
entropy

Article

Deep Neural Network Model for Approximating Eigenmodes
Localized by a Confining Potential

Luka Grubišić 1,* , Marko Hajba 2 and Domagoj Lacmanović 1

����������
�������

Citation: Grubišić, L.; Hajba, M.;

Lacmanović, D. Deep Neural

Network Model for Approximating

Eigenmodes Localized by a Confining

Potential. Entropy 2021, 23, 95.

https://doi.org/10.3390/e23010095

Received: 29 November 2020

Accepted: 8 January 2021

Published: 11 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: c© 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mathematics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia;
domagoj.lacmanovic@math.hr

2 Department of ICT, Virovitica College, 33000 Virovitica, Croatia; marko.hajba@vsmti.hr
* Correspondence: luka.grubisic@math.hr

Abstract: We study eigenmode localization for a class of elliptic reaction-diffusion operators. As the
prototype model problem we use a family of Schrödinger Hamiltonians parametrized by random
potentials and study the associated effective confining potential. This problem is posed in the finite
domain and we compute localized bounded states at the lower end of the spectrum. We present
several deep network architectures that predict the localization of bounded states from a sample of a
potential. For tackling higher dimensional problems, we consider a class of physics-informed deep
dense networks. In particular, we focus on the interpretability of the proposed approaches. Deep
network is used as a general reduced order model that describes the nonlinear connection between
the potential and the ground state. The performance of the surrogate reduced model is controlled by
an error estimator and the model is updated if necessary. Finally, we present a host of experiments to
measure the accuracy and performance of the proposed algorithm.

Keywords: Anderson localization; deep neural networks; residual error estimates; physics informed
neural networks

1. Introduction

In this paper we study features of the spectral problem for the family of elliptic
operators of the reaction-diffusion type posed in the finite domain Ω = [−B, B]n, B > 0.
These operators are also known as Schrödinger operators or Schrödinger Hamiltonians
and they are defined by the differential expression of the form:

Hωu = −4u + Vωu .

Here −4 is the distributional realisation of the Laplace operator and Vω is the mul-
tiplication operator with the real function Vω. The parameter ω describes a random
perturbation of a given potential. The associated spectral problem is to find an eigenvalue
ε and an eigenmode u 6= 0 such that u verifies:

Hωu = εu (1)

and a set of boundary conditions. We will consider boundary conditions that lead to the
realization of the expression H as a self-adjoint operator in a Hilbert space. In particular,
we will consider functions u ∈ H1

0(Ω) with Dirichlet boundary conditions and u ∈ H1
π(Ω),

where H1
π(Ω) is the first-order Sobolev space of functions (square integrable functions

whose gradient is also square integrable) that satisfy the periodic boundary conditions [1,2].
In what follows we will use ‖ · ‖ to denote the L2(Ω) norm of a square integrable function.

We will consider—as an academic prototype—short-range confining electrostatic
potentials such as those considered in [3] (see also [1,2]) and a more challenging class
of confining potentials related to the effect of Anderson localization [4]. By the effect of
localization we mean that we search for eigenvalues ε such that u, ‖u‖ = 1, is essentially

Entropy 2021, 23, 95. https://doi.org/10.3390/e23010095 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-3370-9353
https://orcid.org/https://orcid.org/0000-0003-2737-7660
https://doi.org/10.3390/e23010095
https://doi.org/10.3390/e23010095
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23010095
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/23/1/95?type=check_update&version=1

Entropy 2021, 23, 95 2 of 19

zero in the large part of the domain Ω. The Anderson model describes quantum states of
an electron in a disordered alloy that can transition from metallic to insulating behavior.
Loosely stated, we aim to model the connection E : Vω 7→ uω, where uω, uω > 0 is
the eigenmode of the lowermost ε in (1). Such eigenmodes are called the ground states,
and ε0 = ε is called the ground state energy. Note that for the elliptic reaction-diffusion
operators Hω defined in L2(Ω) and with the potential Vω , which is bounded, nonnegative
and positive on a set of positive measures, there exists—by an application of the Krein–
Rutman Theorem—the unique ground state u0 > 0, which verifies (1) and so the mapping
E is well defined; see [5,6].

We emphasize that we use the following regularization approach from [6] to deal with
rough potentials. Namely for Vω, which is bounded, nonnegative and positive on a set of
positive measures there exists uω ∈ C1(Ω), uω > 0 such that Hωuω = 1. It can be shown
by direct calculation that the operator Aω defined in H1

π(Ω) by the differential expression:

Aωφ = − 1
u2

ω
div(u2

ωgradφ) +
1

uω
φ

has the same eigenvalues as the operator Hω . Furthermore, ψ is an eigenmode of Hω if and
only if φ = ψ/uω is an eigenmode of Aω. Based on this equivalence, we call the function
W = 1/uω the effective confining potential defined by Vω. For more details see [5,7].

One possibility of obtaining data-sparse representations of the solutions of elliptic
problems is through the use of tensor networks also known as tensor train decompositions
or matrix product states [8,9]. We choose a more direct approach known as Variational
Physical Informed Neural Network (VPINN) [10–12]. Realizations of these dense network
architectures are trained to solve the variational formulation of the problem. This approach
to training neural networks is a part of the unsupervised learning paradigm. It is a mesh-
less approach that is capable of solving variational (physical) problems, by minimizing the
loss functional, which combines the variational energy of the system together with penalty
terms implementing further physical or normalization constraints.

The main physical constraint for the ground state is the positivity constraint. To
deal with excited states we need to implement further symmetry constraints in the vari-
ational space. We opt for a different approach, also based on positivity constraints and
a-posteriori error estimation. We use the neural network to approximate the solution of the
source problem:

−4u + Vu = 1

with associated boundary conditions. The solution u is called the landscape function, and in
this case we are interested in the mapping L : V 7→ u. The landscape function is a positive
function in C1(Ω) and its reciprocal W = 1/u is called the effective potential. The effective
potential provides a mechanism that incurs localization on bounded states. To localize the
excited states we use the approach of [5,7]. Let Wmin,i be the i-th lowermost minimum of
the effective potential W. It was observed in [5] that the following heuristic formula:

ε̃i−1 =
(

1 +
n
4

)
Wmin,i (2)

yields good approximations to the energies of excited states. Note that this relationship,
given its simplicity, is also something we might reasonably hope to learn algorithmically
from a sample of landscape functions. This was stated as a motivation to utilize neural
networks in the study of the eigenvalue problem for Schrödinger operators [3].

For an eigenmode ψ of H with the eigenvalue ε we have the estimate: ψ(x) ≤
εu‖ψ‖L∞(Ω), x ∈ Ω. This estimate can be obtained (see [13]) using the Feynman–Kac
formula for the representation of the bounded state as an expectation of an integral of the
Brownian motion. It was further argued in [13] that an eigenmode ψ with energy ε := ε(ψ)
can only localize in the region:

{x : ε u(x) ≥ 1} . (3)

Entropy 2021, 23, 95 3 of 19

Subsequently, as a combination of (2) and (3) we get both information on the excited
state energy and information on the location of the excited state’s support.

The Motivation and the Contribution of this Paper

The use of neural networks as data-sparse representations of complex, high dimen-
sional nonlinear mappings is an emerging trend in many disciplines. In particular, it has
been used to tackle many body Schrödinger equations [14,15], the Black–Scholes equation,
the Hamilton–Jacobi–Bellman equation, and the Allen–Cahn equation [10,11,16–20].

