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Abstract: In this paper, a three-terminal memristor is constructed and studied through changing
dual-port output instead of one-port. A new conservative memristor-based chaotic system is built
by embedding this three-terminal memristor into a newly proposed four-dimensional (4D) Euler
equation. The generalized Hamiltonian energy function has been given, and it is composed of
conservative and non-conservative parts of the Hamiltonian. The Hamiltonian of the Euler equation
remains constant, while the three-terminal memristor’s Hamiltonian is mutative, causing non-
conservation in energy. Through proof, only centers or saddles equilibria exist, which meets the
definition of the conservative system. A non-Hamiltonian conservative chaotic system is proposed.
The Hamiltonian of the conservative part determines whether the system can produce chaos or not.
The non-conservative part affects the dynamic of the system based on the conservative part. The
chaotic and quasiperiodic orbits are generated when the system has different Hamiltonian levels.
Lyapunov exponent (LE), Poincaré map, bifurcation and Hamiltonian diagrams are used to analyze
the dynamical behavior of the non-Hamiltonian conservative chaotic system. The frequency and
initial values of the system have an extensive variable range. Through the mechanism adjustment,
instead of trial-and-error, the maximum LE of the system can even reach an incredible value of
963. An analog circuit is implemented to verify the existence of the non-Hamiltonian conservative
chaotic system, which overcomes the challenge that a little bias will lead to the disappearance of
conservative chaos.

Keywords: three-terminal memristor; non-Hamiltonian conservative chaotic system; conservative
chaos; analog circuit

1. Introduction

Since the HP laboratory [1] confirmed memristors’ physical existence in 2008, the
memristors [2] have received extensive attention from the academic community. Mem-
ristor [3] is a kind of nonlinear resistor with memory function. The memristor has been
investigated and applied in non-volatile memory [3], artificial neural network [4], confiden-
tial communication [5], analog circuit [6], an artificial intelligence computer [4,6], biological
behavior simulation [7], etc., showing great potential.

Although two-terminal memristors have proved the basic principle of neurons, the
synapses of one neuron are far more than one, so it is necessary to study multi-terminal
memristors. The three-terminal Widrow-Hoff memristor [8] has carried out this kind
of attempt by adding a control terminal to realize a three-terminal chemical memristor.
A new floating gate silicon MOS (MOSFET) transistor [9] was similarly proposed, and
Lai proposed field-effect transistors with nano ionic gates [10]. Mouttet proposed the
basic definition of the three-terminal memristor [11] based on the two-terminal memristor
passive nonlinear system [12] by Chua. Recently, using monolayer molybdenum disulfide,
three-terminal [13], six-terminal, or even more synapses’ memristors were realized.

Chaos exists in mathematical models [14] and other aspects such as the macroeco-
nomic model [15], the breaking of topological supersymmetry [16], etc. Chaotic systems
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are divided into the conservative system and dissipative system [17]. The Lyapunov di-
mensions of dissipative chaotic systems are fractional; for instance, if the system’s full
dimension is three, the Lyapunov dimension is slightly higher than two. The divergence of
the dissipative chaotic system is less than zero leading to the phase volume converging
to zero with the exponential rate of the divergence. Hence, the passing trajectories of the
dissipative system are not ergodic in the 3D space as the chaotic attractor looks like, but oc-
cupies zero space of the fractional dimension. The system orbits cannot traverse the entire
space given by the initial value, and even most of the spatial range cannot be experienced.
The poor ergodicity caused by the fractional dimension is the disadvantage in chaos-based
encryption. It is easy to obtain exhaustive attacks when used in encryption systems [17,18].
However, the conservative chaos has a full dimension in phase volume, and encryption
based on conservative systems is better than dissipative systems in anti-attack [17–19].
Constructing a memristor-based conservative chaotic system is helpful to the encryption of
information and provides better security about information-theory.

