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Abstract: Direct computation of functions using low-complexity algorithms can be applied both for
hardware constraints and in systems where storage capacity is a challenge for processing a large
volume of data. We present improved algorithms for fast calculation of the inverse square root
function for single-precision and double-precision floating-point numbers. Higher precision is also
discussed. Our approach consists in minimizing maximal errors by finding optimal magic constants
and modifying the Newton–Raphson coefficients. The obtained algorithms are much more accurate
than the original fast inverse square root algorithm and have similar very low computational costs.

Keywords: approximation of functions; floating-point arithmetic; Newton–Raphson method; inverse
square root; magic constant

1. Introduction

Efficient performance of algebraic operations in the framework of floating-point
arithmetic is a subject of considerable importance [1–6]. Approximations of elementary
functions are crucial in scientific computing, computer graphics, signal processing, and
other fields of engineering and science [7–10]. Our aim is to compute elementary functions
at a very low computational cost without using memory resources. Direct evaluation
of functions could be of interest in any systems where storage capabilities challenge the
processing of a large volume of data. This problem is crucial, for instance, in high-energy
physics experiments [11–13].

In this paper, we consider approximation and fast computation of the inverse square
root function, which has numerous applications (see [8,10,14–17]), especially in 3D com-
puter graphics, where it is needed for normalization of vectors [4,18,19]. The proposed
algorithms are aimed primarily at floating-point platforms with limited hardware resources,
such as microcontrollers, some field-programmable gate arrays (FPGAs), and graphics pro-
cessing units (GPUs) that cannot use fast look-up table (LUT)-based hardware instructions,
such as SSE (i.e., Streaming SIMD (single instruction, multiple data) Extensions) or Ad-
vanced Vector Extensions (AVX). We mean here devices and chips containing floating-point
multipliers, adders–subtractors, and fused-multiply adders. Therefore, our algorithms
can easily be implemented on such a platform. We also offer them as an alternative to
library functions that provide full precision, but are very time consuming. This was the
motivation for considering the cases of higher precision in Section 3.2. By selecting the
precision and number of iterations, the desired accuracy can be obtained. We propose the
use of our codes as direct insertions into more general algorithms without referring to
the corresponding library of mathematical functions. In the double-precision mode, most
modern processors do not have SSE instructions like rsqrt (such instructions appeared only
in AVX-512, which is supported only by the latest processor models). In such cases, one
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can use our algorithms (with the appropriate number of iterations) as a fast alternative to
the library function 1/sqrt(x).

In most cases, the initial seed needed to start the approximation is taken from a
memory-consuming look-up table (LUT), although the so-called “bipartite table methods”
(actually used on many current processors) make it possible to considerably lower the table
sizes [20,21]. The “fast inverse square root” code works in a different way. It produces the
initial seed in a cheap and effective way using the so-called magic constant [4,19,22–25]. We
point out that this algorithm is still useful in numerous software applications and hardware
implementations (see, e.g., [17,26–30]). Recently, we presented a new approach to the
fast inverse square root code InvSqrt, presenting a rigorous derivation of the well-known
code [31]. Then, this approach was used to construct a more accurate modification (called
InvSqrt1) of the fast inverse square root (see [32]). It will be developed and generalized in
the next sections, where we will show how to increase the accuracy of the InvSqrt code
without losing its advantages, including the low computational cost. We will construct and
test two new algorithms, InvSqrt2 and InvSqrt3.

The main idea of the algorithm InvSqrt consists in interpreting bits of the input
floating-point number as an integer [31]. In this paper, we consider positive floating-point
normal numbers

x = (1 + mx)2ex , mx ∈ [0, 1) , ex ∈ Z , (1)

and, in Section 3.1, we also consider subnormal numbers. We use the standard IEEE-754,
where single-precision floating-point numbers are encoded with 32 bits. For positive
numbers, the first bit is zero. The next eight bits encode ex, and the remaining 23 bits
represent the mantissa mx. The same 32 bits can be treated as an integer Ix:

Ix = Nm(B + ex + mx), (2)

where Nm = 223 and B = 127. In this case B + ex is a natural number not exceeding 254.
The case of higher precision is analogous (see Section 3.2).

The crucial step of the algorithm InvSqrt consists in shifting all bits to the right by
one bit and subtracting the result of this operation from a “magic constant” R (and the
optimum value of R has to be guessed or determined). In other words,

Iy0 = R− bIx/2c . (3)

Originally, R was proposed as 0x5F3759DF (see [19,23]). Interpreted in terms of
floating-point numbers, Iy0 approximates the inverse square root function surprisingly well
(y0 ≈ y = 1/

√
x). This trick works because (3) is close to dividing the floating-point exponent

by −2. The number R is needed because the floating-point exponents are biased (see (2)).
The magic constant R is usually given as a hexadecimal integer. The same bits encode

the floating-point number R f with an exponent eR and mantissa mR. According to (1),
R f = (1 + mR)2eR . In [31], we have shown that if eR = 1

2 (B− 1) (e.g., eR = 63 in the 32-bit
case), then the function (3) (defined on integers) is equivalent to the following piece-wise
linear function (when interpreted in terms of corresponding floating-point numbers):

ỹ0(x̃, t) =



1
8
(6− 2x̃ + t) for x̃ ∈ [1, 2)

1
8
(4 + t− x̃) for x̃ ∈ [2, t)

1
16

(8 + t− x̃) for x̃ ∈ [t, 4)

(4)

where
t = 2 + 4mR + 2µx̃ N−1

m , (5)
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mR is the mantissa of R (i.e., mR := N−1
m R − bN−1

m Rc), and, finally, µx̃ = 0 or µx̃ = 1
depending on the parity of the last digit of the mantissa of x̃.

The function µx̃ is two-valued, so a given parameter t may correspond to either two
values of R or one value of R (when the term containing µx̃ has no influence on the bits
of the mantissa mR). The function y = 1/

√
x, the function (3), and all Newton–Raphson

corrections considered below are invariant under the scaling x̃ = 2−2nx and ỹ = 2ny for
any integer n. Therefore, we can confine ourselves to numbers from the interval [1, 4). Here
and in the following, the tilde always denotes quantities defined on the interval [1, 4).

In this paper, we focus on the Newton–Raphson corrections, which form the second
part of the InvSqrt code. Following and developing ideas presented in our recent pa-
pers [31,32], we propose modifications of the Newton–Raphson formulas, which result in
algorithms that have the same or similar computational cost as/to InvSqrt, but improve the
accuracy of the original code, even by several times. The modifications consist in changing
both the Newton–Raphson coefficients and the magic constant. Moreover, we extend our
approach to subnormal numbers and to higher-precision cases.