In general, all of the above problems can be reduced to computing an approxima-
tion of the function u : Ω ⊂ Rn → R. This approximation is constructed by optimizing
(training) the parameters of the family of test functions (we chose the family of all realiza-
tions of a given neural network architecture) so that the value of the appropriate energy
functional (for the chosen model) is minimal. The main challenge in such an approach is
to assess the approximation accuracy and to ensure that the computed realization of the
neural network satisfies further physical constraints, such as symmetry constraint or the
boundary conditions.

Further physical, but also numerical, constraints can be built into the optimiza-
tion model in several ways. The most scalable and flexible way is to use penaliza-
tion [10,11,20,21]. A alternative more subtle, and more accurate way is to introduce the
constraints directly into the family of test functions as it is done in the architecture of the
PauliNet from [14] (see also [22,23]), or to construct a family of test functions using an
ansatz that combines several components of the solution, which are themselves realizations
of neural networks [12,24].

In this study we focus on the potentials for which the Hamiltonian satisfies the Krein–
Rutman theorem (the scaled ground state is the unique positive and smooth function).
Examples of such potentials are the effective potentials associated with the Anderson
localization. Since this is a more restrictive class of potentials than those considered
in [14], we opt for a direct approach. Our contribution is the introduction of the residual
error estimator into the Deep Ritz Algorithm from [20]. This in turn allows us to use
Temple–Kato [25,26] or similar inequalities [27,28] to ascertain if the ground state generated
by the neural network is a certified small perturbation of a physical eigenstate. For
activation functions that are smooth enough we can calculate the strong form of the
eigenvalue residual and then compute its norm using a quadrature or quasi-Monte Carlo
integration. Using the residual estimator we stop the optimization (training process)
when the eigenvalue residual is small enough (satisfies the preset tolerance) and/or the
convergence criterion for the optimization algorithm is met (Adam optimizer). The use of
ansatz functions based on neural networks, such as [24], will undoubtedly be a method of
choice for 2D or 3D problems. However, this method depends on an accurate representation
of the boundary of the domain Ω and thus faces challenges in scaling to higher dimensions.

The treatment of physical symmetries becomes critical when approximating excited
states. For dealing with this task, we reformulate the problem as an inverse problem based
on the solution of the source problem Hu = 1. The main constraint that the solution must
satisfy is again positivity, and we construct an error estimator to certify the quality of
the solution.

The network architectures used so far are dense network architectures. Inspired by [3],
we study a parameter-dependent family of potentials and present a fully convolutional
encoder–decoder neural network as a reduced order (surrogate) model for this family of
partial differential equations and the mapping L : V 7→ u. We formulate a new certified
surrogate modeling approach based on neural networks that is inspired by the work on
certified surrogate modeling from [29] and the U-net architecture from [30]. We use the
residual error estimator from the first part of the paper as a criterion for the surrogate
(encoder–decoder) model update. For further details see Section 3.5.

Let us summarize the three classes of exemplar problems studied in this paper. First,
we study the eigenvalue problem for approximating the unique positive normalized ground

Entropy 2021, 23, 95 4 of 19

state u0. We aim to construct certified, robust and scalable—with respect to the increase in
the dimension of the problem—approximation methods. Second, to approximate the eigen-
values higher in the spectrum we study the landscape function. The landscape function is
obtained as a solution to the source problem Hu = 1. It is again a positive smooth function
and positivity is the only physical constraint needed to study the localization phenomena
for the associated eigenstates. Further, we use simple residual control to ensure that the
computed solution is a small perturbation of the true landscape function. As the third class
of problems, we present the data-based surrogate model of the map connecting a class of
potentials to the associated landscape functions. Here we are concerned with the use of
convolutional networks as a data-sparse reduced order model in the context of certified
surrogate modeling of this mapping. In particular, we are interested in the possibility of
updating the surrogate model based on the residual error estimator.

2. Theoretical Background

In order to be precise and explicit, we will present the theoretical foundations on
a somewhat restricted set of neural network architectures. The network architectures
that will be used in practical computations are presented in Appendix B. The change of
the family of the realizations of neural networks over which the optimization is carried
out does not change the presentation of the algorithms in any practical way. Our main
contribution is in the introduction of the error control in the Deep Ritz algorithm from [20].
We will now summarize the basic definitions from [31], which are necessary to interpret
the numerical experiments.

Definition 1. Given n1, n2, L ∈ N, a neural network θ of depth D with the input dimension n1
and the output dimension n2 is the D-tuple θ =

(
(Al , bl) : l = 1, · · · , D

)
where:

(Al , bl) ∈ RNl×Nl−1 ×RNl , l = 1, · · · , D.

By the convention n1 = N0 and n2 = ND. In the case in which D = 2 we call the network shallow,
and otherwise the network is called deep. The vector ~N =

(
N0 · · · ND

)
is called the network

architecture of the neural network θ.

We will use D(θ) to denote the depth of the given neural network θ. In the case in
which the structure of matrices Al , l = 1, · · · , D is not further restricted, we say that the
network is dense. In the case in which a sparsity pattern is assumed we have several
subclasses of neural networks. For exemple, if the matrices Al , l = 1, · · · , D have a
structure of a Toeplitz matrix (Al)ij = (wl

i−j)ij—here wl , l = 1, · · · , D are parameter
vectors defining a Toeplitz matrix [32]—we talk about convolutional neural networks.

Let ρ : R → R be a function that is not a polynomial. By ρ we denote the function
ρ = ⊗n

l=1ρ : Rn → Rn. We will now define a realization of the neural network θ with
respect to the function ρ.

Definition 2. A function Rθ,ρ : Rn → Rm is defined by the formula:

Rθ,ρ(x) = TL(ρ(TD−1(ρ(TD−2(· · · ρ(T1(x))))))) .

where Tl(x) = Al x + bl , l = 1, · · · , D is called the realization of the neural network θ with respect
to the activation function ρ.

Among various activation functions we single out the rectified linear unit (ReLU)
function ρLU = max{0, x} and the sigmoid function ρS(x) = 1/(1− exp(−x)). The set
of all ReLU realizations of a neural network θ has a special structure. We call a function
f : Rn1 → Rn2 piece-wise linear if there is a finite set of pairwise disjoint, closed polyhedra
whose union is Rn1 such that a restriction of f onto a chosen polyhedron is an affine
function. It has been shown in [33] that any piece-wise linear function can be represented

Entropy 2021, 23, 95 5 of 19

by a ReLU neural network and that any ReLU realization of a neural network is piece-wise
linear. This observation is key to linking the approximation theory for neural networks
with the standard Sobolev space regularity theory for partial differential equations.

Let us now fix some further notation. Let m be the number of the degrees of freedom
of the space of piece-wise linear functions associated to the fixed polyhedral tessellation of
Ω. We use Vm to denote the set of all piece-wise linear functions on this tessellation. We
also use the notations P1, P2 and P3 to denote the space of piece-wise linear, quadratic and
cubic functions, respectively. The corresponding interpolation operators (for continuous
arguments) are denoted respectively by IP1 , IP2 and IP3 .