A conservative chaotic system is a system in which the phase volume space remains
unchanged [17–19], so the dimension is an integer [20], and the orbit can traverse and
occupy the entire space given by the initial value. Compared with dissipative chaotic
systems, conservative chaotic systems are scarce, and conservative chaos can be divided
into two types: Hamiltonian conservative (energy conservative) and phase volume conser-
vative [17]. Recently, Qi [17,18] first established the four-dimensional (4D) Euler equations.
The 4D Euler equation modeling is essential in mathematics, rigid-body dynamics, and
the structure of symplectic manifolds and fluid dynamics [17,18]. Based on this, a 4D
conservative chaotic system was constructed, which is strictly conservative chaos.

Nowadays, most of the research on memristors is based on dissipative chaos [7,14].
There are two research routes of two-terminal memristor chaotic systems based on dis-
sipative system: (1) The memristor is used to replace nonlinear components such as the
Chua circuits [14,21], oscillator circuits [22], etc. The hidden attractor, multistability [23],
hyperchaotic and fractional-order form [24] were proposed. (2) The memristor is used as a
feedback term to couple into a neuron model such as the Hindmarsh-Rose (HR) neuron
model [7], etc. Some recent research methods on memristors, such as Chua’s periodic
table [16,25,26] and the multidimensional scaling [27], have not explained the causes of
chaos from the perspective of Hamiltonian energy.

Only a few two-terminal memristor systems are driven by piecewise function [28]
or sine function [29,30] to obtain conservative chaotic systems. However, the values of
positive Lyapunov exponent (LE) of these systems in [28–30] are too small. The system [29]
just satisfies that the sum of LEs is zero, but the system does not analytically meet zero
divergence requirements. More importantly, to our best knowledge, no conservative chaos
based on three-terminal memristor has been studied. A memristor-based conservative
chaotic system is more complicated with more parameters, which increases the keyspace
of the chaos generator. Besides, a memristor-based conservative chaotic system with a
high positive Lyapunov exponent is necessary for chaos-based encryption to generate the
pseudo-random number.

We consider designing a conservative three-terminal memristor chaotic system based
on the 4D Euler equation given in [18]. The 4D Euler equation is a very delicate ordinary
differential equation based on mathematics, which is strictly conservative in both energy
and divergence, but it just produces the periodic orbit instead of the chaos. By coupling
the Euler equation with a three-terminal memristor, the energy conservation is broken, but
the phase-volume conservation (divergence being zero) is still kept. Therefore, this paper
constructs a three-terminal-memristor-based conservative chaotic system, and gives its
energy function, pointing out the cause of its chaos. A large positive Lyapunov exponent is
produced, which is advantageous over existing dissipative chaos and conservative chaos.
An analog circuit is designed to prove the theory’s feasibility, and verify the existence of
the non-Hamiltonian conservative chaotic system, which overcomes the challenge that a
little bias will lead to the disappearance of conservative chaos.
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This paper is organized as follows: Section 2 proposes the three-terminal memristor
and constructs the circuit to implement it. Section 3 proposes the conservative chaotic sys-
tem based on a three-terminal memristor from a strict conservative system [18]. Section 4
gives the characteristics of equilibria of the three-terminal memristor conservative system.
Section 5 gives the dynamical analysis, and the cause of dynamical changing of the system
in different levels and the impact of Hamiltonian on the system are investigated. Analog
circuit implementation is provided in Section 6. Section 7 summarizes the paper.

2. Modeling of Three-Terminal Memristor

The memristor predicted by Chua is a two-port device [31]. It also has three significant
features: the hysteresis loop passes the origin, the hysteresis loop is the shape of eight,
and the area of the hysteresis curve decreases with increasing signal frequency. Here, we
choose the cubic smooth memductance nonlinearity model [14,32]. The memristor model
is described in the following form

.
ϕ = v,

W(ϕ) = α + βϕ2,

i = W(ϕ)v = (α + βϕ2)v.

(1)

According to the magnetic controlled three-terminal memristor model proposed in
the memristive systems analysis [11], the following results are obtained

dw
dt = f

(
w, vg, vd

)
,

ig = g
(
w, vg, vd

)
,

id = h
(
w, vg, vd

)
.

