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Abstract: An information model is outlined, which represents an intelligent system of metallographic
analysis in the form of a set of subsystems, the interaction of which ensures the performance of metal-
lographic analysis functions. The structure of the information storage subsystem for metallographic
analysis is presented. The deployment model of an intelligent metallographic analysis system is
proposed and described. The paper outlines the approach to the presentation of an expert subsystem
for metallographic quality control of metals based on a neural network. The process of finding a close
precedent in metallographic analysis with reference to a multilayer neural network is described. An
intelligent metallographic analysis system is described, which based on proposed information model.
A specialized software of an intelligent metallographic analysis system is presented. The functioning
results of the developed system for processing images of steel microstructures to determine the steel
quantitative parameters is presented.

Keywords: intelligent system; metallographic analysis; software; neural networks; expert subsystem

1. Introduction

Modern metallurgical production is characterized by an increase in the requirements
for failure-free functioning of critical production facilities and a reduction in the cost of
repairs and accident handling [1].

It is impossible to improve the quality of national machine engineering products and
to reduce their costs without improving existing methods of metal quality control. The
use of modern approaches based on the use of information technology makes it feasible
to increase the accuracy and efficiency of product quality control [2,3]. One of the main
methods for controlling the quality of metal in production is metallographic analysis [4–6].
To date, the level of automation of the central factory laboratories of metallographic quality
control of metals is insufficient [5,7–9]. It suggests that at the moment the task of creating
an automated system of metallographic quality control of metals should be urgent.

To create a system of this kind, it is necessary to develop an information model that
would display its main subsystems and components, their information flows and the order
of their interaction.

Currently, it is difficult to imagine any kind of production that lacks automation
elements. Each plant, factory strives to increase its efficiency, improve the quality of
products and minimize costs. In addition, automation systems are able to protect expensive
equipment by turning it off in the event of an accident.
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2. Information Model of the Intelligent Metallographic Analysis System

The information model can be described from a morphological, functional and infor-
mation points of view [10,11]. According to the decomposition principle [12], the developed
system can be represented as a set of subsystems, the interaction of which will ensure the
performance of the required operations.

Let us consider the subsystems as generalized information converters that implement
a certain set of functions for compiling an informational description of metal microstruc-
ture images:

Functions = { f1, f2, f3, f4, f5}, (1)

where f1 is the function responsible for automatic registration of metal images; f2 is
the automatic processing of a metal image; f3 is the function responsible for metal data
analysis; f4 is the function responsible for the database creation and a knowledge database
by registering all the parameters of every image of the metal microstructure and f5 is the
function responsible for communicating with a central database of an automated system to
support distributed databases.

Based on the principles of integrating problematic, attributive and situational infor-
mation components proposed in [13], it seems possible to determine the complete flow of
the system information as follows:

Since the implementation of the function f1 to one degree or another solves the
problem of automatic control of the quality of metals, the component of the informa-
tion generated by the function f1 (microstructure image of the metal) is defined as the
problematic component of the complete information and is designated as IP.

Functions f2 and f3 make up the attributive component of the information description
which is expressed as IA.

Information generated by functions f4 and f5 is not associated with the characteristics
of the metal microstructure images. It is defined as a situational component and expressed
as IS.

Thus, the complete information the system generates is expressed as the sum of the
three components:

I = IP + IA + IS. (2)

The implication is that the system can be divided into subsystems not only in terms
of functionality, but also in the types of information generated, which will optimize the
distribution of information flows. Thus, the architecture of an intelligent metallographic
analysis system includes the following subsystems (Figure 1).
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The information preparation subsystem is a specialized tool for preparing a metal
sample for metallographic analysis.

The measurement subsystem is a means of imaging the microstructure of metals. This
subsystem implements the function f1.

Information display subsystem is the means for visualizing the process of metallo-
graphic analysis and its outcomes.

The neural network subsystem, together with the expert subsystem, implements the
function f3. The subsystem is responsible for the implementation of neural network models
for determining the quantitative characteristics of metals.

The microstructure analysis subsystem is a subsystem that implements the function
f2, intended for preliminary processing of images of metal microstructures.