We will now briefly review a-posteriori error estimates that are used in this work. Let
us note the following convention. We use ε0 and u0 to denote the ground state energy
and the normalized positive ground state. We use ε1 to denote the energy of a first
excited state and we note that the notation is generalized for higher excited states in
an obvious way. We denote the Rayleigh quotient of the operator H for the state ψ by
ε = ε(ψ) := (ψ, Hψ)/(ψ, ψ). The standard Kato–Temple estimate from [26] can be written
in a dimension-free form, also known as the relative form:

|ε− ε0|
|ε| ≤ |ε|

|ε1 − ε|
‖Hψ− εψ‖2

|ε|2‖ψ‖2 . (4)

The quantity |ε|/|ε1 − ε| is a measure of the so-called relative spectral gap [34,35] and
it measures the distance to the unwanted part of the spectrum. It can be estimated by
symmetry considerations or other a-priori information. In fact, a more careful analysis
from [35] shows that the scaled residual is an asymptotically exact estimate of the relative
error and so we will heuristically drop the measure of the gap even in the preasymptotic
regime. A consequence of the Davis–Kahan theorem [36] is that the residual also estimates
the eigenvector error:

‖ψ− u0‖
‖ψ‖ ≤ c

|ε|
|ε1 − ε|

‖Hψ− εψ‖
|ε|‖ψ‖ . (5)

Subsequently, the error estimator ∆2
ε = ‖Hψ − εψ‖2/(ε2‖ψ‖2) is a good stopping

criterion for a certified approximation of an eigenmode.
For the source problem Hu = 1, u ∈ H1

0(Ω) we note the following relationship:

‖u− u‖L2

‖u‖L2
≤ ‖1‖L2

ε0

‖Hu− 1‖L2

‖u‖L2‖1‖L2
,

between the residual and the relative L2 error. Subsequently we use τ = ‖Hu − 1‖L2/
(‖u‖L2‖1‖L2) as an error estimator for the source problem.

Algorithms

We will now present the modifications of algorithms that we used to study the local-
ization phenomena. We modified the Deep Ritz algorithm from [20] with the introduction
of the a-posteriori (residual) error estimator. We call our variant the Certified Deep Ritz
Algorithm. It is motivated by the work on certified reduced-order modeling in [29]. In
order to be able to formulate strong residuals, we chose smooth activation functions ρ, so
that Rθ,ρ can be used to form the strong residual.

The performance of the stochastic gradient descent, when applied to the loss function,
can be highly sensitive to the choice of the learning rate. Furthermore, it can also suffer from
oscillation effects introduced by the choice of the sampling method in the numerical inte-
gration routines. For this reason we have opted to use the Adam optimizer from [37], which
determines the learning rate by adaptively using information from higher-order moments.

To enforce the positivity constraint, we composed a realization of the neural network
with the function Ξ, Ξ > 0. We call the function Ξ a positivity mask and it must be
chosen appropriately for the governing boundary conditions. As the positivity mask for

Entropy 2021, 23, 95 6 of 19

Schrödinger Hamiltonians we either chose a smooth nonnegative function Ξ, which decays
to zero as |x| → ∞, or set the positivity mask as the identity.

In Algorithm 1 the parameter β > 0 is the penalty parameter used to enforce the
boundary conditions and the parameter η > 0 is used to normalize the eigenmode ap-
proximation. We solve the integral using a Gauss quadrature rule in 1D and for higher
dimensional problems we use quasi-Monte Carlo integration from [38,39] or a sparse grid
quadrature [40] to approximate the integrals in the loss function as well as for the final
(more accurate) evaluation of the energy functional. Alternatively in 2D, we sometimes
choose to compute the integrals by projecting the realization of a neural network into a
finite element space and then use the finite element quadrature to compute the integral. Ac-
cording to the authors of [11,41], this is an appropriate approach for problems of moderate
dimensions (Ω ⊂ Rn, n ≤ 20). For higher-dimensional problems, Monte Carlo integration
is the only scalable approach recommended.

Algorithm 1: Certified Deep Ritz Algorithm.
Result: Approximation ψθ,ρ of the ground state
Choose the activation function ρ, the positivity mask Ξ, the penalty parameters β,

η, the maximal number of iterations maxit, the network architecture ~N, the
integration method and the residual measure ∆̃;

Set ∆̃ = 1 and chose the starting θ with the architecture ~N.
while ∆̃ is not small enough and the number of iterations is strictly smaller than maxit

do
Set ψθ,ρ = Ξ ◦ Rθ,ρ and compute L(ψθ,ρ, β, η) using numerical integration.
Update θ using the Adam optimizer for the loss function L(ψθ,ρ, β, η).
Compute ∆̃ using numerical integration.

end
if maxit reached then

Deepen ~N and start over.
end

To apply Algorithm 1 to an eigenvalue problem we choose:

∆̃ := ∆2
ε = ‖Hψθ,ρ − ε(ψθ,ρ)ψθ,ρ‖2/(ε(ψθ,ρ)

2‖ψθ,ρ‖2)

and set the normalization parameter η > 0 and β > 0 for the loss function:

L(u; β, η) =

∫
Ω |∇u|2 +

∫
Ω Vωu2∫

Ω u
+ β‖u‖2

L2(∂Ω) + η

(∫
Ω

u2 − 1
)

. (6)

In the case of the source problem for the computation of the landscape function we set
the normalization parameter η = 0 and β > 0 and define the loss function as:

L(u; β, η) =
1
2

(∫
Ω
|∇u|2 +

∫
Ω

Vωu2
)
−
∫

Ω
u + β‖u‖2

L2(∂Ω) .

As the error indicator we take ∆̃ = τ = ‖Hu− 1‖L2 /(‖u‖L2‖1‖L2), where u = Ξ ◦ Rθ,ρ.
Here we have chosen as an example the homogeneous Dirichlet boundary condition
u
∣∣
∂Ω = 0. Other self-adjoint boundary conditions can equally be implemented by penaliz-

ing the boundary conditions residual at the boundary ∂Ω. Note that computing derivatives
of realizations of neural networks is efficiently implemented in many programming envi-
ronments such as TensorFlow [42].

Entropy 2021, 23, 95 7 of 19

3. Results

In this section we present direct approximation methods for estimating the ground
state u0, the ground state energy ε0 and the landscape function u. We use the Certified
Deep Ritz Algorithm presented as Algorithm 1.

3.1. Direct Approximations of the Ground State in 1D

We now present the results of the application of Algorithm 1 on the 1D Schrödinger
operator H = −∂xx + V. For the domain Ω = (−B, B), we choose the loss function (6) and
set Ξ(x) = exp(−x2/10) as the positivity mask in Algorithm 1.

To benchmark the accuracy of the VPINN approximations we have solved the problem
to high relative accuracy using the Chebyshev spectral method as implemented in the
package chebfun [43,44]. We emphasize that chebfun was not used during the training
of the network in any way. To compute the residuals and the energy of the ground state
we used a Gaussian quadrature where the deep network is evaluated at the sufficient
number—for the given interval (−B, B)—of Gaussian points.

We constructed the potential V as a linear combination of the finite well and two
inverted Gaussian bell functions:

V = −α1 exp(−‖ · −c1‖)2/k2
1)− α2 exp(−‖ · −c2‖)2/k2

2)− h1{x: |x−c|<t}.

