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Abstract: With increasing global demand for food, international food trade is playing a critical role
in balancing the food supply and demand across different regions. Here, using trade datasets of four
crops that provide more than 50% of the calories consumed globally, we constructed four international
crop trade networks (iCTNs). We observed the increasing globalization in the international crop trade
and different trade patterns in different iCTNs. The distributions of node degrees deviate from power
laws, and the distributions of link weights follow power laws. We also found that the in-degree is
positively correlated with the out-degree, but negatively correlated with the clustering coefficient.
This indicates that the numbers of trade partners affect the tendency of economies to form clusters.
In addition, each iCTN exhibits a unique topology which is different from the whole food network
studied by many researchers. Our analysis on the microstructural characteristics of different iCTNs
provides highly valuable insights into distinctive features of specific crop trades and has potential
implications for model construction and food security.

Keywords: econophysics; international crop trade network; microstructural properties; weighted
networks; directed networks; network metrics

1. Introduction

Due to a steep increase in global population, the demand for food is increasing rapidly
and may continue to do so for decades [1]. Getting rid of starvation and achieving food
security are global key aims, as emphasized in the Sustainable Development Goals in
the 2030 Agenda [2]. In various parts of the world, the local production of food cannot
fulfill their internal demands [3]. International food trade has become a crucial element
for feeding the world’s population [4]. It is obvious that only through international
trade can the food supply of the global population be better secured [5]. Propelled by
the development of transportation and technology for grain storage, the international
food trade network (iFTN), covering most parts of the world, is playing an increasingly
significant role [6]. Thus, we analyzed international trade networks for four important
crops (maize, rice, soybean, and wheat), which are the main sources of calories for human
consumption [7] and also serve as feed for livestock. Our aim was to understand the
microstructural characteristics of these international crop trade networks (iCTNs). The
descriptive analysis of network properties may have implications for food security.

Network analysis is a convenient tool for characterizing the international food trade
system. The iFTN usually has a broad distribution with a fat tail, implying a heterogeneous
network structure [8]. Network analysis has also been applied to quantify the structural
characteristics of food networks, such as betweenness, centrality, and clusters to identify
whether some economies form clusters or a certain economy is at the center of a large clus-
ter [9]. The dynamics of the iFTN signify the increasing globalization of food trade through
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the evolution of node degree, node strength, link weight, and other topological proper-
ties [10]. Studies on such topics usually focus on the aggregate network of food trade [11,12]
or one kind of goods, such as seafood [13–15], meat [16], or agro-food [12,17,18]. Over the
past two decades, a number of researchers have studied the structure and evolution of
iCTNs, including those of maize [19], wheat [3,6,20], and soybean [21]. However, most
international crop trade studies focused only on one important crop or combined several
crops into an aggregate network. Little research has compared different crops or explored
the relationships between the topological properties of different iCTNs.

To fill this research gap, we attempted to analyze the microstructural characteristics
of four iCTNs, differing from previous studies that each focused on an iCTN of a single
crop or the aggregate iCTN of several crops. Using the standard datasets of international
crop trade over the period from 1986 to 2018, we describe the degree distributions and
weight distributions for different crops in different years. We then discuss the relationships
among microstructural properties, including node degrees, node strengths, link weight,
reciprocity, and clustering coefficients. We found that different international crop trade
systems have unique trade patterns. Our analysis on the microstructure of different crop
networks provides valuable insights into the global food system for the evaluation of
food security.

The remainder of this paper is organized as follows. Section 2 describes the datasets
used in our work and the construction of the international crop trade networks. Section 3
presents the empirical analysis and results of four iCTNs. We summarize conclusions in
Section 4.

2. Datasets and Network Construction
2.1. Data Description

The datasets on international crop trade we analyzed were retrieved from the food
trade matrix dataset of the Food and Agriculture Organization (FAO), http://www.fao.org,
accessed on 15 September 2021. We selected four major crops (wheat, maize, rice, and
soybean) which cover more than 50% of the global calorie intake. In particular, wheat
ensures the 20%, rice 16%, maize 13%, and soybean 8% of the global human calorie
intake [4]. In addition, soybean exports account for three quarters of the livestock feed
worldwide [22]. Our datasets cover the period from 1986 to 2018 and 246 economies.