(2)

Here vg, vd represent the input voltages, ig, id represent the output currents, w donates
an n-dimensional state variable of the system, g, h are defined as continuous function,
and f is an n-dimensional continuous function. The memristor model in Equation (1) is
appropriately deformed. By changing it to the model of single-port input and dual-port
output, the model is transformed as

dϕ
dt = f (w, v1, v2) = vin = v1v2,

i1 = g(w, v1, v2) = W(ϕ)v1 = (α + βϕ2)v1,

i2 = h(w, v1, v2) = W(ϕ)v2 = (α + βϕ2)v2.

(3)

where vin = v1v2 is the input voltage of the model, ϕ is the magnetic flux that controls
the state of the model, W(ϕ) represents the memductance, and i1, i2 are the two current
outputs.

To verify the feature of the model Equation (3), we used Matlab for numerical sim-
ulation, as shown in Figure 1, The product of v1 = A1 sin(ω1t) and v2 = A2 sin(ω2t) is
the input of this device with parameters A1 = A2 = ω2 = 1, and ω1= 2 in Figure 1a and
ω1= 10 Figure 1b. We found that the hysteresis curve does not converge to a single-valued
function, but a multi-valued resistance with the frequency increasing, which means this
model has a complex resistance value. The three-terminal memristor can be implemented
by the circuit shown in Figure 2.
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Figure 2. Circuit implementation of the three-terminal memristor.

In Figure 2, v1, v2 are input voltages of the model, M1 to M4 multipliers, R1 to R5
resistors, C1 a capacitor, and i1, i2 output currents, respectively. The analytical mathematical
model is given as

i1 = v1
R2

+
(
∫

v1v2dt)2v1
R2

1C2
1 R3

,

i2 = v2
R5

+
(
∫

v1v2dt)2v2
R2

1C2
1 R4

.
(4)

R1, C1 form the integrated circuit, and the remaining four resistors match the output
coefficients. Using Multisim to simulate the model, input voltages are consistent with
Matlab numerical simulation. The circuit simulation results received are shown in Figure 3.
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It was found that the simulation results of the circuit model are consistent with
the simulation of the mathematical model, so the model can be used to build the actual
hardware circuit.

3. Modeling of Conservative Chaotic System Based on Three-Terminal Memristor

Qi proposed a 4D Euler rigid body equation with a Hamiltonian vector field form [18]

.
x = J(x)∇H(x), (5)

where

J(x) =


0 −x3 x2 0
x3 0 −x1 − x4 x3
−x2 x1 + x4 0 −x2

0 −x3 x2 0

, (6)

with
H(x) =

1
2
(π1x2

1 + π2x2
2 + π3x2

3 + π4x2
4). (7)

The system can be written as

.
x1 = (π3 − π2)x2x3,
.
x2 = (π1 − π3)x1x3 + (π4 − π3)x3x4,
.
x3 = (π2 − π1)x1x2 + (π2 − π4)x2x4,
.
x4 = (π3 − π2)x2x3.

(8)

The divergence of the 4D Euler equation is

∇ · .
x =

4

∑
i=1

∂ fxi

∂xi
= 0. (9)

Therefore, Equation (8) is a phase-volume conservative system. Because J(x) in
Equation (6) is a skew-symmetric matrix, we have

.
H = ∇H(x)T J(x)∇H(x) = 0. (10)

Thus, the system of Equation (8) is a Hamiltonian conservative system. Therefore, it
preserves both the phase-volume and Hamiltonian. Using Matlab for numerical simulation,
take parameters [π1, π2, π3, π4]

T = [2, 3, 4, 5]T, initial conditions [x10, x20, x30, x40]
T =

[5, 5, −5, −5]T, and sampling time T = 0.001 s. Since the conservation of both phase-
volume and Hamiltonian, this system only produces periodic orbit [17–19], as shown in
Figure 4.
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The 4-D Hamiltonian conservative system only produces a periodic orbit because
of the conservation of both phase volume and Hamiltonian energy. Does it generate
conservative chaos by breaking one of the conservations, like the Hamiltonian energy?
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Qi [17] proposed a Hamiltonian conservative chaotic system by changing the Casimir
conservation and keeping the Hamiltonian constant. Only one parameter was changed. So
far, to our best knowledge, no memristor has been applied in all the conservative chaotic
systems generation.