We used 1{x: |x−c|<t} to denote the indicator function and chose αi ∈ [8, 12], ci ∈
[−2.5, 2.5], ki ∈ [0.9, 2.6], i = 1, 2, h ∈ [10, 15], c ∈ [−2, 2] , t ∈ [0.5, 2.5]. The neural
network has 1,162 trainable parameters and we used the DenseNet VPINN architecture
~NDenseNet(1, 4, 2, 10) with the activation function ρ(x) = exp(−x2/10); see Figure A1.
Figure 1 shows the solution and the error estimate during 15,000 epochs of a run of the
Adam optimizer with the learning rate δ = 10−3 and a batch size of 1024. In this example
we used 1024 quadrature points on an interval (−6, 6) and the penalty parameters β = 10−3

and η = 20.

(a) (b)

Figure 1. (a) Comparison of the ground state obtained in chebfun (ψcheb f un(x)) and as the VPINN
solution (ψNN(x)) with the architecture ~NDenseNet = (n, k, l, m) = (1, 4, 2, 10); (b) Residual and
Rayleigh quotient error estimate metrics during the training process.

One can observe robust, almost asymptotically exact, performance of the estimator:

∆2
ε = ‖Hψ− εψ‖2/(ε2‖ψ‖2) .

Let us also emphasize that ∆ε measures the distance of the Rayleigh quotient (energy
functional) to the nearest eigenvalue. For evaluation of the integrals in higher dimensions
we refer the reader to Appendix B. Note that the final error for the approximation of the
ground state energy was 0.1%, whereas the final relative L2 error in the ground state was
0.9%. This is in line with the eigenmode error estimate (5).

Entropy 2021, 23, 95 8 of 19

3.2. Direct Approximations of the Ground State in Higher-Dimensional Spaces

We present VPINN approximation results for the ground state and the ground state
energy of the Schrödinger equation with harmonic oscillator potential V(x) = ‖x‖2 using
the dense network with the architecture depicted in Figure A1. We study the problem on
the truncated domain [−3, 3]n, where n is the dimension of the space. Neural network archi-
tecture should be constructed with caution. There are multiple sources of instability when
dealing with neural networks, e.g., exploding and vanishing gradients. We experimented
with a variety of different activation functions: ρS(x), ρLU(x/10)2, xρS(x), exp(−x2/10)
etc. After training of the neural network using the quasi-Monte Carlo realization of the
energy integrals to define the loss function we computed the approximate ground state
energy using the approximation of the energy functional (Rayleigh quotient) using the
Sobol sequences with 100,000 points. We also report on the results obtained using Smolyak
grids of order 6 with the Gauss–Patterson rule. The results are presented in Table 1.

Table 1. Convergence rates for the ground state energy of the harmonic oscillator in relation to
the dimension. QMC: quasi-Monte Carlo.

n ε0

M for the
Loss
Function

Adam
Optimizer
Epochs

M for the
Smolyak
Quadrature

Smolyak Relative
Error %

Relative Error for
QMC with
M = 105 Points%

1 1 100 50,000 127 0.004 0.003

2 2 1000 20,000 769 1.416 1.226

3 3 5000 50,000 2815 1.110 1.608

6 6 50,000 80,000 40,193 - 1.40

9 9 50,000 50,000 242,815 230.366 5.816

The accuracy of the ground state energy approximations that were obtained using
quasi-Monte Carlo integration are comparable with the accuracy reported in [20]. On
the other hand, the results obtained by using Smolyak’s points were unsatisfactory in
dimensions higher than 3. This observation will be the subject of future research. It ap-
pears that the oscillation of the realizations of the neural network on the boundary of the
computational domain together with the appearance of negative weights in sparse grid in-
tegral formulas contributed to the instability of the approach. We used the ~N = (n, 5, 2, 20)
architectures for n ≤ 6 and ~N = (9, 3, 1, 10) in 9D and the swish function ρ(x) = xρS(x) as
the activation function. The positivity mask was chosen as the identity.

3.3. Approximations of the Landscape Function in 1D

We now present the result of the approximation method using the landscape function
as a solution of the partial differential equation Hu = 1, u ∈ H1

0(Ω). The potential
V ∈ C

(
[−50, 50]

)
is constructed as a random piece-wise linear function (see Figure 2).

More to the point, let ξk, k = −50, · · · , 50 be independently drawn numbers from the
uniform distribution on the interval [0, 4]. We construct the potential V as the piece-wise
linear interpolant of (k, ξk), k = −50, · · · , 50. We again used chebfun for benchmarking.
We set η = 0 and defined the loss function as:

L(u; β, η) =
1
2

(∫
Ω
|∇u|2 +

∫
Ω

Vωu2
)
−
∫

Ω
u + β(u(−50)2 + u(50)2) . (7)

Here we have used the architecture of the dense VPINN network; see Appendix C.
We used β = 500 for the experiments. In Figure 2 we can see the six local minima of the
effective potential W = 1/u obtained from the neural network and the first six eigenstates
computed by the chebfun. Note that the potential W = 1/u is defined only in the interior
of the domain (−50, 50). In Table 2 we present the results of the benchmarking of the
approximation formula (2) against highly accurate chebfun eigenvalue approximations.

Entropy 2021, 23, 95 9 of 19

Table 2. We tested the accuracy of the predictor ε̃i−1 =
(

1 +
n
4

)
Wmin,i for 16 lowermost eigenvalues. The chebfun solution

was used to benchmark the error.

0 1 2 3 4 5 6 7

Minimum values of W 0.747201 0.918677 0.918754 0.933014 1.028903 1.057663 1.174706 1.245278

chebfun eigenvalues 0.979730 1.071839 1.230230 1.282611 1.301724 1.485232 1.577349 1.588252

Relative error in % 4.6675 7.1379 6.6481 9.0708 1.1981 1.9850 6.9082 1.9930

8 9 10 11 12 13 14 15

Minimum values of W 1.256498 1.273980 1.326926 1.613203 1.848415 1.868003 1.907063 1.931723

chebfun eigenvalues 1.625253 1.758768 1.780166 2.095899 2.161778 2.265704 2.270798 2.278380

Relative error in % 3.3614 9.4551 6.8257 3.7882 6.8805 3.05864 4.9776 5.9811

The neural network has 6402 trainable parameters and we used the VPINN architec-
ture ~NDenseNet = (1, 5, 2, 20) with the activation function ρLU(x/10)2. The positvitiy mask
was chosen as the identity. The network was trained using 50,000 epochs of the Adam
optimizer with the learning rate δ = 10−3 and a batch size of 2048. In this example we also
used 2048 quadrature points on an interval (−50, 50).

(a) Random potential (b) The effective potential

Figure 2. The effective potential and its 6 local minima, which define localization of the first six
eigenstates is shown on the right. Eigenstates ψi, i = 0, 1, ..., 5 were computed in chebfun.

3.4. Direct VPINN Approximation of the Landscape Function in 2D

We now apply Algorithm 1 to the problem of approximating the landscape function
in 2D. When presenting the examples we will report on the used network architecture
~NDenseNet = (2, k, l, m) as well as indicate the number of trainable parameters for each of
the architectures. The activation function used for all neural networks in this subsection
is the sigmoid function ρS. We now set l = 2 and in the next table present a convergence
study for the family of architectures ~NDenseNet = (2, k, 2, m).

The convergence histories of relative L2 and H1 errors, measured with respect to the
benchmark FEniCS solution, are shown in Table 3. We can observe that the errors drop
at a favorable rate with an increase in k. On the other hand, an increase in m causes a
much more pronounced increase in the number of trainable parameters (complexity of the
network) but incurs, in comparison, only a moderate improvement of the accuracy level.

