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Ever since its earliest years, information theory has enjoyed both a promising and
complicated relationship with the social sciences. Shannon himself applied his “mathemat-
ical theory of communication” to human communication early on, allegedly having his
wife Betty estimating word probabilities to calculate the first approximation of the entropy
of English [1]. Five years later, he then warned of a “scientific bandwagon”, saying that
information theory “is not necessarily relevant to such fields as psychology, economics, and
other social sciences”. He added that he personally still believed “that many of the concepts
of information theory will prove useful in these other fields—and, indeed, some results are
already quite promising—but the establishing of such applications is not a trivial matter of
translating words to a new domain, but rather the slow, tedious process of hypothesis and
experimental verification” [2].

It turned out that in the social sciences, this translation process was indeed slow
and tedious. After Miller’s famous “magical number seven” paper [3] and Attneave’s
groundbreaking “Applications of Information Theory to Psychology” [4], the emerging
field of Communication adopted information theoretic concepts to study group decision-
making [5–8], relational control in relationships [9–11], mass communication [12], and
talk and silence sequences in conversations [13–15]. A main historical account for why
this work was discontinued was that “gathering everyday conversations . . . is nearly
impossible . . . unless one carries a tape recorder around all day (a cumbersome and hardly
practical endeavor)” [10]. Additional culprits are the “adoption of approaches from other
fields such as psychology that do not emphasize process as much as communication” [16],
“the perceived scope of effort required from the researcher” [17], and those dynamics were
“simply impractical to compute” [4] before today’s computing power.

While these rather practical and computational limitations have been overcome in
recent years due to the “big data” flood and omnipresent cloud computing, unfortunately,
there have also been conceptual reservations to the applicability of information theory
to the social sciences, especially during the 1990s and early 2000s. It was argued that
information theory was supposedly “inappropriate to represent social processes” [18] as it
was allegedly a “misleading misrepresentation of the nature of human communication” [19].
It is striking that all of these critics refer to Shannon’s channel logic of communication as
the “Shannon–Weaver model” [20]. In 1949, in his role as science advocate, Warren Weaver
asked Shannon to reprint his two-part paper from 1948 [21] in book format. He added a
28-page introduction for the 144-page book and changed the title from “A Mathematical
Theory . . . ” to “The Mathematical Theory . . . ” [22]. Weaver sees his introduction as
“an interpretation of mathematical papers by Dr. Claude E. Shannon” [22] and not as an
original contribution. Given this consistent misattribution of credits, it is questionable
how familiar these critical social scientists indeed were with Shannon’s comprehensive
framework and what became of it during the subsequent decades [23,24]

Reaching the year 2020, the increase in human interactions taking place in digital
environments has led to a refound fascination with applying information theory in the
social sciences. The new abundance of behavioral “big data” and our computational
resources allow researchers to even calculate measures that converge rather slowly, while,
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at the same time, the maturation of the social sciences has led to an increased interest in
more sophisticated nonlinear methods and measures.

This Special Issue compiles 11 creative research articles on innovative uses of informa-
tion theory and its extensions to better understand human behavior and social processes.
The articles in this Special Issue are proof of the abundant opportunities offered by in-
formation theory to better understand the nature of humans and its societal systems and
dynamics.

Hilbert and Darmon [25] use information theory to explain “How Complexity and
Uncertainty Grew with Algorithmic Trading”. On the micro level, traders employ algo-
rithms to reduce their local uncertainty by creating more complex algorithmic patterns.
This entails a more predictable structure and more complexity. On the macro level, the
increased overall complexity implies more combinatorial possibilities and therefore more
uncertainty about the future. They use information theory’s expansion known as computa-
tional mechanics to resolve the seeming contradiction between decreased uncertainty on
the micro level and the simultaneously increased uncertainty on the macro level.

Uppal, Ferdinand, and Marzen [26] are “Inferring an Observer’s Prediction Strategy
in Sequence Learning Experiments”, which link to Shannon’s own historic quest to under-
stand human prediction capabilities [1]. The predictive brain is the dominant framework
in cognitive science today, viewing humans or other animals as prediction machines. The
authors offer a way to uncover what is under the hood of the human prediction machine.
They show that with only one observer, one can infer the model class used by the human
predictor (generalized linear model vs. Bayesian model) but not necessarily the model’s
parameters.