To generate chaos, we should break the conservation of Hamiltonian by adding a
pair of constants c and (π4/π1)c in the symplectic matrix J(x) in Equation (6), and then
Equation (5) can be written as

.
x = Jc(x)∇H(x), (11)

where

Jc(x) =


0 −x3 x2 c
x3 0 −x1 − x4 x3
−x2 x1 + x4 0 −x2
−π4

π1
c −x3 x2 0

, (12)

For simplification, the system parameters are fixed as

[π1, π2, π3, π4]
T = [2, 3, 4, 5]T. (13)

Then Equation (11) becomes

.
x1 = x2x3 + 5cx4,
.
x2 = −2x1x3 + x3x4,
.
x3 = x1x2 − 2x2x4,
.
x4 = x2x3 − 5cx1.

(14)

with
H(x) =

1
2
(2x2

1 + 3x2
2 + 4x2

3 + 5x2
4). (15)

Because the main diagonal of Equation (12) is zero as Equation (6), the phase volume
is still conservative.

However, for the Hamiltonian energy, we have

.
H = ∇H(x)T Jc(x)∇H(x) = cπ4(π1 − π4)x1x4 = −15cx1x4. (16)

Thus, the system is non-conservative in Hamiltonian energy but conservative in phase
volume. Setting initial conditions [x10, x20, x30, x40]

T = [5 , 5 , −5 , −5]T, constant c = 1
and sampling time T = 0.001 s, this system produces chaotic orbits [Figure 5a]; therefore,
the Hamiltonian of Equation (12) is non-conservative because the positive and negative
changes of x1x4 [Figure 5b].
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When the three-terminal memristor is coupled with the 4D Euler equation, can chaos
be generated using a similar way? The memristor model is regarded as a device inserted
in the 4D rigid body to replace 5c and −5c. To get the input of the memristor, we added
another variable x5 as the input of the memristor. Thus, the memristor is α + βx2

5, and the
new system is described as

.
x1 = x2x3 + γ(α + βx2

5)x4,
.
x2 = −2x1x3 + x3x4,
.
x3 = x1x2 − 2x2x4,
.
x4 = x2x3 − γ(α + βx2

5)x1,
.
x5 = x1x4.

(17)

Here γ is the three-terminal memristor weight parameter. Therefore, the memristor is
added as a feedback term to Equation (12). The divergence of Equation (17) is

∇ · .
x =

5

∑
i=1

∂ fxi

∂xi
= 0. (18)

which means the phase volume of the system (17) is still conservative.
Now, we test whether the Hamiltonian energy is still conservative. The general-

ized Hamiltonian form was used [33]. We consider the input of the fifth term as a non-
conservative force, and get

.
x = M(x)∇H(x), (19)

where
M(x)∇H(x) = Jm(x)∇H(x) + R(x)∇H(x) = fc(x) + fd(x), (20)

with new Hamiltonian
H =

1
2
(x2

1 + x2
2 + x2

3 + x2
4 + x2

5), (21)

and

Jm(x) =


0

−0.5x3
−0.5x2

−γ(α + βx2
5)

0

0.5x3
0

1.5(x1 − x4)
0.5x3

0

0.5x2
1.5(x4 − x1)

0
0.5x2

0

γ(α + βx2
5)

−0.5x3
−0.5x2

0
0

0
0
0
0
0

,

R(x) =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 x1x4

x5

, fc(x) =


x2x3 + γ(α + βx2

5)x4
−2x1x3 + x3x4
x1x2 − 2x2x4

x2x3 − γ(α + βx2
5)x1

0

, fd(x) =


0
0
0
0

x1x4

.