2. Modified Newton–Raphson Formulas

The standard Newton–Raphson corrections ỹ1 and ỹ2 for the zeroth approximation ỹ0
given by (4) are given by the following formulas:

ỹ1(x̃, t) =
3
2

ỹ0(x̃, t)− 1
2

x̃ ỹ3
0(x̃, t) ,

ỹ2(x̃, t) =
3
2

ỹ1(x̃, t)− 1
2

x̃ ỹ3
1(x̃, t) ,

(6)

(analogous formulas hold for the next corrections as well; see [31]). The relative error
functions δ̃j(x̃, t) (where j = 0, 1, 2, . . .) can be expressed as:

δ̃j(x̃, t) =
√

x̃ ỹj(x̃, t)− 1 . (7)

The function δ̃0(x̃, t), which is very important for the further analysis, is thoroughly de-
scribed and discussed in [31]. Using (7), we substitute ỹj = (1 + δ̃j)/

√
x̃ (for j = 0, 1, 2, . . .)

into (6), x̃ cancels out, and the formulas (6) assume the following form:

δ̃j = −
1
2

δ̃2
j−1(3 + δ̃j−1) , (j = 1, 2, . . .), (8)

where δ̃j = δ̃j(x̃, t). We immediately see that every correction increases the accuracy, even
by several orders of magnitude (due to the factor δ̃2

j−1). Thus, a very small number of
corrections is sufficient to reach the machine precision (see the end of Section 4).

The above approximations depend on the parameter t (which can be expressed by
the magic constant R, see (5)). The best approximation is obtained for t = tk minimizing
||δ̃k(t)||, i.e.,

||δ̃k(tk)|| = inf
t∈(2,4)

||δ̃k(t)|| ≡ inf
t∈(2,4)

(
sup

x̃∈[1,4)
|δ̃k(x̃, t)|

)
. (9)

In this paper we confine ourselves to the case t = t1 (i.e., we assume t2 = t1) because
the more general case (where the magic constant is also optimized with respect to the
assumed number of iterations) is much more cumbersome, and the related increase in
accuracy is negligible. Then, we get

t(0)1 ≈ 3.7298003, R(0) = 0x5F375A86, (10)

for details, see [31]. The theoretical relative errors are given by

∆(0)
1 max ≡ ||δ̃1(t1)| ≈ 1.75118 · 10−3, ∆(0)

2 max ≡ ||δ̃2(t1)| ≈ 4.60 · 10−6. (11)
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The superscript (0) indicates values corresponding to the algorithm InvSqrt (other
superscripts will denote modifications of this algorithm).

The idea of increasing the accuracy by a modification of the Newton–Raphson formu-
las is motivated by the fact that δ̃k(x̃, t) 6 0 for any x̃ (see [31,32]). Therefore, we can try to
shift the graph of δ̃1 upwards (making it more symmetric with respect to the horizontal
axis). Then, the errors of the first correction are expected to decrease twice and the errors
of the second correction are expected to decrease by about eight times (for more details,
see [32]). Indeed, according to (8), reducing the first correction by a factor of 2 will reduce
the second correction by a factor of 4. The second correction is also non-positive, so we may
shift the graph of δ̃2, once more improving the accuracy by the factor of 2. This procedure
can be formalized by postulating the following modification of the Newton–Raphson
formulas (6):

ỹ1 = 1
2 ỹ0(3− ỹ2

0 x̃) + 1
2 d1(a1ỹ0 + b1ỹ1),

ỹ2 = 1
2 ỹ1(3− ỹ2

1 x̃) + 1
2 d2(a2ỹ1 + b2ỹ2),

(12)

where ak + bk = 1 for k = 1, 2. Thus, we have four independent parameters (d1, d2, a1, and
a2) to be determined. In other words,

ỹ1 = c11 ỹ0 − c21 x̃ ỹ3
0,

ỹ2 = c12 ỹ1 − c22 x̃ ỹ3
1,

(13)

where four coefficients cjk can be expressed by the four coefficients ak and dk:

c1k =
3 + akdk

2− (1− ak)dk
, c2k =

1
2− (1− ak)dk

(k = 1, 2) . (14)

We point out that the Newton–Raphson corrections and any of their modifications of
the form (13) are obviously invariant with respect to the scaling mentioned at the end of
Section 1. Therefore, we can continue to confine our analysis to the interval [1, 4).

Below, we present three different algorithms (InvSqrt1, InvSqrt2, InvSqrt3) constructed
along the above principles (the last two of them are first introduced in this paper). They
will be denoted by superscripts in parentheses, e.g., ỹ(N)

k means the kth modified Newton–
Raphson correction to the algorithm InvSqrt N. We always assume that the zeroth approxi-
mation is given by (4), i.e.,

ỹ(N)
0 = ỹ0 (N = 1, 2, 3) , (15)

and relative error functions, ∆(N)
j , are expressed as

∆(N)
j (x̃, t) =

√
x̃ ỹ(N)

j (x̃, t)− 1 . (16)

We point out that the coefficients of our algorithms are obtained without taking
rounding errors into account. This issue will be shortly discussed at the end of Section 4.

2.1. Algorithm InvSqrt1

Assuming a1 = a2 = 0 and b1 = b2 = 1, we transform (12) into

ỹ(1)1 =
1
2

ỹ(1)0

(
3− (ỹ(1)0 )2 x̃

)
+

1
2

d1ỹ(1)1 ,

ỹ(1)2 =
1
2

ỹ(1)1

(
3− (ỹ(1)1 )2 x̃

)
+

1
2

d2ỹ(1)2 .

(17)
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Therefore, ỹ(1)1 and ỹ(1)2 depend on x̃, t, d1, and d2. Parameters t = t(1)1 and d1 = d(1)1 are

determined by minimization of ||∆(1)
1 (x̃, t)||. Then, the parameter d2 = d(1)2 is determined

by minimization of ||∆(1)
2 (x̃, t(1)1 )|| (for details, see [32]). As a result, we get:

d(1)1 ≈ 1.75118 · 10−3 , d(1)2 ≈ 1.15234 · 10−6 , (18)

and t(1)1 = t(0)1 (see (10)). Therefore, R(1) = R(0), i.e., InvSqrt1 has the same magic constant
as InvSqrt. The theoretical relative errors are given by

∆(1)
1 max ≡ ||∆

(1)
1 (x̃, t(1)1 )|| ≈ 0.87636 · 10−3,

∆(1)
2 max ≡ ||∆

(1)
2 (x̃, t(1)1 )|| ≈ 5.76 · 10−7.

