method achieved significant predictability and accuracy in 

predicting student performance, it is constrained by the limited sample data information, 

and the generality of the method needs to be tested on more datasets—especially in light 

of the gradual development of smart campuses, via which the video, image, and voice 

data related to students’ in-class learning behaviors can be effectively collected. In addi-

tion, with the rapid development of online course tools, a number of digital tools [14] and 

online platforms [37] are increasingly being deployed in educational scenarios, and the 

educational data generated from these educational venues still merit extended research 

using the approach proposed in this study. With the help of these richer teaching re-

sources, the multi-label attribute selection method can be combined with more advanced 

technologies and methods. For example, it can combine computer vision, natural lan-

guage processing, and other algorithms for student performance prediction. 

5. Discussion and Conclusions 

This article targets traditional classroom teaching scenarios in colleges and universi-

ties, and is committed to improving the predictability and accuracy of the method by min-

ing the coupling relationship between the completed course scores and subsequent 

courses. (1) For the first time, this article proposes the use of multi-label attribute selection 

methods to streamline the data characteristics of the students’ courses and improve the 

expression ability of the original feature set. (2) Aiming at the problem of predictive lag 

in existing research, through the “pre-class” student performance prediction method, stu-

dents’ previous semester learning conditions in each course can be used to predict their 

risk of failing in subsequent courses. The multi-label method is more in line with the char-

acteristics of entry-level courses, and can directly deal with multi-course prediction prob-

lems. (3) The method in this paper does not rely on the process information of the course 
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to be carried out, but works directly through the student’s performance history on previ-

ous courses, which can relatively accurately predict the student’s performance before the 

course starts, and has better predictability and practicality. This method was verified on 

real datasets of 10 different professional courses. 
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