M(x) is no longer skew-symmetric but is decomposed into the sum of a skew-
symmetric matrix J(x) and a symmetric matrix R(x). The total force exerted on the system
is non-conservative. Differentiating the Hamilton function, we get

.
H = (x1

.
x1 + x2

.
x2 + x3

.
x3 + x4

.
x4 + x5

.
x5) = x1x4x5 = ∇HT fd(x) = x1x4x5, (22)

which indicates Hamiltonian energy function is no longer conservative. We divide H of
Equation (21) into

H = Hc + Hn, (23)

with
Hc =

1
2
(x2

1 + x2
2 + x2

3 + x2
4), Hn =

1
2

x2
5.
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It can be proved that
.

Hc = 0, but
.

Hn = x1x4x5. Therefore, Hc represents the con-
servative energy of the system, and Hn is the non-conservative part. According to [17],
there are two categories of conservative systems: the Hamiltonian conservative chaotic
system, in which both the volume and Hamiltonian of the system are constant, and the
non-Hamiltonian conservative chaotic system, in which only the phase volume is conser-
vative. Thus, the proposed three-terminal-memristor-based system (i.e., Equation (17)) is a
typical non-Hamiltonian conservative chaotic system.

4. Equilibria and Their Stability of Three-Terminal Memristor Conservative System

The equilibria point plays an essential role in analyzing the system’s properties and
we examined whether it meets the requirements of the conservative chaotic system. For a
conservative system, only saddles and centers exist. There are no stable or unstable nodes
and foci to exist in a conservative system. Equation (17) can be rewritten as

.
x1 = x2x3 + αγx4 + βγx4x2

5,
.
x2 = −2x1x3 + x3x4,
.
x3 = x1x2 − 2x2x4,
.
x4 = x2x3 − αγx1 − βγx1x2

5,
.
x5 = x1x4.

(24)

Setting the left of Equation (24) equal to 0, we can get three cases:
Case 1: x1 = 0, x4 = 0, we can get x2x3 = 0, x5 ∈ R. This case has three sub-cases as

follows:
Case 1.1:

x1 = 0, x2 = 0, x3 = 0, x4 = 0, x5 = x5,
Case 1.2:

x1 = 0, x2 = 0, x3 6= 0, x4 = 0, x5 = x5,
Case 1.3:

x1 = 0, x2 = 0, x3 6= 0, x4 = 0, x5 = x5,
Case 2:

x1 6= 0, x4 = 0.
Case 3:

x1 = 0, x4 6= 0.

In Case 2, we derive x2 = x3 = 0, but parameters α, β > 0 and the weight parameter
γ 6= 0, γ(α + βx2

5)x1 = 0 holds. Since x1 6= 0, we have γ
(
α + βx2

5
)
= 0 which contradicts

the premise. Therefore, Case 2 does not hold. Case 3 has the same problem as Case 2.
Therefore, from Case 1, the system has line equilibria E5 = [0, 0, 0, 0, x5]

T, plane equilibria
E3,5 = [0, 0, x3, 0, x5]

T, and E2,5 = [0, x2, 0, 0, x5]
T. The Jacobi matrix of the system is

J =


0
−2x∗3

x∗2
−γ(α + βx∗5

2)
x∗4

x∗3
0

x∗1 − 2x∗4
x∗3
0

x∗2
x∗4 − 2x∗1

0
x∗2
0

γ(α + βx∗5
2)

x∗3
−2x∗2

0
x∗1

2γβx∗4 x∗5
0
0

−2γβx∗1 x∗5
0

. (25)

By substituting E5 into the characteristic equation, we find the eigenvalues of E5 as

E5 = (0, 0, 0, 0, x5)→ λ = (0, 0, 0,−γj(βx2
5 + α), γj(βx2

5 + α)). (26)

Hence, line equilibria E5 are centers.
For the plane equilibrium E3,5, we find the eigenvalues as

E3,5 = (0, 0, x3, 0, x5)→ λ = (0, 0, a4,−1
2

a4 − j
√

3
2

a5,−1
2

a4 + j
√

3
2

a5), (27)
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where
a1 = α2γ2

3 +
2αβγ2x∗5

2

3 +
β2γ2x∗5

4

3 +
x∗3

2

3 ,

a2 =
3βγx∗3

2x∗5
2

2 +
3αγx∗3

2

2 ,

a3 = 3

√√
a3

1 + a2
2 − a2,

a4 = a3 − a1
a3

,
a5 = 2a3 − a4.