(19)

The algorithm (17) can be written in the form (13), where:

c(1)1k =
3

2− d(1)k

, c(1)2k =
1

2− d(1)k

(k = 1, 2) . (20)

Taking into account numerical values for d(1)1 and d(1)2 , we obtain the following values

of the parameters c(1)jk :

c(1)11 ≈ 1.5013145387528147176730252470373223,

c(1)21 ≈ 0.50043817958427157255767508234577407,

c(1)12 ≈ 1.5000008642589575005473878767725752,

c(1)22 ≈ c(1)21 · 0.99912498383253616899527502360939620.

(21)

This large number of digits, which is much higher than that needed for the single-
precision computations, will be useful later in the case of higher precision.

Thus, finally, we obtained a new algorithm InvSqrt1 that has the same structure as
InvSqrt, but with different values of numerical coefficients (see [32]). In the case of two
iterations, the code InvSqrt1 has more algebraic operations (one additional multiplication)
in comparison to InvSqrt.

2.2. InvSqrt2 Algorithm

Assuming a1 = a2 = 1 and b1 = b2 = 0, we transform (12) into

ỹ(2)1 =
1
2

ỹ(2)0

(
3− (ỹ(2)0 )2 x̃

)
+

1
2

d1ỹ(2)0 ,

ỹ(2)2 =
1
2

ỹ(2)1

(
3− (ỹ(2)1 )2 x̃

)
+

1
2

d2ỹ(2)1 ,

(22)

where ỹ(2)1 and ỹ(2)2 depend on x̃, t, d1, and d2.

Parameters t = t(2)1 and d1 = d(2)1 are determined by the minimization of ||∆(2)
1 (x̃, t)||.

Then, the parameter d2 = d(2)2 is determined by the minimization of ||∆(2)
2 (x̃, t(2)1 )|| (see Ap-

pendix A.1 for details). As a result, we get:

d(2)1 = 1.75791023259 · 10−3 , d(2)2 ' 1.159352515 · 10−6 , (23)

and
t(2)1 ≡ t(2) ≈ 3.73157124016 , R(2) = 1597466888 = 0x5F376908 . (24)
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The theoretical relative errors are given by

∆(2)
1 max ≡ ||∆

(2)
1 (x̃, t(2)1 )|| ≈ 0.87908 · 10−3,

∆(2)
2 max ≡ ||∆

(2)
2 (x̃, t(2)1 )|| ≈ 5.80 · 10−7.

(25)

The coefficients in (13) are given by

c(2)1k =
3 + d(2)k

2
, c(2)2k =

1
2

. (26)

Taking into account the numerical values for d(2)1 and d(2)2 (see (23)), we obtain the

following values of the parameters c(2)jk :

c(2)11 ≈ 1.5008789551163345746409291568502392,

c(2)12 ≈ 1.5000005796762576644996810350809289,

c(2)21 = c(2)22 = 0.5,

(27)

where the large number of digits will be useful later in the case of higher precision. Thus,
we completed the derivation of the code InvSqrt2:

1. float InvSqrt2(float x){
2. float halfx = 0.5f*x;
3. int i = *(int*) &x;
4. i = 0x5F376908 - (i>>1);
5. float y = *(float*) &i;
6. y* = 1.50087896f - halfx*y*y;
7. y* = 1.50000057f - halfx*y*y;
8. return y;
9. }

The code InvSqrt2 contains a new magic constant (R(2)) and has two lines (6 and 7)
that were modified in comparison with the code InvSqrt. We point out that InvSqrt2 has
the same number of algebraic operations as InvSqrt.

2.3. InvSqrt3 Algorithm

Now, we consider the algorithm (13) in its most general form:

ỹ(3)1 = k1ỹ(3)0

(
k2 − x̃(ỹ(3)0 )2

)
,

ỹ(3)2 = k3ỹ(3)1

(
k4 − x̃(ỹ(3)1 )2

)
,

(28)

where k j, k2, k3, and k4 are constant. In Appendix A.2, we determine parameters t = t(3)1 ,

k1, and k2 by minimization of ||∆(3)
1 (x̃, t)||. Then, the parameters k3 and k4 are determined

by minimization of ||∆(3)
2 (x̃, t(3)1 )||. As a result, we get:

k1 ≈ 0.70395201 , k2 ≈ 2.3892451 ,

k3 ≈ 0.50000005 , k4 ≈ 3.0000004 ,
(29)

and
t(3)1 ≡ t(3) = 3, R(3) = 1595932672 = 0x5F200000 . (30)
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The theoretical relative errors are given by

∆(3)
1 max ≡ ||∆

(3)
1 (x̃, t(3)1 )|| ≈ 0.65007 · 10−3,

∆(3)
2 max ≡ ||∆

(3)
2 (x̃, t(3)1 )|| ≈ 3.17 · 10−7.

(31)

They are significantly smaller (by 26% and 45%, respectively) than the analogous
errors for InvSqrt1 and InvSqrt2 (see (19) and (25)). The comparison of error functions for
InvSqrt2 and InvSqrt3 (in the case of one correction) is presented in Figure 1.

Figure 1. Theoretical relative errors of the first correction for the codes InvSqrt2 and InvSqrt3. The solid line represents the

function ∆(2)
1 (x̃, t(2)), while the dashed line represents ∆(3)

1 (x̃, t(3)).

The numerical values of coefficients c(3)ij (compare with (13)) are given by:

c(3)11 = k1k2 ≈ 1.68191390868723079,

c(3)21 = k1 ≈ 0.703952009104829370,

c(3)12 = k3k4 ≈ 1.50000036976749938,

c(3)22 = k3 ≈ 0.500000052823927419.

(32)

Thus, we obtained the following code, called InvSqrt3:

1. float InvSqrt3(float x){
2. int i = *(int*) &x;
3. i = 0x5F200000 - (i>>1);
4. float y = *(float*) &i;
5. y* = 1.68191391f - 0.703952009f*x*y*y;
6. y* = 1.50000036f - 0.500000053f*x*y*y;
7. return y;
8. }

The code InvSqrt3 has the same number of multiplications as InvSqrt1, which means
that it is slightly more expensive than InvSqrt and InvSqrt2.