The information storage subsystem is a repository of input, intermediate and output
data generated in the process of metallographic analysis. The functions f4 and f5 are
assigned to this subsystem.

The reporting subsystem is a module for creating reports of various types based on
the results of metallographic analysis.

The intelligent system, built on the proposed model, performs as follows:

(1) After preparation, the metal sample under analysis is placed on the desktop of the
measurement subsystem (microscope). The digital video camera receives the image
P(x, y) and transfers it to the computer in the digitized form as a stream of video
information.

(2) This stream goes to the input of specialized software. Since certain requirements
are imposed on the image, which it should comply with, before further actions, the
processing module makes changes to the image structure:

f (x, y) = FPR(P(x, y)) (3)

Afterwards the calculation of the information features of the image is performed:

Px,y =
{

sin(A), cos(A), Gp
}

(4)

where Px,y is a set of parameters characterizing the asserted base point of the image. This
set is calculated by the Prewitt’s filter formulas [14].

(3) Next, the image characteristics are sent to the input XNN of the neural network
subsystem. The neural network module analyzes them and generates a recognition
result YNN:

XNN =
n
∪

i=1

{
sin(Ai), cos(Ai), Gpi

}
, (5)

YNN = f (XNN). (6)

The result, together with the recognized image, is sent to the data processing and
storage server (data storage subsystem). The operator and (or) the technologist has the
opportunity in real time to monitor the process.

(4) In addition, the server accumulates the results of performance and by means of an
expert subsystem allows one to evaluate the properties of the metal:

(
σBNOMINAL , σTNOMINAL , σ5NOMINAL

)
→ (σB, σT , σ5), (7)

where σB is the metal ultimate tensile strength; σT is the metal flow stress; and σ5 is the
metal percentage elongation.

Based on the assessed properties, the system generates recommendations and provides
decision support regarding the metal purpose group. Also, the technologist, using the
section processing subsystem, has the capability to process the image of the microstructure
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on his or her own. Neural network experience is stored in a database. The resulting
solution is also sent to the database for further storage.

(5) After processing the information and developing control recommendations, the data
are fed to the information display subsystem, which by means of the diagrams
displays the result of the research. If required, it is possible to create reports on the
study of the sample with recommendations using the reporting subsystem.

An analysis of the system on its own can be represented as an analysis of information
flows Ii,j. The smallest unit of information flow Ii,j is the image of the metal microstruc-
ture f (x, y), which is characterized by a number of parameters concerning the functions
f1 . . . f5 above.

The set of parameters characterizing the image of the metal microstructure can be
considered as an informational description, expressed as follows:

Ii = { fi(xi, yi), Ti, Ei, Ni, Ki, ri}, i = 1, 2 . . . n. (8)

As it can be seen, from the above parameters, the image of the microstructure of the
tested metal sample is characterized by heterogeneous data. At the same time, the set of
such data can be used to compile a specific informational description of the image of the
metal microstructure. In other words, using the set of these data allows one to create such
an informational description of the images of microstructures, which is required by the
user at the moment.

From the information description of the microstructure image, it is obviously that
the output stream of information is a set of various types of information. Therefore, the
information storage subsystem takes the form in Figure 2.

Entropy 2021, 23, x FOR PEER REVIEW 4 of 14 
 

 

The result, together with the recognized image, is sent to the data processing and 
storage server (data storage subsystem). The operator and (or) the technologist has the 
opportunity in real time to monitor the process. 
(4)  In addition, the server accumulates the results of performance and by means of an 

expert subsystem allows one to evaluate the properties of the metal: 

( ) ( )5 5, , , ,
NOMINAL NOMINAL NOMINALB T B Tσ σ σ σ σ σ→ , (7)

where Bσ  is the metal ultimate tensile strength; Tσ  is the metal flow stress; and 5σ  is 
the metal percentage elongation. 