2.2. Network Construction

For each crop c in each year t, we constructed the network based on the international
cross-border trade flows wc

ij(t), where nodes i and j represent two economies that are
connected by different types of links, and c represents different crops. The entry in wc

ij(t)
represents the amount of crop c in US dollars that flows from economy i to economy j
in year t. Hence, wc

ij(t) is a time-dependent network in which the nodes correspond to
economies involved in the international trade of crop c. In the rest of our work, V denotes
the set of nodes in the network, eij denotes the link from node i to node j, and E denotes
the set of links in the network.

For each trade flow, there should be two records in the data, one for exporting economy
i and the other for importing economy j. In our analysis, wc

ij(t) is defined as the import
value of importing economy j from exporting economy i. If the import data are missing,
we used the corresponding export value of exporting economy i to importing economy j.
For simplicity of presentation, we drop the superscript c in the rest of this work, hoping it
will not cause confusion.

Figure 1 shows the iCTNs under investigation. The rows from top to bottom represent
trade flows for maize, rice, soybean, and wheat, respectively, in 1986 and in 2018. To
better illustrate results for each crop, only the links whose trade values ranked 98–100%
(high percentage), 49–51% (medium percentage), and 0–2% (low percentage) are shown.
We observed that there were more edges in 2018, indicating the network grew rapidly

http://www.fao.org
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from 1986 to 2018 in terms of trade value. The structure of each network has significantly
changed in the past 30 years.

Figure 1. International crop trade networks (iCTNs) in 1986 (left column) and 2018 (right column).
The rows from top to bottom, respectively, describe maize, rice, soybean, and wheat. For clarity, in
each map we have shown only the links with high, medium, and low trade values, each accounting
for 2% of the total number of links.

3. Empirical Results
3.1. Node Degrees

The degree ki of a node i is defined as the number of nodes connected with node i in
the network. For a directed network, node i has the in-degree kin

i and the out-degree kout
i ,

respectively, measuring numbers of links flowing from and to other nodes. The in-degree
kin

i of node i ∈ V is defined as follows.

kin
i = ∑

j∈V −{i}
IE (eji) =

NV

∑
j=1

IE (eji), (1)

where IE (eji) is the indicator function:

IE (eji) =

{
1, if eji ∈ E

0, if eji /∈ E
(2)
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Similarly, the out-degree kout
i of node i ∈ V is defined as follows.

kout
i = ∑

j∈V −{i}
IE (eij) =

NV

∑
j=1

IE (eij), (3)

The total degree ki of the node i is thus

ki = kin
i + kout

i . (4)

Figure 2 illustrates the empirical distributions of total degrees k (left column), in-
degrees kin (middle column), and out-degrees kout (right column) for the four iCTNs over
the period from 1986 to 2018. The insets show the aggregate distributions on the log–log
scale, together with the power-law fits. In each plot, we can observe that the distributions
have similar shapes but with evident differences over the years. For degrees of each type
in each row, the distributions also look similar to some extent. It was found that, for each
iCTN, the total degrees k and the out-degrees kout follow power-law distributions:

f (k) ∼ k−α−1, (5)

where α = 1.11 for the maize network, α = 0.89 for the rice network, α = 1.11 for the
soybean network, and α = 0.99 for the wheat network. The R2 values of the fitting
distributions of the total degrees for maize, rice, soybean, and wheat are, respectively,
0.9161, 0.97036, 0.8904, and 0.8816.

For the international trade network of all commodities, the total degree follows a
power-law distribution [23]. For the international rare earths trade network, the total
degree follows a power-law distribution in each year from 1986 to 2015 [24]. For the
international cereal trade network, the total degree follows a power-law distribution in
1986 and an exponential distribution in 2013 [25].

Figure 2 also shows that the out-degree distribution has a power-law tail:

f (kout) ∼ (kout)−αout−1 (6)

where αout = 0.84 for the maize network, α = 1.03out for the rice network, α = 0.81out

for the soybean network, and α = 0.60out for the wheat network. The R2 values of
fitting distribution of out-degree are, respectively, 0.8911, 0.9655, 0.9309, and 0.9346. In
contrast, the in-degrees kin show a strong deviation from power-law distributions in
some commodity trade networks. Nevertheless, the fat-tailedness of all distributions
indicates that there are economies that export to many other economies and economies
that import crops from other economies. The in-degree and out-degree distributions have
different forms in different networks. Power-law distributions are reported for both the
out-degree and in-degree of the international trade network of every commodity [23], and
the international agricultural greenhouse gas network through international trade [26]. For
the international maize trade networks over 2000–2009, the distributions of the in-degree
and the out-degree exhibit inverse exponential behavior [19]. The USA food flow network
exhibits a normal distribution for the in-degree and the out-degree [8].