3. Generalizations

The codes presented in Section 2 can only be applied to normal numbers (1) of the
type float. In this section, we show how to extend these results to subnormal numbers and
to higher-precision formats.
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3.1. Subnormal Numbers

Subnormal numbers are smaller than any normal number of the form of (1). In
the single-precision case, positive subnormals can be represented as mx · 2−126, where
mx ∈ (0, 1). They can also be characterized by nine first bits equal to zero (which also
includes the case where x = 0). In order to identify subnormals, we will make a bitwise
conjunction (AND) of a given number with the integer 0x7 f 800000, which has all eight
exponent bits equal to 1 and all 23 mantissa bits equal to 0. This bitwise conjunction is zero
if and only if the given number is subnormal (including 0).

In the case of the single precision, the multiplication by 224 transforms any subnormal
number into a normal number. Therefore, we make this transformation; then, we apply one
of our algorithms and, finally, make the inverse transformation (i.e., multiplying the result
by 2−12). Thus, we get an approximated value of the inverse square root of the subnormal
number. Note that 224 is the smallest power of 2 with an even exponent that transforms all
subnormals into normal numbers.

In the case of InvSqrt3, the procedure described above can be written in the form of
the following code.

1. float InvSqrt3s(float x){
2. int i = *(int*) &x;
3. int k = i & 0x7f800000;
4. if (k==0) {
5. x = 16777216.f*x; //16777216.f=pow(2.0f, 24)
6. i = *(int*) &x;
7. }
8. i = 0x5F200000 - (i>>1);
9. float y = *(float*) &i;
10. y* = 1.68191391f - 0.703952009f*x*y*y;
11. y* = 1.50000036f - 0.500000053f*x*y*y;
12. if (k==0) return 4096.f*y; //4096.f=pow(2.0f, 12)
13. return y;
14. }

The maximum relative errors for this code are presented in Section 4 (see Table 1).

Table 1. Relative numerical errors for the first and second corrections in the case of the type float
(compiler 32-bit) for subnormal numbers.

Algorithm ∆
(i)
1,N min ∆

(i)
1,N max ∆

(i)
2,N min ∆

(i)
2,N max

InvSqrt1 −0.87642× 10−3 0.87644× 10−3 −0.66221× 10−6 0.63442× 10−6

InvSqrt2 −0.87916× 10−3 0.87911× 10−3 −0.62060× 10−6 0.65285× 10−6

InvSqrt3 −0.65016× 10−3 0.65006× 10−3 −0.38701× 10−6 0.35196× 10−6

3.2. Higher Precision

The above analysis was confined to the single-precision floating-point format. This
is sufficient for many applications (especially microcontrollers), although the double-
precision format is more popular. A trade-off between accuracy, computational cost, and
memory usage is welcome [33]. In this subsection, we extend our analysis to double- and
higher-precision formats. The calculations are almost the same. We just have to compute
all involved constants with an appropriate accuracy. Low-bit arithmetic cases could be
treated in exactly the same way. In this paper, however, we are focused on increasing the
accuracy and on possible applications in distributed systems, so only the cases of higher
precision are explicitly presented.

We present detailed results for double precision and some results (magic constants)
for quadruple precision. Performing computations in C, we use the GCC Quad-Precision
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Math Library (working with numbers of type _float128). The crucial point is to express
the magic constant R through the corresponding parameter t, which can be done with the
formula:

R = Nm (3B− 1)/2 + bNm(t− 2)/4− µx̃/2e (33)

where µx̃ ∈ {0, 1}, t depends on the considered algorithm and Nm and B depend on the
precision format used. Namely,

Single precision (32-bit): Nm = 223, B = 27 − 1 ,

Double precision (64-bit): Nm = 252, B = 210 − 1 ,

Quadruple precision (128-bit): Nm = 2112, B = 214 − 1 .

(34)

In the case of the zeroth approximation (without Newton–Raphson corrections), the
parameter t is given by:

t0 = 3.7309795598377727818740863479840422, (35)

which can be compared with [31]. The corresponding magic constants computed from the
formula (33) read:

32-bit: R(0) = 0x5F37642F

64-bit: R(0D) = 0x5FE6EC85E7DE30DA

128-bit: R(0Q) = 0x5FFE6EC85E7DE30DAABC602711840B0F.

(36)

In this paper, we focus on the case of Newton–Raphson corrections, where the value
of the parameter t may depend on the algorithm. For InvSqrt and InvSqrt1, we have:

t(0)1 = t(1)1 = 3.7298003391605705687151317499871860, (37)

(see Section (2.1); compare with [31,32]). Then, (33) yields the following magic constants:

32-bit: R(1) = 0x5F375A86

64-bit: R(1D) = 0x5FE6EB50C7B537A9

128-bit: R(1Q) = 0x5FFE6EB50C7B537A9CD9F02E504FCFC0.

(38)

Actually, the above value of R in the 64-bit case (i.e., R(1D)) corresponds to µx̃ = 1 (the
same value of R was obtained by Robertson for InvSqrt [24] with a different method). For
µx̃ = 0, we got an R greater by 1 (other results reported in this section do not depend on
µx̃). In the 128-bit case, Robertson obtained an R that was 1 less than our value (i.e., R(1Q)).

In the case of InvSqrt2, we have

t(2) = 3.7315712401613957182292407381942955 (39)

(compare with (A11)), which yields:

32-bit: R(2) = 0x5F376908

64-bit: R(2D) = 0x5FE6ED2102DCBFDA

128-bit: R(2Q) = 0x5FFE6ED2102DCBFDA59415059AC483B5.

(40)

Finally, for InvSqrt3, we obtained:

t(3) = 3 (41)
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(see (A29)). The corresponding magic constants are given by:

32-bit: R(3) = 0x5F200000

64-bit: R(3D) = 0x5FE400000000000C

128-bit: R(3Q) = 0x5FFE4000000000000000000000000000.

(42)

The parameters of the modified Newton–Raphson corrections for the higher-precision
codes can be computed from the theoretical formulas used in the single-precision cases,
taking into account an appropriate number of significant digits. In numerical experiments,
we tested the algorithms InvSqrt1D, InvSqrt2D, and InvSqrt3D with the magic constants
R(1D), R(2D), and R(3D), respectively, and the following coefficients in the modified Newton–
Raphson iterations (compare with (21), (27), and (32), respectively):

c(1D)
11 = 1.50131453875281472,

c(1D)
21 = 0.500438179584271573,

c(1D)
12 = 1.50000086425895750,

c(1D)
22 = c(1D)

21 · 0.999124983832536169.