Entropy 2021, 23, 95 10 of 19

Table 3. A report on the convergence in k and m for the family of architectures ~NDenseNet = (2, k, 2, m). We benchmark the
error against the highly accurate P3 FEniCS solution.

Parameters k m
Relative L2

Error 100,000
Epoch

Relative H1

Error 100,000
Epoch

Relative L2

Error 200,000
Epoch

Relative H1

Error 200,000
Epoch

Relative Error of
the First Three
Eigenvalues
Respectively

803 4 8 2.5852% 5.6216% 2.0527% 4.9876% 0.1638%, 1.4479%,
1.1472%

1203 4 10 2.7487% 5.3611% 1.2354% 3.6960% 0.0839%, 2.3489%,
0.6341%

1753 5 10 1.9314% 4.2386% 1.0679% 3.3851% 0.5957%, 1.9264%,
0.3822%

2403 6 10 1.1745% 3.0548% 0.7998% 2.6994% 0.4539%, 1.7883%,
1.5112%

4403 4 20 1.9037% 3.6929% 0.7233% 2.5757% 0.3242%, 1.8831%,
1.2586%

9603 4 30 1.8217% 3.7451% 0.6689% 2.3609% 0.3639%, 2.0083%,
0.9685%

16,803 4 40 0.6372% 1.9704% 0.3920% 1.5497% 0.3269%, 1.8606%,
0.6983%

26,003 4 50 3.6993% 7.3510% 0.4207% 1.6748%
0.3127%, 1.5756%,
0.3559%

In Figure 3 we plot the effective potential W and the landscape function u.

(a) (b)

Figure 3. A surface plot of the effective potential W = 1/u (a) and the landscape function u (b).
In (a) we plot the boundaries of the sets {x : ε u(x) ≥ 1} that localize the eigenstates. In (b) we
plot the circles of radius 1/ε̃i, for ε̃i−1 = 3Wmin,i/2, i = 1, 2, 3, centered at the i-th lowermost local
minimum Wmin,i.

3.5. Encoder–Decoder Network as a Reduced-Order Model for a Family of Landscape Functions

We now study the use of the sparse, U-Net-inspired [30], network architecture as
a surrogate model for the function L : V 7→ u. In Figure 3 we show the landscape
function u with periodic boundary conditions for the potential Vω constructed as a lattice
superposition of sixteen Gaussian bell functions G(x) = α exp(−|x1 − c1|2/k2

1 − |x2 −
c2|2/k2

2). The centers c = (c1, c2) were chosen randomly inside each block of the 4× 4
uniform quadrilateral tessellation of Ω. The constants α, ki, i = 1, 2 were chosen randomly

Entropy 2021, 23, 95 11 of 19

and independently from intervals [8, 128] and [1, 1.5], respectively. To introduce local
defects in the lattice, we have further randomly chosen three Gaussian bells and removed
them from the potential. The choice of Gaussian bells to be removed was restricted,
so that the boundary conditions were respected and that none of the erased bells were
pairwise adjacent.

As the reduced order model for this family of problems, we have used the encoder–
decoder fully convolutional neural network (FCNN) from Appendix C with 2,614,531
trainable parameters. This is a relatively small number of parameters in comparison with
the typical convolutional neural network architectures with fully connected layers. The
architecture of the neural network is shown in Figure A2.

To train the model we generated 98,400 potentials Vω and then used FEniCS to com-
pute the associated landscape functions uω, −4uω + Vωuω = 1. The domain of the
Hamiltonaian was Ω = [−10, 10]2, with the periodic boundary conditions. We used the
uniform quadrilateral discretization with the step size h = 20/50 = 0.4 and P2 elements to
compute the training examples. To construct the reduced-order model, we projected (by
interpolation) these P2 functions onto the space of P1 elements for the same mesh. After
implementing the periodic boundary conditions we obtained exactly 2,500 free nodes for
this space of P1 functions.

We denote the values of the potential V in those nodes as the vector ~V ∈ R2,500 and
we tacitly identify the vector ~V with the function IP1 V . Let I∗P1

be the extension operator
from R2,500 to the space of continuous piece-wise linear functions. Then

L̃(~V) := IP1L(I∗P1
IP1 V)

defines the mapping L̃ : R2,500 → R2,500. We used the learning rate δ = 10−4 for the first
100 epochs of the Adam optimizer and the learning rate δ = 10−5 for a further 50 epochs.
The activation function ρLU was used to promote sparsity and the MSE loss function was
used for the training. The batch size for the Adam algorithm was 1024. We implemented
the certified surrogate modeling approach by combining the evaluation of the neural
network with the error estimator τ. In the case in which the residual measure τ for the
function u = L(I∗P1

IP1 V̂) is larger than the preset tolerance, we updated the surrogate
model (neural network). To this end we solved in FEniCS the problem −4u + V̂u = 1 and
used the standard update algorithm for the convolutional neural network and the new
training example.

We evaluated the performance of the neural network reduced-order model on a set of
200 testing potentials that were not used in the training of the network, see Table 4. The
benchmarking comparison against the FEniCS solution is presented in Figure 4.

Table 4. Validation of the encoder–decoder representation of the mapping L : V 7→ u on a collection
of test examples. Recall that the effective potential is defined as W = 1/u.

Average L2 error 1.7545%

Maximal L2 error 2.9769%, example: 58

Average H1 error 9.2233%

Maximal H1 error 12.6765%, example: 65

Mean relative error in 1/Wmin,1 0.4887%

Maximal relative error in 1/Wmin,1 2.1402%, example: 70

The worst ten relative errors in 1/Wmin,1 (%) 2.1402, 1.5909, 1.5560, 1.4816, 1.4151, 1.4626,
1.3441, 1.3377, 1.3181, 1.3132

Entropy 2021, 23, 95 12 of 19

Figure 4. A benchmarking comparison of the encoder–decoder prediction of the landscape function
against the FEniCS solution.

4. Discussion

According to the authors of [45], deep learning approaches to dealing with partial
differential equations fall into the following three categories: (a) Rayleigh–Ritz approxima-
tions, (b) Galerkin approximations and (c) least squares approximations. We have consid-
ered a hybrid approach that combines robust stochastic optimization of overparametrized
networks based on the Rayleigh–Ritz approach with standard residual based error es-
timates, which together yield a hybrid approximation method. We were particularly
influenced by the review in [45] and the Deep Ritz algorithm as described in [20].

In the example from Table 3 we further computed a piece-wise cubic and piece-wise
quadratic approximation of the landscape function using the standard finite element
method and an approximation of the landscape function using a variant of the Deep Ritz
method. We measured the error of the P2 and the VPINN approximation against the
P3 benchmark solution. The relative L2 error of the piece-wise quadratic approximation
was computed to be 0.36%, whereas the relative error of the VPINN approximation with
1203 free parameters was computed to be 1.21%. Note, however, that the piece-wise
quadratic approximation required the training of 10,000 parameters. This indicates that
the neural network achieves a considerable data compression when compared with a
piece-wise polynomial approximation. The situation is even more interesting in 1D. There
we compared the ground state approximation by the Chebyshev series, as implemented in
chebfun. We needed 149 terms in the Chebyshev expansion to reach the order of machine
precision. On the other hand, the Adam optimizer was able to find a realization of the
dense neural network with VPINN architecture ~NDenseNet = (1, 2, 2, 2) from Appendix A.
This architecture only has 30 trainable parameters and it achieves a relative distance (in
the L2 sense) of 1.05% to the benchmark chebfun solution. The relative error in the ground
state energy is only 0.1%, see Figure 5.