For each iCTN, we select the top five economies based on their total degrees, in-
degrees, and out-degrees in 2018 and illustrate the evolution of rankings from 1986 to 2018
in Figure 3. It can be seen that the United States has the highest rankings of node degrees in
the four networks, especially in the maize, rice, and soybean trade networks, and its total
degree always ranks first (during 1986–2018) due to its high rankings of out-degree, but
the rankings of its in-degree slightly fluctuate. This means that the USA has more export
trade partners than import. The rankings of some economies’ degrees behave differently.
After the collapse of the Soviet Union in 1991, Russia participated in international trade,
and its number of trade partners gradually increased. It became the largest exporter of
wheat worldwide in 2018, which is consistent with what the US Department of Agriculture
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reported in 2018. The department declared that Russia stayed ahead in wheat export
trades. As for China, it is a large rice importer and it also imports soybeans and wheat.
Overall, the rankings of node degrees in different iCTNs are distinct. In each network, the
rankings of the total degrees and the out-degrees are steady, but the in-degree rankings
fluctuate significantly.
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Figure 2. Empirical distributions of total degrees k (left column, a–d), in-degrees kin (middle column,
e–h), and out-degrees kout (right column, i–l) for the four iCTNs over the period from 1986 to 2018.
The rows from top to bottom show the distributions for maize, rice, soybean, and wheat. For each
graph, the inset presents the distribution of all degrees over 33 years and the corresponding power-
law fit. Different colors of the symbols correspond to different years. For each iCTN, the total degrees
k and the out-degrees kout follow power-law distributions. The R2 values of the fitting distributions
of the total degrees for maize, rice, soybean, and wheat are, respectively, 0.9161, 0.97036, 0.8904, and
0.8816. The R2 values of the fitting distributions of the in-degrees are, respectively, 0.8911, 0.9655,
0.9309, and 0.9346. The R2 values of the fitting distributions of the out-degrees are, respectively,
0.8911, 0.9655, 0.9309, and 0.9346.
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Figure 3. Top five economies’ rankings of total degrees k (left column, a–d), in-degrees kin (middle
column, e–h), and out-degrees kout (right column, i–l) for the four international crop trade networks
over the period from 1986 to 2018. For each iCTN, we selected economies that had the top largest
total degrees, in-degrees, and out-degrees in 2018, and we show the evolution of their rankings from
1986 to 2018. The rows show the evolutionary rankings for maize, rice, soybean, and wheat from
top to bottom. The ordinate represents the rankings of five economies in a certain year based on the
values of the three indicators.

Figure 4 shows the relationship between the in-degree and the out-degree for the four
iCTNs. It can be observed that scatter plots of the in-degree and the out-degree have similar
patterns. There are more data points located below the diagonal. We can observe that there
is no clear relationship between the in-degree and the out-degree, differing from the results
reported for other goods, such as in the international plastic resin trade network [27].
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Figure 4. Relationship between the in-degree kin
i and the out-degree kout

i for the four crops –maize (a),
rice (b), soybean (c), and wheat (d)– over the period from 1986 to 2018. The correlation coefficients
between the in-degree kin

i and the out-degree kout
i for each crop network are, respectively, 0.6473,

0.4896, 0.6120, and 0.5341.