(43)

c(2D)
11 = 1.50087895511633457,

c(2D)
12 = 1.50000057967625766,

c(2D)
21 = c(2D)

22 = 0.5,

(44)

c(3D)
11 = 1.68191390868723079,

c(3D)
21 = 0.703952009104829370,

c(3D)
12 = 1.50000036976749938,

c(3D)
22 = 0.500000052823927419.

(45)

The algorithm InvSqrt and its improved versions are usually implemented in the
single-precision case with no more than two Newton–Raphson corrections. However, in
the case of higher precision, higher accuracy of the result is welcome. Then, a higher
number of modified Newton–Raphson iterations could be considered. As an example, we
present the algorithm InvSqrt2D with four iterations:

1. double InvSqrt2D(double x){
2. double halfx=0.5*x;
3. long long i=*(long long*) &x;
4. i=0x5FE6ED2102DCBFDA - (i>>1);
5. double y =*(double*) &i;
6. y* = 1.50087895511633457 - halfx*y*y;
7. y* = 1.50000057967625766 - halfx*y*y;
8. y* = 1.5000000000002520 - halfx*y*y;
9. y* = 1.5000000000000000 - halfx*y*y;
10. return y;
11. }

By removing Line 9, we obtain the code InvSqrt2D with three iterations, and by also
removing Line 8, we get the code defined by (44). The maximum relative errors for this
code are presented in Section 4 (see (52)).
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4. Numerical Experiments

The numerical tests for the codes derived and presented in this paper were performed
on an Intel Core i5-3470 processor using the TDM-GCC 4.9.2 32-bit compiler (when repeat-
ing these tests on the Intel i7-5700 processor, we obtained the same results, and comparisons
with some other processors and compilers are given in Appendix B). In this section, we
discuss round-off errors for the algorithms InvSqrt2 and InvSqrt3 (the case of single preci-
sion and two Newton–Raphson iterations) and then present the final results of analogous
analysis for other codes described in this paper.

Applying algorithms InvSqrt2 and InvSqrt3, we obtain relative errors that differ slightly,
due to round-off errors, from their analytical values (see Figures 2 and 3; compare with [32]
for an analogous discussion concerning InvSqrt1). Although we present only randomly
chosen values in the figures, calculations were done for all float numbers x such that
ex ∈ [−126, 128).

Figure 2. Theoretical and rounding errors of the code InvSqrt2 (with two Newton–Raphson corrections). Left: The solid

line represents ∆(2)
2 (x̃, t(2)), dashed lines correspond to ∆(2)

2 (x̃, t(2))± 2−2N−1
m
√

x̃ + 〈ε(2)〉, and dots represent errors for
4000 floating-point numbers x randomly chosen from the interval (2−126, 2128). Right: relative error ε(2) (see (47)). Dashed
lines correspond to the minimum and maximum values of these errors, and dots denote errors for 2000 values x̃ randomly
chosen from the interval [1, 4).

Figure 3. Theoretical and rounding errors of the code InvSqrt3 (with two Newton–Raphson corrections). Left: The solid

line represents ∆(3)
2 (x̃, t(3)), dashed lines correspond to ∆(3)

2 (x̃, t(3))± 2−2N−1
m
√

x̃ + 〈ε(3)〉, and dots represent errors for
4000 floating-point numbers x randomly chosen from the interval (2−126, 2128). Right: relative error ε(3). Dashed lines
correspond to minimum and maximum values of these errors, and dots denote errors for 2000 values x̃ randomly chosen
from the interval [1, 4).
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The errors of numerical values returned by InvSqrt2

∆(2)
2;N(x) = sqrt(x) ∗ InvSqrt2(x)− 1 (46)

belong (for ex 6= −126) to the interval (−6.21 · 10−7, 6.53 · 10−7). For ex = −126, we get a
wider interval: [−6.46 · 10−7, 6.84 · 10−7]. These errors differ from the errors of ỹ(3)2 (x̃, t(2)),
which were determined analytically (compare (25)). We define:

ε(2)(x̃) =
InvSqrt2(x)− ỹ(2)2 (x̃, t(2))

ỹ(2)2 (x̃, t(2))
. (47)

This function, representing the observed blur of the float approximation of the InvSqrt2
output, is symmetric with respect to its mean value

〈ε(2)〉 = 2−1N−1
m ∑

x∈[1,4)
ε(2)(x̃) = 1.636 · 10−8 (48)

(see the right part of Figure 2), and covers the following range of values:

ε(2)(x̃) ∈ [−4.333 · 10−8, 7.596 · 10−8] . (49)

Analogous results for the code InvSqrt3 read:

〈ε(3)〉 = 2−1N−1
m ∑

x∈[1,4)
ε(3)(x̃) = −1.890 · 10−8 (50)

ε(3)(x̃) ∈ [−7.850 · 10−8, 4.067 · 10−8] . (51)

The results produced by the same hardware with a 64-bit compiler have a greater am-
plitude of the error oscillations as compared with the 32-bit case (also compare Appendix B).

The maximum errors for the code InvSqrt and all codes presented in the previous
sections are given in Table 2 (for codes with just one Newton–Raphson iteration) and
Table 3 (the same codes but with two iterations).

Table 2. Relative numerical errors for the first correction in the case of type float (compiler 32-bit). In

the case of type double, the errors are equal to theoretical errors ±∆(i)
1 max up to the accuracy given in

the table.

Algorithm i ∆
(i)
1 max ∆

(i)
1,N min ∆

(i)
1,N max ∆

(i)
1,N

InvSqrt 0 1.75118× 10−3 −1.75124× 10−3 0.00008× 10−3 1.75124× 10−3

InvSqrt1 1 0.87636× 10−3 −0.87642× 10−3 0.87645× 10−3 0.87645× 10−3

InvSqrt2 2 0.87908× 10−3 −0.87916× 10−3 0.87914× 10−3 0.87916× 10−3

InvSqrt3 3 0.65007× 10−3 −0.65017× 10−3 0.65006 · 10−3 0.65017× 10−3

Looking at the last column of Table 2 (this is the case of one iteration), we see that the
code InvSqrt1 is slightly more accurate than InvSqrt2, and both are roughly almost two
times more accurate than InvSqrt. However, it is the code InvSqrt3 that has the best accuracy.
The computational costs of all these codes are practically the same (four multiplications in
every case).
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Table 3. Relative numerical errors for the second correction in the case of type float (compiler 32-bit).

In the case of type double, the errors are equal to theoretical errors ±∆(i)
2 max up to the accuracy given

in the table.