Entropy 2021, 23, 95 13 of 19

Figure 5. Comparing the Chebyshev series expansion with 149 terms and a VPINN solution with the
architecture ~NDenseNet = (1, 2, 2, 2) and 30 trainable parameters.

The integrals needed to approximate the energy functional were computed using
Gaussian quadrature rules. Unfortunately, this approach does not yield stable methods
in higher-dimensional problems. The reason is in the fact that sparse grid quadratures
(e.g., [40]) also have nodes with negative weights and this was observed to cause severe nu-
merical instability. An approach based on the quasi-Monte Carlo integration, which utilizes
low-discrepancy sequences of integration nodes and has only positive weights (see [39])
yielded an efficient and stable method in higher-dimensional situations. Furthermore,
since realizations of neural networks are frequently functions with many local extrema,
computing their integrals needs to be handled with care. This is particularly relevant
when enforcing discretizations of physical or normalization constraints by penalization.
We point out that the scalability of sparse-grid integration schemes in this respect was
not satisfactory.

Another promising technique for obtaining data-sparse compressed approximation of
the solutions of partial differential equations is based on the concept of tensor networks,
also known as matrix product states or tensor train decompositions [9]. This approach
has been successfully converted into numerical approximation algorithms such as the
quantized tensor train decompositions [8,46]. The scaling robust performance of this
approach has been demonstrated on a class of multi-scale model problems in [46]. However,
the numerical methods still have to be tailor-made for the chosen problems. On the other
hand, there are many freely available robust and highly developed libraries for working
with deep neural networks. This is the reason for our choice of the discretization method.

5. Conclusions

We have presented two types of neural network architectures. First, a dense deep
network of the DenseNet type was used as a compressed approximation of the ground
state and the landscape function of the problems under consideration. Remarkably, it
achieved high accuracy and a good compression rate even when empirically compared
with a Chebyshev expansion in 1D. Even though we managed to tackle problems in Rn,
this concept struggled to yield scalable numerical methods. We then took another approach
and considered a problem of approximating a mapping L : R2500 → R2500, which connects
a mesh sample of a potential with the associated landscape function. A fully convolutional
neural network architecture with the ReLU activation function, to further promote sparsity,
turned out to be expressive enough to deal with this family of problems to a satisfactory
level of accuracy (empirically measured on the test set). We have also seen that a hybrid
approach—one that combines the expressivity of the set of neural network realizations with
the standard error indicators—has a potential to lead to robust approximation methods.
We have observed that it is particularly challenging to turn physical constraints—which
are continuous—into their discrete realizations, which can be used to filter out, e.g., by
judiciously applied penalization, the nonphysical neural network realizations from the

Entropy 2021, 23, 95 14 of 19

set of all realizations of a given architecture. How to turn this into a robust mesh-less
and scalable method for dealing with equations of mathematical physics will be a topic of
further research.

Author Contributions: Conceptualization, L.G.; methodology, L.G., M.H., D.L.; software, L.G, M.H.
and D.L.; validation, L.G., M.H. and D.L.; formal analysis, L.G.; investigation, M.H. and D.L.; re-
sources, L.G.; data curation, M.H.; writing—original draft preparation, L.G.; writing—review and
editing, L.G., M.H. and D.L.; visualization, M.H. and D.L.; supervision, L.G.; project administra-
tion, L.G.; funding acquisition, L.G. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Hrvatska Zaklada za Znanost (Croatian Science Foun-
dation) under the grant IP-2019-04-6268—Randomized low rank algorithms and applications to
parameter dependent problems.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Sample Availability: Codes are available from the GitHub repository https://github.com/markohajba/
NN-Schrodinger. All communication regarding software should be directed to marko.hajba@vsmti.hr.

Abbreviations
The following abbreviations are used in this manuscript:

PDE partial differential equation
ReLU rectified linear unit
FEM finite element method
DOF degrees of freedom
VPINN Variational Physics Informed Neural Networks
FCNN fully convolutional neural network

Appendix A. Implementation Details

In the implementation of the discussed methods we have used the following tools in
the Python programming environment: TensorFlow 2 [42], Keras [47], chaospy [38] and
FEniCS [48]. Implementations and additional materials are available at GitHub repository
https://github.com/markohajba/NN-Schrodinger.

Appendix B. Estimating Residuals

The Rayleigh quotient of the operator H for the mode ψ is computed by evaluating
the integral:

ε(ψ) =

∫
Ω∇ψ · ∇ψ + Vψ2∫

Ω ψ2 .

The eigenvalue residual for the mode ψ is the functional:

φ 7→ (Hψ− ε(ψ)ψ, φ) =
∫

Ω
(∇ψ · ∇φ + (V − ε(ψ))ψφ) .

We measure the norm of the residual by approximating the supremum:

sup
φ∈S⊂H1(Ω)

|(Hψ− ε(ψ)ψ, φ)|
‖φ‖

over a judiciously chosen set S . This residual can also be written as a functional and
approximated by solving the optimization problem over S . We leave out the details.

https://github.com/markohajba/NN-Schrodinger
https://github.com/markohajba/NN-Schrodinger
mailto:marko.hajba@vsmti.hr
https://github.com/markohajba/NN-Schrodinger
https://github.com/markohajba/NN-Schrodinger

Entropy 2021, 23, 95 15 of 19

In the original Deep Ritz Algorithm from [20] the authors have used Monte Carlo
integration to compute the duality products. This amounts to choosing a random sample
χi ∈ Ω, i = 1, · · · , M and then using:

∫
Ω
‖∇ψ‖2 + Vψ2 ≈ 1

M

M

∑
i=1

(‖∇ψ(χi)‖2 + Vψ(χi)
2) .

By contrast, in Rn, we used the Smolyak quadrature [38,40] and low-discrepancy se-
quences for quasi-Monte Carlo integration routines [39]. For a given order of the quadrature
there exist weights αi ∈ R and nodes ξi ∈ Ω, i = 1, · · · , M such that:

∫
Ω
‖∇ψ‖2 + Vψ2 ≈

M

∑
i=1

αi(‖∇ψ(ξi)‖2 + Vψ(ξi)
2) .

Unlike in the Monte Carlo approach, these nodes are fixed (for a given choice of
parameters, see [38]).

Appendix B.1. Finite Element Quadrature for 2D Problems

For 2D problems we also used finite element quadrature to estimate the integrals
and also to estimate the negative-order Sobolev norm. This approach does not scale
to higher-dimensional problems, but is a good method for the purposes of validating
algorithms based on the variational optimization and neural networks. Let Vh ⊂ H1

π(Ω)
be a finite element space and let Wh be another finite element space such that Vh ⊂Wh ⊂
H1

π(Ω). To Vh and Wh we associate standard interpolation operators IVh : C(Ω)→ Vh and
IWh : C(Ω)→Wh. For a given continuous realization of the neural network ψθ = Ξ ◦ Rθ,ρ,
we compute: ∫

Ω
‖∇ψθ‖2 + Vψ2

θ ≈
∫

Ω
‖∇(IVh ψθ)‖2 + V(IVh ψθ)

2

and we use standard finite element quadratures to evaluate the integrals on the right-hand
side, see for instance the FEniCS book [48].