3.2. Node Strengths

In weighted networks, the strength of a node is defined as the sum of link weights
directly connected to the node. A given node has in-strength and out-strength in accordance
with the trade flow. The in-strength of node i ∈ V represents the import value of economy
i from other economies:

sin
i = ∑

j∈V −{i}
wji =

NV

∑
j=1

wji, (7)

where wji means trade value from economy j to economy i. Similarly, the out-strength of
node i is defined as follows:

sout
i = ∑

j∈V −{i}
wij =

NV

∑
i=1

wij, (8)

which is the export value of economy i to other economies.
The relationships of the in-strength and the out-strength shown in Figure 5 indicate

that they are almost uncorrelated (correlation coefficients are, respectively, 0.0569, 0.0581,
0.01830 and 0.0202), though Guo et al. have shown that the strength–strength curve is corre-
lated with a positive slope around 1.0 in the world trade network for all commodities [28].
Moreover, we can see that the majority of data points are located below the dashed line
in each plot, which means the in-strength is larger than the out-strength of most nodes. It
indicates that most economies have a deficit in crop trade and need to import more than
they export. A study on the wheat networks in 2009–2014 suggested that large exporters
are in most cases also large importers, but the correlation between the in-strength and the
out-strength is also very weak [3].
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Figure 5. Relationships between the in-strength sin
i and out-strength sout

i for the four crops –maize
(a), rice (b), soybean (c), and wheat (d)– over the period from 1986 to 2018. Different colors of the
symbols correspond to different years. The in-strength and the out-strength are almost uncorrelated
in each iCTN. The majority of data points are below the dashed line in each plot.

3.3. Degree vs. Strength

The strength of a node is related to its degree, usually as a power law, for many
socioeconomic networks [29,30]. In a trade network, an economy that has more trade
partners will also have higher trade values [31]. In Figure 6, we show the relationships
between strengths and degrees for the four iCTNs from 1986 to 2018. In all the cases,
the in-strength increases with the in-degree (the correlation coefficients for each crop
network are, respectively, 0.4056, 0.3664, 0.1666, and 0.4722) and the out-strength increases
with the out-degree (the correlation coefficients for each crop network are, respectively,
0.6815, 0.6580, 0.4831, and 0.7909). This is consistent with the general perception that
economies with more trade links tend to have large trade flows. We further observed
that sin

i is related to kin
i , and sout

i is related to kout
i , both in an evident power-law form. In

contrast, power-law relationships between sin
i and kout

i and between sout
i and kin

i are less
evident. The power-law relationship has also been reported between sout and kout for the
international trade networks of wheat and rice in two different periods (1992–1996 and
2005–2009) [20]. However, the relationships between strengths and degrees differ from the
scale-free character of the USA-only food flows [8], and the international trade network of
all commodities [32].
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Figure 6. Relationships between strengths and degrees for the four iCTNs over the period from 1986
to 2018. From the top row (a–d) to the bottom row (m–p), the plots describe the relationships between
sin

i and kin
i , sin

i and kout
i , sout

i and kin
i , and sout

i and kout
i . The columns from left to right, respectively,

represent the international trade networks of maize, rice, soybean, and wheat. Different colors of the
symbols correspond to different years. The in-strength is positively related to the in-degree and the
out-strength is positively related to the out-degree. The correlation coefficients between the pairs of
variables in (a–p), respectively, are 0.4056, 0.3664, 0.1666, 0.4722; 0.3048, 0.1368, 0.1653, 0.2725; 0.1940,
0.2385, 0.3574, 0.1566; and 0.6815, 0.6580, 0.4831, 0.7909.

3.4. Link Weight

A link connecting two nodes is usually associated with weights that are vital to
describing the connection traits of each link in a networked system. In a directed weighted
trade network, how large the weight is represents how large the import or export trade
flow is. A large number of studies have shown that weight distributions of many weighted
networks are greatly heterogeneous [33].

Figure 7 illustrates the yearly empirical distributions of link weights for the four
iCTNs. For each crop, we present 33 distributions for the 33 yearly networks. For each
crop, the distributions collapse onto a single curve with some deviations, implying that the
formation of the international trade networks of a given crop in different periods is driven
by common key mechanisms. Figure 7a–c show that the link weight distributions of the
maize, rice, and soybean trade networks exist in power-law form when the weights are
not too large, but decay toward the right tail. In contrast, the wheat networks in Figure 7d
do not exhibit power-law scaling. It is obvious that the international wheat trade network
differs from other iCTNs, implying that different mechanisms underlie the formation of
different iCTNs. Thus, the analysis could lead to bias when studying the aggregated iCTN
in terms of food security. In fact, the distributions of weights for maize, rice, and soybean
are right skewed (most economies have relatively small weights), but for the wheat trade
there were larger fractions of links with big export volumes in 1992 and 2018 [34].
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Figure 7. Empirical distributions of link weights for the four iCTNs: (a) maize, (b) rice, (c) soybean,
and (d) wheat. In each plot, there are 33 yearly distributions corresponding to the 33 years from 1986
to 2018. Different colors of symbols correspond to different years. The link weight distributions of
the maize, rice, and soybean trade networks exist in power-law form when the weights are not too
large. The R2 values of fitting distribution for maize, rice, soybean, and wheat trade networks are
0.7749, 0.7762, 0.8572, and 0.4815.