Based on the assessed properties, the system generates recommendations and pro-
vides decision support regarding the metal purpose group. Also, the technologist, using 
the section processing subsystem, has the capability to process the image of the micro-
structure on his or her own. Neural network experience is stored in a database. The re-
sulting solution is also sent to the database for further storage.  
(5)  After processing the information and developing control recommendations, the data 

are fed to the information display subsystem, which by means of the diagrams dis-
plays the result of the research. If required, it is possible to create reports on the study 
of the sample with recommendations using the reporting subsystem. 
An analysis of the system on its own can be represented as an analysis of information 

flows Ii,j. The smallest unit of information flow Ii,j is the image of the metal microstructure 
( ),f x y , which is characterized by a number of parameters concerning the functions 

1 5f f  above. 
The set of parameters characterizing the image of the metal microstructure can be 

considered as an informational description, expressed as follows: 

( ){ }, , , , , , , 1, 2...i i i i i i i i iI f x y T E N K r i n= = . (8)

As it can be seen, from the above parameters, the image of the microstructure of the 
tested metal sample is characterized by heterogeneous data. At the same time, the set of 
such data can be used to compile a specific informational description of the image of the 
metal microstructure. In other words, using the set of these data allows one to create such 
an informational description of the images of microstructures, which is required by the 
user at the moment. 

From the information description of the microstructure image, it is obviously that the 
output stream of information is a set of various types of information. Therefore, the infor-
mation storage subsystem takes the form in Figure 2. 

 
Figure 2. The information storage structure. Figure 2. The information storage structure.

The database of microstructures stores images of metal microstructures and their
identifiers. The database stores data resulted from analyzing the image of the metal
microstructure. The knowledge database is designed to store recommendations regarding
the tested metal samples. It is recommended to use the system in a distributed version, as
shown in Figure 3.

As shown in Figure 3, depending on the production output, the intelligent system
can be implemented according to the client-server architecture or in the local version. If
there is no need to use a centralized defect database and integrate the complex into a
unified industrial process control system, the local version allows one to implement all the
functions of microstructure analysis using the local Database Management System.
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According to this model of the system organization, the analysis of metal images
can be performed on the server. The results are displayed in the technologist’s computer
and recommendations are generated, which in turn are also sent to the server at the
central factory laboratory to store and accumulate experience through the local network.
Moreover, the nodes of the system can be at a large distance from each other, i.e., the system
is scalable. Moreover, in this version of the system organization, there is the addition of
new system nodes, for example, for conducting control operations in another workshop of
the enterprise, which allows one to talk about the extensibility of the system.

Due to such organization of the system, it is possible to ensure high efficiency of
metallographic analysis in order to reduce resource consumption, as well as the ability to
manage the control process remotely, which allows centralized reporting on all control
operations carried out at the enterprise.

Thus, the proposed information model reflects the main information flows and their
purpose in the process of metallographic analysis, which allows one to go to the stage of
developing an intelligent automated system of metallographic quality control of metals,
with the capability of data mining.

3. Expert Subsystem for the Metallographic Analysis

The major functions of the expert subsystem being developed are as follows:

(1) Acquisition of knowledge, i.e., accumulation of the database of metal microstructures
images and their characteristics;

(2) Presentation of knowledge, i.e., presentation of the received information regarding
the tested metal sample in a form convenient for the technologist;

(3) Management of the solution search process, i.e., the search for a solution (precedent of
metallographic analysis), based on the received information about the metal sample;

(4) Clarification of the decision made, i.e., presentation of the decision or expert conclu-
sion about the tested metal sample in a form convenient for the technologist.

The functional model of the expert subsystem that provides the implementation of
the functions above is presented in Figure 4.



Entropy 2021, 23, 94 6 of 13

Entropy 2021, 23, x FOR PEER REVIEW 6 of 14 
 

 

(1)  Acquisition of knowledge, i.e., accumulation of the database of metal microstructures 
images and their characteristics; 

(2)  Presentation of knowledge, i.e., presentation of the received information regarding 
the tested metal sample in a form convenient for the technologist; 

(3)  Management of the solution search process, i.e., the search for a solution (precedent 
of metallographic analysis), based on the received information about the metal sam-
ple; 

(4)  Clarification of the decision made, i.e., presentation of the decision or expert conclu-
sion about the tested metal sample in a form convenient for the technologist. 
The functional model of the expert subsystem that provides the implementation of 

the functions above is presented in Figure 4. 

 
Figure 4. Functional modules of the expert subsystem for metallographic analysis. 