Algorithm i ∆
(i)
2 max ∆

(i)
2,N min ∆

(i)
2,N max ∆

(i)
2,N

InvSqrt 0 4.59728× 10−6 −4.65441× 10−6 0.08336× 10−6 4.65441× 10−6

InvSqrt1 1 0.57617× 10−6 −0.67207× 10−6 0.64871× 10−6 0.67207× 10−6

InvSqrt2 2 0.57968× 10−6 −0.64591× 10−6 0.68363× 10−6 0.68363× 10−6

InvSqrt3 3 0.31694× 10−6 −0.38701× 10−6 0.35198× 10−6 0.38701× 10−6

In the case of two iterations (Table 3), the code InvSqrt3 is the most accurate as well.
Compared with InvSqrt, its accuracy is 12 times higher for single precision and 14.5 times
higher for double precision. However, the computational costs of InvSqrt1 and InvSqrt3
(eight multiplications) are higher than the cost of InvSqrt (seven multiplications). Therefore,
the code InvSqrt2 has some advantage, as it is less accurate than InvSqrt3 but cheaper. In
the single-precision case the code InvSqrt2 is 6.8 times more accurate than InvSqrt.

We point out that the round-off errors in the single-precision case significantly decrease
the gain of the accuracy of the new algorithms as compared with the theoretical values,
especially in the case of two Newton–Raphson corrections (compare the third and the last
column of Table 3).

The range of errors in the case of subnormal numbers (using the codes described in
Section 3.1) is shown in Table 1. One can easily see that the relative errors are similar—in
fact, even slightly lower—than in the case of normal numbers.

Although the original InvSqrt code used only one Newton–Raphson iteration, and in
this paper, we focus mostly on two iterations, it is worthwhile to also briefly consider the
case of more iterations. Then, the increased computational cost is accompanied by increased
accuracy. We confine ourselves to the code InvSqrt2 (see the end of Section 3.2), which is
less expensive than InvSqrt3 (and the advantage of InvSqrt2 increases with the number of
iterations). In the double-precision case, the maximum error for three Newton–Raphson
corrections is much lower, and the fourth correction yields the best possible accuracy.

∆(2)
1D,N = 0.87908× 10−3 ,

∆(2)
2D,N = 0.57968× 10−6 ,

∆(2)
3D,N = 2.5213× 10−13 ,

∆(2)
4D,N = 1.1103× 10−16 .

(52)

In the case of single precision, we already get the best possible accuracy for the third
correction, given by adding the line y* = 1.5f - halfx*y*y as Line 8 in the code InvSqrt2 (see
Section 2.2).

∆(2)
1,N = 0.87916× 10−3 ,

∆(2)
2,N = 0.68363× 10−6 ,

∆(2)
3,N = 0.89367× 10−7

(53)

The derivation of all numerical codes presented in this paper did not take rounding
errors into account. Therefore, the best floating-point parameters can be slightly different
from the rounding of the best real parameters, all the more so since the distribution of the
errors is still not exactly symmetric (compare fourth and fifth columns in Tables 2 and 3).
The full analysis of this problem is much more difficult than the analogous analysis for the
original InvSqrt code because we now have several parameters to be optimized instead of a
single magic constant. At the same time, the increase in accuracy is negligible. Actually,
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much greater differences in the accuracy appear in numerical experiments as a result of
using different devices (see Appendix B).

As an example, we present the results of an experimental search in the case of the
code InvSqrt3 with one Newton–Raphson correction (three parameters to be optimized).
The modified Newton–Raphson coefficients are found to be

c(3)11 num = 1.681911588 f , c(3)21 num = k1 = 0.7039490938 f . (54)

Figure 4 summarizes the last step of this analysis. The dependence of maximum errors
on R shows clearly that the optimum value for the magic constant is slightly shifted as
compared to the theoretical (real) value:

R(3)
num = 17 + 0x5 f 200000 = 0x5 f 200011 . (55)

The corresponding errors given by

∆(3)
1,N max = 6.50112284 · 10−4 , ∆(3)

1,N min = −6.501092575 · 10−4 (56)

are nearly symmetric. They are smaller than the maximum error ∆(3)
1,N corresponding to

our theoretical values, but only by about 0.001% (see Table 2).

Figure 4. Maximum relative errors for the first Newton–Raphson correction in the code InvSqrt3 as a
function of R in the case of k1 = 0.7039490938 f and k1k2 = 1.681911588 f . Circles denote maximum

errors (∆(3)
1,N max), while squares denote minimum errors (|∆(3)

1,N min|). The maximum error (shown by
the dashed line) was determined by minimizing the maximum error for all floating-point numbers
from [1, 4).

5. Conclusions

We presented two new modifications (InvSqrt2 and InvSqrt3) of the fast inverse square
root code in single-, double-, and higher-precision versions. Each code has its own magic
constant. All new algorithms are much more accurate than the original code InvSqrt. One
of the new algorithms, InvSqrt2, has the same computational cost as InvSqrt in the case of
any precision. Another code, InvSqrt3, has the best accuracy, but is more expensive if the
number of Newton–Raphson corrections is greater than 1. However, its gain in accuracy is
very high, even by more than 12 times for two iterations (see Table 3 in Section 4).
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Our approach was to modify the Newton–Raphson method by introducing arbitrary
parameters, which are then determined by minimizing the maximum relative error. It is
expected that such modifications will provide a significant increase in accuracy, especially
in the case of asymmetric error distribution for Newton–Raphson corrections (and this is
the case with the inverse square root function when these corrections are non-positive).
One has to remember that due to rounding errors, our theoretical results may differ from
the best floating-point parameters, but the difference is negligible (see the end of Section 4).
In fact, parameters (magic constants and modified Newton–Raphson coefficients) from a
certain range near the values obtained in this article seem equally good for all practical
purposes.

Concerning potential applications, we have to acknowledge that for general-purpose
computing, the SSE and AVX reciprocal square root instructions are faster and more
accurate. We hope, however, that the proposed algorithms can be applied in embedded
systems and microcontrollers without a hardware floating-point divider, and potentially in
FPGAs. Moreover, in contrast to the SSE and AVX instructions, our approach can be easily
extended to computational platforms of high precision, like 256-bit or 512-bit platforms.
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of the manuscript.
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Appendix A. Analytical Derivation of Modified Newton–Raphson Coefficients

Appendix A.1. Algorithm InvSqrt2

We will determine the parameters d1 and d2 in formulas (22) that minimize the
maximum error. Substituting (16) (with n = 2) into (22), we get:

∆(2)
1 (x̃, t, d1) =

1
2

d1
(
1 + δ̃0(x̃, t)

)
− 1

2
δ̃2

0(x̃, t)
(
3 + δ̃0(x̃, t)

)
(A1)

∆(2)
2 (x̃, t, d1, d2) =

1
2

d2

(
1 + ∆(2)

1

)
− 1

2

(
∆(2)

1

)2(
3 + ∆(2)

1

)
, (A2)

where ∆(2)
1 ≡ ∆(2)

1 (x̃, t, d1) and δ̃0(x̃, t) is the relative error of the zeroth approximation (the
function δ̃0(x̃, t) is presented and discussed in [31,32]).