where j is the imaginary unit. If a4 = 0 holds, E3,5 must be centers from Equation (24).
If a4 6= 0, we can find out if a4 > 0, λ3 is a positive real number and the real parts of
λ4, λ5 must be negative. If a4 > 0, λ3 is a negative real number and the real parts of λ4, λ5
must be positive. Therefore, if a4 6= 0, E3,5 must be saddles. Likewise, plane equilibrium
E2,5 has the same properties as E3,5. In sum, both E2,5 and E3,5 are either natural elliptic
(centers) or saddles. Thus, from the perspective of these equilibria, the system fully meets
the characteristics that the conservative system in phase space only has either saddle or
center [17–19].

5. Dynamical Analysis of Three-Terminal Memristor Conservative Chaotic System
5.1. Memristor Effect in Chaos Generation

For system (19), take initial values [x10, x20, x30, x40, x50]
T = [1, 1, −1, −1, 0]T, pa-

rameters [α, β, γ]T = [1, 1, 0]T, and sampling time T = 0.001 s. Since γ = 0, the outputs
of the three-terminal memristor do not affect the system. According to the analysis of
Equation (10), it produces periodic orbit, as shown in Figure 6a.
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Now fixing α = β = γ = 1 and initial values as above, the orbits of different
phase spaces are shown in Figure 6c,d. Therefore, the three-terminal-memristor-based
conservative system produces chaos, which is called the three-terminal-memristor-based
conservative chaotic system. The Poincaré map from Figure 6e with x1 = 0 shows the orbits
are chaotic and do not form a chaotic attractor. The chaotic attractor of a dissipative system
has several little branches of hair-like Poincaré map because of the fractal dimension, but
this memristor-based conservative chaos has a wide-banding Poincaré map that almost
evenly fills the space initially occupied. This is because it has an integer dimension. The
ergodicity of the memristor-based conservative chaotic system is much better than general
dissipative chaotic systems, which is beneficial in chaos-based encryption.

The LEs L1,2,3,4,5 = [0.4446, 0.0003, 0.0000, −0.0003, −0.4446]T in Figure 6b, indicat-
ing the sum of the LEs is zero. From Ref. [20], the Kaplan-Yorke Lyapunov dimension
is

LKY = 4 + (L1 + L2 + L3 + L4)/|L5| = 5. (28)

The integer result proves the conservativeness of the system. From Figure 6f, Hc is
constant, indicating this part is conservative; however, the total Hamiltonian of the system
H changes, which is caused by the non-conservative part Hn. Thus, we confirmed the
system is a typical non-Hamiltonian conservative chaotic system.

In this case, the maximum LE value, L1 = 0.4446, is small, and the Poincaré map area
is not large enough, although it fills evenly. Normally, in chaos-based encryption, the larger
maximum LE value, the higher-order in pseudo-randomness of the chaos generator, the
better in security, the more difficult to break. Besides, the larger area of Poincaré map,
the more choices in the selection of pseudo-randomness. To enhance the maximum LE,
many references took a trial-and-error method through bifurcation; we took a mechanism
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way in this paper. Provided that the frequency and energy of the system are increased,
the positive Lyapunov exponent can be increased. Therefore, we adjusted the five initial
values and four parameters according to their functions in frequency and energy. Accord-
ing to the 4D Euler equation, increasing πi can speed up the operating frequency of the
system, and increasing the initial values can store the kinetic energy. The initial values also
determine the spatial magnitude of orbits and the area of the Poincaré map. Initial val-
ues [x]T = [1000, 1000, −1000, −1000, 0]T and [π1, π2, π3, π4]

T = [100, 150, 200, 250]T,
and sampling time T = 10−7 s, were chosen to calculate Lyapunov exponents using the
Wolf method [34]. As shown in Figure 6g,h, the maximum of the LEs LE1 = 0.9631× 103.
The maximum of the LEs is far greater than those of the most chaotic systems; it can be
observed from the Poincaré map with x1 = 0 that the space of the orbits is quite large,
and the frequency is very high, which can be tested by frequency spectrum (the figure
is omitted). Usually, the maximum LE cannot be adjusted too large through mechanical
analysis. To increase the LE, the scaling time can be adjusted; however, this proposed
memristor-based chaotic system can produce exceptionally large maximum LE through
the adjustments of parameter and initial, which is based on the physical mechanism. The
large LE and magnitude of Poincaré map are greatly helpful in chaos-based encryption.