Within the framework of this functional model, the following functional mechanisms 
can be distinguished that ensure the operation of the system: 

dialogue interface provides communication with the external environment and the 
conversion of information from external to internal representation and vice versa; 

the inference subsystem based on the analysis of the semantics of input information 
about the metal and the available knowledge about metallographic analysis formulates 
the statement of the problem, searches for options for solving it and selects the best of 
them: 
• the program generator forms a solver using knowledge of metallographic analysis; 
• the interpreter provides the choice and display of an expert reasoning about the 

tested metal sample. 
The knowledge database provides storage and access to various types of knowledge 

used by an intelligent automated system during its operation. 
In the functional model, the following types of knowledge are identified which the 

system will handle with: 
• interface knowledge is the knowledge of interaction with the environment, i.e., about 

users (technologists) who are allowed access to the system; 
• domain knowledge is the knowledge of the domain, representing quantitative and 

qualitative characteristics of metals, as well as the rules for their evaluation and in-
terpretation; 

• procedural knowledge is the knowledge of methods for solving the problem, i.e., in-
formation about the type of metallographic analysis and the required expert charac-
teristics of the metal; 

Figure 4. Functional modules of the expert subsystem for metallographic analysis.

Within the framework of this functional model, the following functional mechanisms
can be distinguished that ensure the operation of the system:

dialogue interface provides communication with the external environment and the
conversion of information from external to internal representation and vice versa;

the inference subsystem based on the analysis of the semantics of input information
about the metal and the available knowledge about metallographic analysis formulates the
statement of the problem, searches for options for solving it and selects the best of them:

• the program generator forms a solver using knowledge of metallographic analysis;
• the interpreter provides the choice and display of an expert reasoning about the tested

metal sample.

The knowledge database provides storage and access to various types of knowledge
used by an intelligent automated system during its operation.

In the functional model, the following types of knowledge are identified which the
system will handle with:

• interface knowledge is the knowledge of interaction with the environment, i.e., about
users (technologists) who are allowed access to the system;

• domain knowledge is the knowledge of the domain, representing quantitative and
qualitative characteristics of metals, as well as the rules for their evaluation and
interpretation;

• procedural knowledge is the knowledge of methods for solving the problem, i.e.,
information about the type of metallographic analysis and the required expert charac-
teristics of the metal;

• structural knowledge is that about the image of the metal microstructure and expert
judgment based on the quantitative characteristics of the metal.

The task of the technologist is to calculate the control parameters required for the
operation of the system, the simultaneous change of which during the control process
unambiguously evaluates the current situation in the process of metallographic analysis.
The group of control parameters includes the following ones:

• grain point (MG);
• temper (C);
• defect category (Td);
• ferrite/perlite phase ratio (F);
• class of non-metallic inclusions (Tnm);
• others.
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The values of the control parameters are the framework for decision making by the
expert subsystem. By analyzing the values of the control parameters, the system takes
and generates a solution supplied to the technologist for its implementation. The paper
proposes an approach to presenting an expert subsystem based on a multilayer neural
network (Figure 5).
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As it is obvious from Figure 5, the expert subsystem is based on the multilayer neural
network. The number of neurons in the input layer may vary due to the number of
control parameters above. The output of the neural network is one neuron, which specifies
the precedent index in the knowledge database. To learn the neural network, the back
propagation of the error algorithm was chosen [15].

As for the set of inputs of the neural network, there are many situations that can
arise during the metallographic analysis process. Weighting factors of neurons represent
a knowledge database for emerging situations in the process of metallographic analysis.
Thus, the task of developing the structure of the knowledge database, as well as the
knowledge database management system, is solved, because knowledge is digits that can
be stored in any existing database. The process of determining the proximity between the
input vector and the weighting factors of the neuron is an evaluation of a close precedent.
In other words, by means of a neural network, the precedent closest to the situation has
been evaluated. The winning neuron number is the precedent index in the knowledge
database. Therefore, this index is the solution index in the knowledge database.