3.5. Reciprocity

Link reciprocity plays an important role in shaping the directed networks and un-
derstanding the observed network topology [35]. A traditional definition of a node i’s
reciprocity is the ratio of the number kR

i of reciprocal links of node i to the total number ki
of links of node i [36]:

Ri =
]
({

j : eij ∈ E & eji ∈ E
})

]
({

j : eij ∈ E or eji ∈ E
}) =

kR
i

ki
, (9)

where
kR

i = ]
({

j : eij ∈ E & eji ∈ E
})

= ∑
j 6=i

(
wijwji

)0 (10)

is the number of reciprocal links node i has. In Equation (10), we pose 00 = 0.
After calculating the reciprocity coefficient Ri of economies in each iCTN, we focused

on relationships between the reciprocity coefficients Ri and the in-degree kin
i , the out-

degree kout
i , the in-strength sin

i , and the out-strength sout
i . From Figure 8, we found that

for each network, with the broadly distributed reciprocity coefficients (spanning from 0
to 1), the out-degree, the in-strength, and the out-strength do not have liner relationships
with reciprocity coefficients. We also found that, as shown in Figure 8 (a, e, i, m), the
in-degree and the reciprocity coefficient are positively correlated when the in-degree is
large. This means that economies with more import trade partners usually have higher
reciprocity coefficients.
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Figure 8. Scatter plots of the reciprocity coefficients of economies in the maize trade network with
respect to the corresponding node attributes. (a,e,i,m) Reciprocity coefficient Ri versus in-degree kin

i .
(b,f,j,n) Reciprocity coefficient Ri versus out-degree kout

i . (c,g,k,o) Reciprocity coefficient Ri versus
in-strength sin

i . (m,h,l,p) Reciprocity coefficient Ri versus out-strength sout
i . Rows from top (a–d)

to bottom (m–p) represent the international trade networks for maize, rice, soybean, and wheat.
Different colors of the symbols correspond to different years. The in-degree and the reciprocity
coefficient are positively correlated when the in-degree is large.

3.6. Clustering Coefficient

The clustering coefficient is one of the most important statistical tools for understand-
ing the structure of a network [37,38]. Several studies have proposed different definitions
of the clustering coefficient [39,40]. For a node i, the clustering coefficient is the fraction
between the number of observed triangles to all possible triangles in one network [41]:

ci =
2Ti

ki(ki − 1)− 2kR
i

, (11)

where Ti is the number of directed triangles through node i, ki is the total degree of node i,
and kR

i is the reciprocal degree of node i.
The node clustering coefficients, degrees, and strengths can all capture the micro-

characteristics of the network. We analyzed the relationships between them and present the
results in Figure 9. As shown in the first two columns, for each iCTN, the node clustering
coefficient is negatively correlated with the in-degree and the out-degree. However, for
some international trade networks, such as the total international trade network in 2000 [42]
and the global transport network of crude oil [43], the node clustering coefficient exhibits
no correlation with the total degree. As found by several other studies [44,45], economies
that have more export partners (high out-degree) are less clustered than those having few
partners. From the third column (c, g, k, o), the clustering coefficient was found to be
uncorrelated with the in-strength. In contrast, there are weak negative correlations between
the clustering coefficient and the out-strength. Therefore, the import and export trade
values of an economy have different influences on its tendency to cluster [41]. It is also
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reported that the total strength of a node should be related to its clustering coefficient as a
power law [46].
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Figure 9. Scatter plots of the clustering coefficients of economies in the crop trade networks with
respect to the corresponding node attributes. (a,e,i,m) Clustering coefficient ci versus in-degree kin

i .
(b,f,j,n) Clustering coefficient ci versus out-degree kout

i . (c,g,k,o) Clustering coefficient ci versus in-
strength sin

i . (m,h,l,p) Clustering coefficient ci versus out-strength sout
i . Rows from top (a–d) to bottom

(m–p) represent the international trade networks for maize, rice, soybean, and wheat. Different colors
of symbols correspond to different years. For each iCTN, the node clustering coefficient is negatively
correlated with the in-degree and the out-degree. Furthermore, there are weak negative correlations
between the clustering coefficient and the out-strength.