First, we are going to determine the t and d(2)1 that minimize the maximum absolute
value of the relative error of the first correction. We have to solve the following equation:

0 =
∂∆(2)

1 (x̃, t)
∂δ̃0(x̃, t)

=
1
2

d(2)1 − 3δ̃0(x̃, t)− 3
2

δ̃2
0(x̃, t). (A3)

Its solution

δ̃+ =

√
1 + d(2)1 /3− 1 (A4)

corresponds to the value

∆(2)
1 max =

1
2

d(2)1 (1 + δ̃+)− 1
2

δ̃+2(3 + δ̃+), (A5)
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which is a maximum of ∆(2)
1 (x̃, t) because its second derivative with respect to x̃, i.e.,

∂2
x̃∆(2)

1 (x̃, t) = ∂2
x̃ δ̃0(x̃, t)∂δ̃0

∆(2)
1 (x̃, t)− 3(1 + δ̃0(x̃, t))(∂x δ̃0(x̃, t))2, (A6)

is negative. In order to determine the dependence of d(2)1 on the parameter t, we solve the
equation

− ∆(2)
1 (t, t) = ∆(2)

1 max, (A7)

which (for some t = t(2)1 ) equates the maximum value of error with the modulus of the
minimum value of error. Thus, we obtain the following relations:

δ+ = −1− 1
4

√
t +

1
8

t
f (t)

+
1
2

f (t), (A8)

d(2)1 = −3 +
9

16
t +

3
64

t2 f−2(t)− 3
16

t3/2 f−1(t)− 3
4

√
t f (t) +

3
4

f 2(t), (A9)

where
f (t) =

[
8 + t3/2/8 + 4

√
4 + t3/2/8

]1/3
.

The last step consists in equating the minimum boundary value of the error of analyzed
correction with its smallest local minimum:

∆(2)
1 (t, t) =

1
2

d(2)1 (1 + δ̃0(x̃I I
0 , t))− 1

2
δ̃2

0(x̃I I
0 , t)(3 + δ̃0(x̃I I

0 , t)), (A10)

where xI I
0 = (4 + t)/3 (see [31]). Solving the Equation (A10) numerically, we obtain the

following value of t:
t(2)1 ' 3.73157124016, (A11)

which corresponds to the following magic constant:

R(2) = 1597466888 = 0x5F376908 . (A12)

Taking into account (A8), we compute

d(2)1 = 1.75791023259 · 10−3, (A13)

and, using (A4) and (A5), we get

∆(2)
1 max ' 8.7908386407 · 10−4 ' δ̃1 max

1.99
. (A14)

In the case of the second correction, we keep the obtained value t = t(2)1 and determine

the parameter d(2)2 , which equates the maximum value of the error with the modulus of its

global minimum. ∆(2)
2 (x̃, t(2)1 ) is increasing (decreasing) with respect to negative (positive)

∆(2)
1 (x̃, t(2)1 ) and has local minima that come only from positive maxima and negative

minima. Therefore, the global minimum should correspond to the global minimum−∆(2)
1 max

or to the global maximum ∆(2)
1 max. Substituting these values into Equation (A2) in the place

of ∆(2)
1 (x̃, t(2)1 ), we obtain that deeper minima of (−∆(2)

2 max) come from the global minimum
of the first correction:

− ∆(2)
2 max =

1
2

d(2)2 (1− ∆(2)
1 max)−

1
2

∆(2)2
1 max(3− ∆(2)

1 max), (A15)
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and the maximum, by analogy to the first correction, corresponds to the following value of
∆(2)

1 (x̃, t(2)1 ):

∆+ =

√
1 + d(2)2 /3− 1. (A16)

Solving the equation

∆(2)
2 max =

1
2

d(2)2 (1 + ∆+)− 1
2

∆+2(3 + ∆+), (A17)

we get

d(2)2 ' 1.159352515 · 10−6 and ∆(2)
2 max ' 5.796763137 · 10−7 ' δ̃2 max

7.93
. (A18)

Appendix A.2. Algorithm InvSqrt3

Parameters k1, k2, k3, and k4 in the formula (28) will be determined by minimization
of the maximum error. The relative error functions for (28) are given by:

∆(3)
j =

√
x̃ ỹ(3)j − 1, (A19)

where j = 1, 2. Substituting (A19) into (28), we obtain:

∆(3)
1 (x̃, t, k1, k2) = k1k2(δ̃0(x̃, t) + 1)− k1(δ̃0(x̃, t) + 1)3 − 1 ,

∆(3)
2 (x̃, t, k) = k3k4(∆

(3)
1 (x̃, t, k1, k2) + 1)− k3(∆

(3)
1 (x̃, t, k1, k2) + 1)3 − 1 ,

(A20)

where k = (k1, k2, k3, k4) and δ̃0(x̃, t) is the relative error of the zeroth approximation
(see [31,32]).

We are going to find parameters t and k such that the error functions take extreme
values. We begin with ∆(3)

1 .

∂x̃∆(3)
1 (x̃, t, k1, k2) =

(
k1k2 − 3k1(δ̃0(x̃, t) + 1)2

)
∂x̃ δ̃0(x̃, t). (A21)

Therefore, the local extremes of ∆(3)
1 can be located either at the same points as the

extremes of δ̃0(x̃, t) or at the x̃ satisfying the equation:

δ̃0(x̃, t) = δ
(e)
1 (A22)

where
δ
(e)
1 =

√
k2/3− 1 . (A23)

The extremes corresponding to δ
(e)
1 are global maxima equal to

∆(3)
1 max = k1k2(δ

(e)
1 + 1)− k1(δ

(e)
1 + 1)3 − 1 = 2k1

(
k2

3

)3/2
− 1 . (A24)