Neural network training was carried out on the basis of reference data of metallo-
graphic analysis. The training sample consisted of 160 datasets of control parameters (grain
point, temper, defect category, etc.) with 80 of them being “true” group and 80 “damage”
group. By “true” the data of reference control parameters are meant, and by “damage”
examples data of control parameters distorted by noises are meant, which as a result leads
to incorrect classification by a neural network. Thus, the neural network was trained in
incorrect classification. To prevent the retraining process [16,17], the training dataset is
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divided into two sets: training and control ones. As a control sample, 110 datasets of
control parameters were used. The data were obtained at the Alchevsk Iron and Steel
works.

The authors used two types of neural networks: a multilayer perceptron and a RBF
network. A sigmoidal activation function was used for a multilayer perceptron [18].

Graphs of changes in learning errors and classification of simulated neural networks
are shown in Figures 6 and 7.
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The results of experiments for modelling neural networks carried out in MATLAB are
shown in Table 1.

Table 1. The results of the experiments carried out in MATLAB.

Type of A
Neural Network

Number of
Training Epochs

Training
Algorithm

Classification

Ok Error

RBF network 500 gd 93.5 3.5
RBF network 500 gda 95.6 1.8
RBF network 500 cgb 93.4 3.9

Four-layer perceptron 500 gd 91.6 5.4
Four-layer perceptron 500 gda 91.5 4.9
Four-layer perceptron 500 cgb 92.8 4.5
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As a result, based on the graphs of error changes, the optimal number of training
epochs of neural networks was determined using different training algorithms, which
amounted to:

• for algorithm “gd”—290 epochs;
• for algorithm “gda”—350 epochs;
• for algorithm “cgb”—270 epochs.

4. Development and Research of the Intelligent System for the Metallographic Analysis

Based on the proposed models, an intelligent metallographic analysis system has been
developed (Figure 8), which consists of the following components:

• a metallographic complex (microscope and camera with USB-port);
• a personal computer with MetalNeuro software for processing images of metal mi-

crostructures and the intellectual analysis of metal data.
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The software part of the system includes as well the software module of the expert
subsystem; database; knowledge base. The functions of the MetalNeuro software in the
analysis mode are the automatic processing of a metal image, the function responsible for
metal data analysis and the function responsible for the database creation and a knowledge
database by registering all the parameters of every image of the metal microstructure. The
“Image Processing” and “Recognition” tabs of specialized software (Figure 9) are intended
for the automatic processing of a metal image.

The “Project” menu is intended for realizing the expert subsystem functions. The
“Neural Network” tab is intended for realizing the neural network subsystem. The software
supports creation of a neural network and setting its main parameters (number of layers,
neurons, learning rule, etc.) and loading of data on the metallographic analysis for training
the neural network.

To develop the MetalNeuro software the Java language and Eclipse IDE for Enterprise
Java Developers were used. The component model (physical structure) of the MetalNeuro
software for metallographic analysis is presented in Figure 10.
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Figure 10. The physical structure of the MetalNeuro software for metallographic analysis.

The “MetalNeuro.java” component implements a certain set of interfaces for intercon-
nection with the database and processing modules to automate metallographic analysis.

The “ProjectEnv.class” contains information about the up-to-date state of the system.
The “DefaultPanel.class” describes the main panel of the GUI (Graphic User Interface).
The “MetalImage.class” implements properties and methods for accessing the current

image being processed.
The “MetalRecognition.class” connects all modules, ensuring the functioning of infor-

mation flows.
The “ImagePanel.class” contains class methods for visualizing recognition results.
The “NetworkPanel.class” contains a class that inherits class methods for visual

operation within a neural network.
The “Expert.class” contains the methods, properties and functions required for the

expert system.
The “BackProp.class” implements multilayer neural network, as well as the error back

propagation algorithm (Algorithm 1).
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Algorithm 1. A part of the “BackProp.class” code