4. Conclusions

International food security has long been a global concern. Analyzing how iFTNs
connect economies through import and export flows is an effective method for achieving
food security [13]. We selected four major crops (maize, rice, soybean, and wheat) to
construct the iCTNs, and used datasets from 1986 to 2018. For each crop, we constructed a
network based on the international cross-border trade flows, where the nodes represent
the economies participating in the international crop trade. We investigated the main
microstructural properties of each crop network, including total trade value, node in- and
out-degrees, node in- and out-strengths, link weight, reciprocity, and clustering coefficient.
In the case of global crop trade (its values and trade partners), the directed weighted
networks studied in this paper provide several crucial results and insights with respect to
food security.

During the study period, the iCTNs became increasingly connected. It is obvious that
there were more trade links in 2018 than before (Figure 1) and the structure of each network
has significantly changed in the past three decades. More economies participated in the
global crop trade and the trade values have dramatically increased over the past 33 years.
In the world food trade networks [9,20] and the world trade networks [23,45], different
iCTNs show different microstructural characteristics. This highlights the need to account
for each crop trade network’s unique properties.
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We investigated the distributions of node degrees and link weight, and found that each
crop has a unique pattern of trade in each year. The degree distributions for each temporal
iCTN do not always show power-law behavior, differing from the classical iFTN [42]. It
was found that, for each iCTN, the total degrees k and the out-degrees kout follow power-
law distributions. However the in-degrees did not show significant power-law behavior.
The link weights of yearly networks showed similar distributions, and followed power-law
distributions in the maize, rice, and wheat trade networks. However, the distributions
of the international soybean trade network did not have power-law behavior. It was
interesting to explore the network of a single crop instead of total food and understand
more details about the world food trade system.

By ranking node degrees each year, we found that economies which have the most
trade partners are quite different among the crop trade networks. Some economies are
always major participants in the trade networks, such as the United States, whereas some
other economies fluctuate a lot in rankings. It can be seen that the United States has the
highest rankings of node degrees in the four networks, especially in the maize, rice, and
soybean trade networks (Figure 3). This means that the USA plays an important role in the
international crop trade. After the collapse of the Soviet Union in 1991, Russia participated
in international trade, and its number of trade partners gradually increased. It became the
largest exporter of wheat worldwide in 2018. As for China, it is a large rice importer and
it also imports soybeans and wheat from many economies. Overall, the rankings of node
degrees in different iCTNs were distinct. In each network, the rankings of the total degree
and the out-degree were steady, but the in-degree rankings fluctuated significantly.

Our findings about the national rankings of degrees are important, as they funda-
mentally reflect which economies occupy important positions in the crop trade system. It
should help us reach a better understanding of potential vulnerabilities to some chaotic
scenarios [9]. We could imagine a shock (such as extreme climate) to an economy that relies
on its domestic rice production. What would the economy do to fill any gaps in domestic
food supplies? The economy might resort to import partners to meet its food demands. Let
us consider a more serious mess: that the largest rice exporter experiences major production
loss. How would this scenario impact the international crop trade? Assuming that rice
production in other areas does not increase, the global rice prices would increase without
the release of rice reserves, and other alternative crops would also be affected [9].

Our analysis of the relationships among different topological properties has improved
our understanding of the microstructural properties at play. We have shown that the
in-degrees increase as the out-degrees increase, suggesting that economies expand overseas
trade, including imports and exports, with the development of the international crop trade.
The in-strength and the out-strength were almost uncorrelated in each iCTN. We can see
that the in-strength was larger than the out-strength for most nodes, which indicates that
most economies have a deficit in crop trade and need to import more than they export.

As noted in the above descriptions, some multi-year time characteristics of a specific
crop network are different from those of the whole international trade network. To provide
insights into food security under future shocks, it is better to analyze different crops rather
than the whole food network.
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