The two extremes of δ̃0(x̃, t), located at x̃I
0 = (6 + t)/6 and x̃I I

0 = (4 + t)/3 (see [31]),

can correspond either to minima or to maxima of ∆(3)
1 (depending on parameters t, k1, and

k2). If δ̃0(x̃I/I I
0 , t) < δ

(e)
1 , we have a maximum. The case δ̃0(x̃I/I I

0 , t) > δ
(e)
1 corresponds to a

minimum.
Global extremes of ∆(3)

1 can be either local extremes or boundary values (which, in
turn, correspond to global extremes of δ̃0(x̃, t)). We recall that the global minimum of
δ̃0(x̃, t) is at x̃ = t and the global maximum is at x̃I

0 or x̃I I
0 [31]. Therefore, in order to find
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the parameters k1 and k2 that minimize the maximal value of |∆(3)
1 |, we have to solve two

equations:
∆(3)

1 max + ∆(3)
1 (t, t, k1, k2) = 0, (A25)

∆(3)
1 (x̃N

0 , t, k1, k2) = ∆(3)
1 (t, t, k1, k2), (A26)

where N = I for t ∈ (2, 25/3 + 24/3 − 2) and N = I I for t ∈ (25/3 + 24/3 − 2, 4). Note that
δ̃(x̃N

0 , t) = max{δ̃(x̃I
0, t), δ̃(x̃I I

0 , t)} and ∆(3)
1 (x̃N

0 , t, k1, k2) is a minimum of ∆(3)
1 .

The solution of the system (A25) and (A26) corresponds to the case N = I and is given
by: k1 = 2

(
2 · 3−3/2k3/2

2 + t1/2k2/2− t3/2/8
)−1

k2 =
[
(1 + t/6)3 +

√
t(1 + t/6)3/2 + t

]
/4 .

(A27)

Thus, ∆(3)
1 max, given by (A24), is a function of one variable t, and we can easily find its

minimum value. It is enough to compute

d ∆(3)
1 max
dt

≡
√

k2

3

(
2
3

k2
d k1

dt
+ k1

d k2

dt

)
= 0 . (A28)

We obtain t = t(3)1 , where

t(3)1 = 3, R(3) = 1595932672 = 0x5F200000 , (A29)

and, inserting t = t(3)1 into (A24) and (A27):

∆(3)
1 max =

−54
√

3− 36
√

6 +
√

2(17 + 6
√

2)3/2

54
√

3 + 36
√

6 +
√

2(17 + 6
√

2)3/2
' 6.5007 · 10−4, (A30)

k1 =
256

54
√

3 + 36
√

6 + 12
√

17 + 6
√

2 + 17
√

34 + 12
√

2
≈ 0.7039520,

k2 =
51 + 18

√
2

32
≈ 2.3892451.

(A31)

In order to find the parameters k3 and k4 that minimize the maximal relative error
of the second correction, we fix t = t(3)1 . Then, we have to solve the following Equations
(obtained in the same way as Equations (A25) and (A26)):

∆(3)
2 (t, t, k1, k2, k3, k4) = k3k4(∆

(3)
1 max + 1)− k3(∆

(3)
1 max + 1)3 − 1 ,

∆(3)
2 (t, t, k1, k2, k3, k4) = −k3k4(δ

(e)
2 + 1) + k3(δ

(e)
2 + 1)3 + 1 ,

(A32)

where
δ
(e)
2 =

√
k4/3− 1 (A33)

corresponds to ∆(3)
1 (x̃, t, k1, k2) satisfying:

0 = ∂
∆(3)

1 (x̃,t,k1,k2)
∆(3)

2 (x̃, t, k1, k2, k3, k4) = k3k4 − 3k3(∆
(3)
1 (x̃, t, k1, k2) + 1)2.



Entropy 2021, 23, 86 19 of 20

Solving the system (A32), we get:

k4 = 3 + (∆(3)
1 max)

2 ,

k3 = 2
((

2− ∆(3)
1 max + δ

(e)
2

)(
2− δ

(e)
2 (1 + ∆(3)

1 max + δ
(e)
2 ) + ∆(3)

1 max

))−1
,

∆(3)
2 max = k3k4(δ

(e)
2 + 1)− k3(δ

(e)
2 + 1)3 − 1 .

(A34)

Then, using (A30) and (A33), we get numerical values:

k3 ≈ 0.50000005 , k4 ≈ 3.0000004 , ∆(3)
2 max ≈ 3.16943579 · 10−7 . (A35)

One can easily see that the obtained error ∆(3)
2 max is only about half (55%) of the error

∆(2)
2 max.

Appendix B. Numerical Experiments Using Different Processors and Compilers

The accuracy of our codes depends, to some extent, on the devices used for testing.
In Section 4, we limited ourselves to the Intel Core i5 with the 32-bit compiler. In this
Appendix, we present, for comparison, data from other devices (Tables A1 and A2). All
data are for the type float (single precision).

The first two columns with data correspond to the Intel Core i5 with the 32-bit com-
piler (described, in more detail, in Section 4), the next two columns correspond to the
same processor, but with the 64-bit compiler. Then, we have results (the same) for three
microcontrollers: STM32L432KC and TM4C123GH6PM (ARM Cortex-M4), as well as
STM32F767ZIT6 (ARM Cortex-M7). The last two columns contain results for the ESP32-
D0WDQ5 system with two Xtensa LX6 microprocessors.

Table A1. The range of numerical errors for the first correction depending on the CPU used.

Code
Intel Core i5 (32-bit) Intel Core i5 (64-bit) ARM Cortex M4-7 ESP32

103∆min 103∆max 103∆min 103∆max 103∆min 103∆max 103∆min 103∆max

InvSqrt1 −0.87642 0.87644 −0.87646 0.87654 −0.87649 0.87656 −0.87646 0.87652

InvSqrt2 −0.87916 0.87911 −0.87922 0.87924 −0.87923 0.87927 −0.87921 0.87922

InvSqrt3 −0.65017 0.65006 −0.65029 0.65017 −0.65028 0.65018 −0.65025 0.65014

Table A2. The range of numerical errors for the second correction depending on the processor used.

Code
Intel Core i5 (32-bit) Intel Core i5 (64-bit) ARM Cortex M4-7 ESP32

106∆min 106∆max 106∆min 106∆max 106∆min 106∆max 106∆min 106∆max

InvSqrt1 −0.66221 0.63504 −0.75813 0.78832 −0.80341 0.81933 −0.75548 0.77074

InvSqrt2 −0.62060 0.65287 −0.70266 0.77609 −0.74198 0.81605 −0.69991 0.76667

InvSqrt3 −0.38701 0.35198 −0.48605 0.45363 −0.51755 0.48057 −0.47314 0.44122
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