Two studies in this Special Issue use MaxEnt and spatial information entropy methods
to explore the spatial–temporal evolutionary characteristics of ethnic groups to better un-
derstand the different stages of their transition and migration, including “Spatial–Temporal
Characteristic Analysis of Ethnic Toponyms Based on Spatial Information Entropy at the
Rural Level in Northeast China” [27] and “Using the Maximal Entropy Modeling Approach
to Analyze the Evolution of Sedentary Agricultural Societies in Northeast China” [28].
Related in its geographical theme, but of less historic and more current societal interest,
Lenormand and colleagues [29] use a mobile phone dataset and an entropy-based metric
to measure the attractiveness of a location in the Rio de Janeiro Metropolitan Area (Brazil)
as the diversity of visitors’ location of residence (“Entropy as a Measure of Attractiveness
and Socioeconomic Complexity in Rio de Janeiro Metropolitan Area”).

In “Economics of Disagreement—Financial Intuition for the Rényi Divergence”, An-
drei Soklakov [30] shows how a large class of models for human disagreements can be
transformed into prototypical models of investment opportunities. This offers a market-
like social mechanism to resolve disagreements, whereas funds flow naturally through
optimized investments to support a more accurate view.

In the “Source of Knowledge Dynamics—Transition from High School to University”,
Hadad and colleagues [31] make innovative use of Markov chains to model the ongoing
dynamics in the educational transition from printed books and libraries to online materials.

“An Objective-Based Entropy Approach for Interpretable Decision Tree Models in
Support of Human Resource Management: The Case of Absenteeism at Work” [32] uses
information theory to uncover subgroups of employees with common characteristics and a
similar level of absenteeism.

Wiener [33] uses the maximum entropy principle to make inferences about the unob-
served mobility decisions of workers in U.S. household data in “Labor Market Segmentation
and Immigrant Competition: A Quantal Response Statistical Equilibrium Analysis”. His
model captures a substantial proportion of the informational content of observed wage
distributions.

Of course, Integrated Information Theory’s (IIT) ambition to mathematically model
consciousness cannot be missed in a current discussion of information theory for human
processes. Popiel and colleagues use the generalized Ising model to calculate Φ as a function
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of temperature in toy models of fully connected neural networks. In “The Emergence of
Integrated Information, Complexity, and ‘Consciousness’ at Criticality” [34], they show
that IIT’s Φ can capture integrated information in an empirical dataset, which is promising
for future applications of IIT to empirical social science data.

The biggest methodological contribution to the social sciences in this Special Issue
comes from Dave Darmon: “Discrete Information Dynamics with Confidence via the Com-
putational Mechanics Bootstrap: Confidence Sets and Significance Tests for Information-
Dynamic Measures” [35]. It solves an important issue in the practical application of
an expansion of information theory referred to as “computational mechanics” [36–38].
Computational mechanics derives optimized minimal sufficient statistics of temporal em-
pirical data in the form of hidden Markov models known as ε-machines. In short, it is
a “white-box” machine learning technique that allows social theorists to model societal
dynamics [39–41]. As with any empirical inference tool, it is important to obtain an idea
of confidence sets for hypothesis tests of the underlying measures. The only existing
method, until now, was a Bayesian inference method, which is computationally quite de-
manding [42]. Darmon provides a bootstrap method for constructing confidence sets and
significance tests for the popular Causal State Splitting Reconstruction (CSSR) algorithm
to derive ε-machines [43]. Given the omnipresent importance of significance tests in the
social sciences, this contribution opens new doors for the future application of information
theory to social science research.

In closing, in line with Darmon’s contribution, it is important to state that there are
still many outstanding methodological challenges for the application of information theory
to the social sciences. Maybe the most important one is the advancement of multivariate
information theory. Social systems are inherently interconnected systems consisting of
many interrelated parts. Therefore, still, the predominant preference for empirical methods
in the social sciences are those that allow working with a considerable number of vari-
ables, including multiple regression, ANCOVA and MANCOVA, and structural equations
models. It is not uncommon that a single model includes more than a dozen variables. In
information theory, the main workhorse is still Shannon’s bivariate setup of the sender
and receiver, while a third variable still creates much confusion among scholars. The
leading textbook laments that “unfortunately, [the three variable mutual information] is
not necessarily nonnegative” [23], while the second most common textbook recommends
against illustrating entropy of three or more variables in the graphical form [24]. Important
advancements in multivariate information theory and information decomposition was
showcased, among other outlets, by another recent Special Issue in Entropy [44]. These
advancements in the expansion and solidification of the mathematical aspects of informa-
tion theory provide future promises for even more applications of information theory for
human and social processes.
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