Finally, to assess the negative-order Sobolev norm of the residual we use the auxiliary
subspace Wh and compute, using standard finite element calculus:

supψ∈H1
π(Ω)

| ∫Ω(∇ψ·∇φ+(V−ε(ψ))ψφ)|
‖φ‖ ≈ supψ∈Wh

| ∫Ω(∇(IVh
ψ)·∇φ+(V−ε(IVh

ψ))(IVh
ψ)φ)|

‖φ‖ .

Appendix B.2. Direct Approximations for Higher Dimensional Problems

For higher-dimensional problems we use quadrature rules based on low discrepancy
sequences [39] to compute the value of the energy functional (Rayleigh quotient) on the
returned neural network realization Rθ,ρ. To define the loss function, which consists of
the energy functional and the normalization constraints, we use the quasi-Monte Carlo
approach [49], but with fewer quadrature nodes. This is consistent with the approach taken
in the original Deep Ritz algorithm. The use of Smolyak’s rules can also be considered. This,
however, does not lead to numerically stable optimization procedures. The realizations of
neural networks are functions that can have many sharp local extrema and so optimizing
using a fixed collection of nodes was observed to lead to degenerate solutions. The further
problem stems from the fact that Smolyak’s rules have, unlike Gaussian rules, a certain
percentage of negative weights and so due to approximation errors it is possible to compute
a negative approximation of an integral of a positive function. This is highly undesirable for
a minimization procedure. Quasi-Monte Carlo integration routines are much less accurate
than sparse grid rules, but all of their integration weights are positive and in addition they
avoid the problem of overfitting. We use Sobol’s points [39] to calculate nodes for the quasi-
Monte Carlo approximation of the energy functional for higher-dimensional problems.

Entropy 2021, 23, 95 16 of 19

Appendix C. Architecture of the VPINN Neural Network

We will present the architectures of deep neural networks used in the paper. The
network architecture ~N as defined in Definition 1 is sufficient to describe deep dense neural
networks. Neural network architectures are presented graphically. Some further formal
descriptions of the approximation classes can be found in [50]. The particular architecture
that we use will have slightly more regularity in the dimensions of the layers. However,
there will be more links between layers, which are inspired by the DenseNet concept [51].
The architecture is depicted in Figure A2 and we use the vector ~NDenseNet = (n, k, l, m) to
describe the architecture of the network, which has k blocks with l layers of the size m.
Realizations of this network are functions from Rn to R.

Figure A1. VPINN architecture with k blocks, l layers in each block and m neurons in each dense layer.

Entropy 2021, 23, 95 17 of 19

Figure A2. FCNN encoder–decoder architecture inspired by the U-Net concept from [30].

References
1. Reed, M.; Simon, B. Methods of Modern Mathematical Physics, III; Scattering Theory; Academic Press [Harcourt Brace Jovanovich,

Publishers]: New York, NY, USA; London, UK, 1979.
2. Teschl, G. Mathematical methods in quantum mechanics. In Graduate Studies in Mathematics; With Applications to Schrödinger

Operators; American Mathematical Society: Providence, RI, USA, 2009; Volume 99, pp. xiv+305.
3. Mills, K.; Spanner, M.; Tamblyn, I. Deep learning and the Schrödinger equation. Phys. Rev. A 2017, 96, 042113. [CrossRef]
4. Anderson, P.W. Absence of Diffusion in Certain Random Lattices. Phys. Rev. 1958, 109, 1492–1505. [CrossRef]
5. Arnold, D.N.; David, G.; Filoche, M.; Jerison, D.; Mayboroda, S. Computing spectra without solving eigenvalue problems. SIAM

J. Sci. Comput. 2019, 41, B69–B92. [CrossRef]
6. Arnold, D.N.; David, G.; Jerison, D.; Mayboroda, S.; Filoche, M. Effective Confining Potential of Quantum States in Disordered

Media. Phys. Rev. Lett. 2016, 116, 056602. [CrossRef] [PubMed]
7. Arnold, D.N.; David, G.; Filoche, M.; Jerison, D.; Mayboroda, S. Localization of eigenfunctions via an effective potential. Comm.

Partial. Differ. Equations 2019, 44, 1186–1216. [CrossRef]

http://doi.org/10.1103/PhysRevA.96.042113
http://dx.doi.org/10.1103/PhysRev.109.1492
http://dx.doi.org/10.1137/17M1156721
http://dx.doi.org/10.1103/PhysRevLett.116.056602
http://www.ncbi.nlm.nih.gov/pubmed/26894725
http://dx.doi.org/10.1080/03605302.2019.1626420

Entropy 2021, 23, 95 18 of 19

8. Khoromskij, B.N.; Oseledets, I.V. QTT approximation of elliptic solution operators in higher dimensions. Russ. J. Numer. Anal.
Math. Model. 2011, 26, 303–322. [CrossRef]

9. Orús, R. A practical introduction to tensor networks: Matrix product states and projected entangled pair states. Ann. Phys. 2014,
349, 117–158. [CrossRef]

10. Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial
Differential Equations. arXiv 2017, arXiv:1711.10561.

11. Mishra, S.; Molinaro, R. Estimates on the generalization error of Physics Informed Neural Networks (PINNs) for approximating
PDEs. arXiv 2020, arXiv:2006.16144.

12. Lagaris, I.; Likas, A.; Fotiadis, D. Artificial neural network methods in quantum mechanics. Comput. Phys. Commun. 1997,
104, 1–14. [CrossRef]

13. Steinerberger, S. Localization of quantum states and landscape functions. Proc. Am. Math. Soc. 2017, 145, 2895–2907. [CrossRef]
14. Hermann, J.; Schätzle, Z.; Noé, F. Deep-neural-network solution of the electronic Schrödinger equation. Nat. Chem. 2020,

12, 891–897. [CrossRef] [PubMed]
15. Graziano, G. Deep learning chemistry ab initio. Nat. Rev. Chem. 2020, 4, 564. [CrossRef]
16. Han, J.; Jentzen, A.; Weinan, E. Solving high-dimensional partial differential equations using deep learning. Proc. Natl. Acad. Sci.

USA 2018, 115, 8505–8510. [CrossRef]
17. Han, J.; Zhang, L.; Weinan, E. Solving many-electron Schrödinger equation using deep neural networks. J. Comput. Phys. 2019,

399, 108929. [CrossRef]
18. Beck, C.; Weinan, E.; Jentzen, A. Machine learning approximation algorithms for high-dimensional fully nonlinear partial

differential equations and second-order backward stochastic differential equations. J. Nonlinear Sci. 2019, 29, 1563–1619.
[CrossRef]

19. Ma, C.; Wang, J.; Weinan, E. Model reduction with memory and the machine learning of dynamical systems. Commun. Comput.
Phys. 2019, 25, 947–962. [CrossRef]

20. Weinan, E.; Yu, B. The Deep Ritz method: A deep learning-based numerical algorithm for solving variational problems. Commun.
Math. Stat. 2018, 6, 1–12.

21. Kharazmi, E.; Zhang, Z.; Karniadakis, G.E. Variational Physics-Informed Neural Networks For Solving Partial Differential
Equations. arXiv 2019, arXiv:1912.00873.

22. Zhang, L.; Han, J.; Wang, H.; Saidi, W.; Car, R.; Weinan, E. End-to-end Symmetry Preserving Inter-atomic Potential Energy Model
for Finite and Extended Systems. In Advances in Neural Information Processing Systems; Bengio, S., Wallach, H., Larochelle, H.,
Grauman, K., Cesa-Bianchi, N., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2018; Volume 31, pp. 4436–4446.