1: public class BackProp
2: {
3: private double inputA[]; // activations input
4: private double hiddenA[]; // activations hidden
5: private double hiddenN[]; // sum of products for hidden units
6: private double hiddenD[]; // output error
7: private double hiddenW[][]; // connection weights matrix
8: private double outputA[]; // activations output
9: private double outputN[]; // sum of products
10: private double outputD[]; // output error
11: private double outputW[][]; // connection weights matrix
12: private int numInput;// number of neurons on input layer
13: private int numHidden;// number of neurons on hidden layer
14: private int numOutput;// number of neurons on output layer
15: private int epoch; // number of epochs of the learn process
16: private double momentum; // momentum
17: private double alpha; // learnrate
18: private double absError=0.0; // the absolute error of the learning proc.
19: private double sigmoidDeriv(double x) /** sigmoid activation function */
20: {
21: return (sigmoid(x) * (1 − sigmoid(x)));
22: }
23: private void feedForward() /* method to do the feed forward */
24: {
25: // calculate the hidden weights
26: for(int i = 0; i < numHidden; i++)
27: {
28: sum2 = biasH[i];
29: for(int j=0; j < numInput; j++)
30: sum2 += hiddenW[i][j]* inputA[j];
31: hiddenN[i] = sum2;
32: hiddenA[i] = sigmoid(sum2);
33: }
34: // calculate the new output weights
35: for(int i = 0; i < numOutput; i++)
36: {
37: sum2 = biasO[i];
38: for(int j = 0; j < numHidden; j++)
39: sum2 += outputW[i][j]* hiddenA[j];
40: outputN[i] = sum2;
41: }
42: }
43: private void updateWeights() /** method to update the weights */
44: {
45: double sum2;
46: for(int j = 0; j < numHidden; j++)
47: {
48: sum2 = 0.0;
49: for(int i = 0;i < numOutput; i++)
50: sum2 += outputD[i]* outputW[i][j];
51: sum2 *= sigmoidDeriv(hiddenN[j]);
52: biasH[j] += sum2 * alpha;
53: for(int i=0; i < numInput; i++)
54: hiddenW[j][i] += alpha * sum2 * inputA[i];
55: }
56: }
57: }
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The world leaders in the production of PLCs are Siemens (https://new.siemens.
com/, Germany), Rockwell Automation (https://www.rockwellautomation.com/en-us.
html, USA), Schneider Electric (https://www.se.com/, USA) and GE Intelligent Platforms
(https://www.ge.com/, USA). Russian Aries (Russia) and Segnetics (Saint-Petersburg
Saint-Petersburg, Russia) controllers are not much inferior to their foreign counterparts,
but they differ in a more favorable price. There are five main programming languages
for programming the controllers according to the IEC 61131 standard. Three of the five
languages are graphical—LD, FBD, SFC, and two are text—ST and IL [19–22]. The results
of the functioning of the developed system for assessing the quantitative characteristics of
the steel 10ChSND(S420N) are summarized in Table 2.

Table 2. The results of assessing the quantitative characteristics of steel 10ChSND(S420N).

Characteristics of
Steel 10ChSND

(S420N)

The Total Amount of the
Steel Images

The Number of Correct
Recognized Steel Images

The Full Probability of
Correct Alloy Image

Recognition, %

Grain point 231 224 93.1
Martensite/troostite phase ratio 121 118 95.6

Ferrite/Perlite Phase Ratio 121 119 92.3
Sulphide point 142 133 94.2
Silicate point 142 134 93.6

Point of stitched (line) nitrides 142 134 93.9

5. Discussion

Analysis of the results in Table 2 indicates a high probability of correct steel image
recognition (more than 92%) and as a result a high quality of assessing the quantitative
characteristics of steels using the neural network approach and developed software. The
probability of correct steel image recognition was 83% before developing new automated
system and applying the neural network approach. The evaluating of the quantitative
characteristics of steel 10ChSND(S420N) by developed system was at Alchevsk Iron and
Steel Works (Alchevsk, Ukraine).

In the future, the neural network approach and developed system can be effectively
used to assess a wide class of objects in the metallurgical industry, for example, to assess
the state of the pipes, long steel products etc.

6. Conclusions

Thus, the following results were obtained:

(1) An information model is proposed, which represents an intelligent system of metallo-
graphic analysis in the form of a set of subsystems, the interaction of which ensures
the performance of metallographic analysis functions.

(2) The deployment model of an intelligent metallographic analysis system is proposed
and described.

(3) The expert subsystem, implemented on the basis of the proposed neural network,
allows one to bring the process of metallographic analysis to a whole new level.

(4) An intelligent metallographic analysis system with MetalNeuro software are developed.
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