23. Weinan, E.; Han, J.; Zhang, L. Integrating Machine Learning with Physics-Based Modeling. arXiv 2020, arXiv:2006.02619.
24. McFall, K.S.; Mahan, J.R. Artificial Neural Network Method for Solution of Boundary Value Problems With Exact Satisfaction of

Arbitrary Boundary Conditions. IEEE Trans. Neural Netw. 2009, 20, 1221–1233. [CrossRef] [PubMed]
25. Kato, T. Perturbation Theory for Linear Operators; Classics in Mathematics; Reprint of the 1980 Edition; Springer: Berlin, Germany,

1995; p. xxii+619.
26. Kato, T. On the upper and lower bounds of eigenvalues. J. Phys. Soc. Jpn. 1949, 4, 334–339. [CrossRef]
27. Grubišić, L. On eigenvalue and eigenvector estimates for nonnegative definite operators. SIAM J. Matrix Anal. Appl. 2006,

28, 1097–1125. [CrossRef]
28. Grubišić, L.; Ovall, J.S. On estimators for eigenvalue/eigenvector approximations. Math. Comp. 2009, 78, 739–770. [CrossRef]
29. Hesthaven, J.S.; Rozza, G.; Stamm, B. Certified Reduced Basis Methods for Parametrized Partial Differential Equations; SpringerBriefs

in Mathematics; BCAM SpringerBriefs; Springer: Cham, Switzerland; BCAM Basque Center for Applied Mathematics: Bilbao,
Spain, 2016.

30. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image
Computing and Computer-Assisted Intervention— MICCAI 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer
International Publishing: Cham, Switzerland, 2015; pp. 234–241.

31. Müller, J.; Zeinhofer, M. Deep Ritz revisited. arXiv 2020, arXiv:1912.03937.
32. Golub, G.H.; Van Loan, C.F. Matrix Computations, 4th ed.; Johns Hopkins Studies in the Mathematical Sciences; Johns Hopkins

University Press: Baltimore, MD, USA, 2013.
33. Arora, R.; Basu, A.; Mianjy, P.; Mukherjee, A. Understanding Deep Neural Networks with Rectified Linear Units. arXiv 2018,

arXiv:1611.01491.
34. Grubišić, L.; Nakić, I. Error representation formula for eigenvalue approximations for positive definite operators. Oper. Matrices

2012, 6, 793–808. [CrossRef]
35. Bank, R.E.; Grubišić, L.; Ovall, J.S. A framework for robust eigenvalue and eigenvector error estimation and Ritz value

convergence enhancement. Appl. Numer. Math. 2013, 66, 1–29. [CrossRef]
36. Davis, C.; Kahan, W.M. The rotation of eigenvectors by a perturbation. III. SIAM J. Numer. Anal. 1970, 7, 1–46. [CrossRef]
37. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2015, arXiv:1412.6980.
38. Feinberg, J.; Langtangen, H.P. Chaospy: An open source tool for designing methods of uncertainty quantification. J. Comput. Sci.

2015, 11, 46–57. [CrossRef]

http://dx.doi.org/10.1515/rjnamm.2011.017
http://dx.doi.org/10.1016/j.aop.2014.06.013
http://dx.doi.org/10.1016/S0010-4655(97)00054-4
http://dx.doi.org/10.1090/proc/13343
http://dx.doi.org/10.1038/s41557-020-0544-y
http://www.ncbi.nlm.nih.gov/pubmed/32968231
http://dx.doi.org/10.1038/s41570-020-00230-9
http://dx.doi.org/10.1073/pnas.1718942115
http://dx.doi.org/10.1016/j.jcp.2019.108929
http://dx.doi.org/10.1007/s00332-018-9525-3
http://dx.doi.org/10.4208/cicp.OA-2018-0269
http://dx.doi.org/10.1109/TNN.2009.2020735
http://www.ncbi.nlm.nih.gov/pubmed/19497815
http://dx.doi.org/10.1143/JPSJ.4.334
http://dx.doi.org/10.1137/050626533
http://dx.doi.org/10.1090/S0025-5718-08-02181-9
http://dx.doi.org/10.7153/oam-06-51
http://dx.doi.org/10.1016/j.apnum.2012.11.004
http://dx.doi.org/10.1137/0707001
http://dx.doi.org/10.1016/j.jocs.2015.08.008

Entropy 2021, 23, 95 19 of 19

39. Sobol, I.M. Distribution of points in a cube and approximate evaluation of integrals. Ž. Vyčisl. Mat. Mat. Fiz. 1967, 7, 784–802.
[CrossRef]

40. Smoljak, S.A. Quadrature and interpolation formulae on tensor products of certain function classes. Dokl. Akad. Nauk SSSR 1963,
148, 1042–1045.

41. Mishra, S.; Molinaro, R. Estimates on the generalization error of Physics Informed Neural Networks (PINNs) for approximating
PDEs II: A class of inverse problems. arXiv 2020, arXiv:2007.01138.

42. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:
Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv 2016, arXiv:1603.04467.

43. Platte, R.B.; Trefethen, L.N. Chebfun: A new kind of numerical computing. In Progress in industrial mathematics at ECMI 2008;
Springer: Heidelberg, Germany, 2010; Volume 15, pp. 69–87.

44. Trefethen, L.N. Approximation Theory and Approximation Practice; Society for Industrial and Applied Mathematics (SIAM):
Philadelphia, PA, USA, 2013.

45. Han, J.; Jentzen, A. Algorithms for Solving High Dimensional PDEs: From Nonlinear Monte Carlo to Machine Learning. arXiv
2020, arXiv:2008.13333.

46. Kazeev, V.; Oseledets, I.; Rakhuba, M.; Schwab, C. QTT-finite-element approximation for multiscale problems I: model problems
in one dimension. Adv. Comput. Math. 2017, 43, 411–442. [CrossRef]

47. Chollet, F. Keras. 2015 Available online: https://keras.io (accessed on 7 January 2021).
48. Logg, A.; Mardal, K.A.; Wells, G.N. Automated Solution of Differential Equations by the Finite Element Method; Springer:

Berlin/Heidelberg, Germany, 2012.
49. Sobol, I.M.; Shukhman, B.V. QMC integration errors and quasi-asymptotics. Monte Carlo Methods Appl. 2020, 26, 171–176.

[CrossRef]
50. Gribonval, R.; Kutyniok, G.; Nielsen, M.; Voigtlaender, F. Approximation spaces of deep neural networks. arXiv 2020,

arXiv:1905.01208.
51. Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. arXiv 2018,

arXiv:1608.06993.

http://dx.doi.org/10.1016/0041-5553(67)90144-9
http://dx.doi.org/10.1007/s10444-016-9491-y
https://keras.io
http://dx.doi.org/10.1515/mcma-2020-2067

	Introduction
	Theoretical Background
	Results
	Direct Approximations of the Ground State in 1D
	Direct Approximations of the Ground State in Higher-Dimensional Spaces
	Approximations of the Landscape Function in 1D
	Direct VPINN Approximation of the Landscape Function in 2D
	Encoder–Decoder Network as a Reduced-Order Model for a Family of Landscape Functions

	Discussion
	Conclusions
	Implementation Details
	Estimating Residuals
	Finite Element Quadrature for 2D Problems
	Direct Approximations for Higher Dimensional Problems

	Architecture of the VPINN Neural Network
	References