5.2. Dynamical Analysis with Different Initial Conditions of Hc

We have analyzed the three-terminal memristor excitation of chaos, so how does
Hamiltonian affect system dynamics? Fixing parameter [α, β, γ]T = [1, 1, 1]T, the initial
value determines H0 from Equation (29).

H0 ≥ Hc0 =
1
2
(x2

10 + x2
20 + x2

30 + x2
40) (29)

Choose the initial value x0 = [0.1, x20, 0.1, 0.1, 0]T with x20 ∈ [−2, 2],
x0 = [x10, 0.1, 0.1, 0.1, 0]T with x10 ∈ [−2, 2]. The bifurcation diagrams are plotted by re-
moving 80% of transients. Both initials correspond to the Hamiltonian H0 ∈ [0.015, 2.015].
Figure 7a,b are the bifurcation diagrams based on the change of initials. The stripe colors
represent Hamiltonian H0 marked by the color bar. The low Hamiltonian energy (dark
blue and blue) represents quasiperiodic orbits, and the high Hamiltonian energy (light
blue, yellow, and red) represents chaos.

Figure 7c is the zoom of Figure 7b within x10 ∈ [1, 1.2]. There are some bifurca-
tions, for instance, when x10 = 1 and x10 = 1.2, the system produces chaotic orbits, as
shown in Figure 7d,f. However, it also generates the periodic orbits, period-2 orbits, and
quasiperiodic orbits with x10 = 1.1, as shown in Figure 7e.
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5.3. Dynamical Analysis with Fixed Hc and Varied Hn

Although the non-conservative part Hn changes with time at the rate of Equation (22),
in Sections 5.1 and 5.2, the initial value of x50 6= 0 is crucial. When it is set to zero,
the influence of three-terminal memristor variable is reduced as much as possible from
Equation (23). In this section, the four initial values [x10, x20, x30, x40]

T corresponding
to the conservative part Hc0 being fixed, we analyze how the initial value x50 corre-
sponding to the Hn0 effects of the system. Fix the initial values [x10, x20, x30, x40]

T =

[0.1, 0.1, 0.1, 0.1]T with Hc0 = 0.02 and [x10, x20, x30, x40]
T = [1, 1, 1, 1]T with Hc0 = 2,

and
Hn0 =

1
2

x2
50. (30)

The low Hc0 energy determines that the system generates quasiperiodic orbits
[Figure 8a] and the high Hc0 energy makes chaos [Figure 8c], which corresponds to the
results given in Sections 5.1 and 5.2. Regardless of the value of conservative Hamiltonian
Hc0, x50 promotes the chaotic degree of the system within a range. Beyond this range, it
suppresses the system’s dynamics and transits from chaotic motion to quasiperiodic motion.
As the Hamiltonian level increases, the range becomes wider, as shown in Figure 8b,d.
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6. Circuit Implementation

There are three methods for the simulation of nonlinear systems: chaotic system
simulation circuit, FPGA (Field Programmable Gate Array), and computer numerical
simulation. For the most dissipative systems, the required accuracy is not high, so all three
simulation methods can be implemented. However, for conservative systems, the required
accuracy is very high, especially FPGA and numerical simulation. Even if the accuracy is
high, there still are problems such as algorithms, sampling, discretization, and the number
of bits of computer operations causing errors. The conservative system divergence is zero,
so a little bit of error will make the divergence either larger than zero leading to instability,
or less than zero leading to shrinking. Both situations cause the conservative chaotic
phase diagram to disappear. The hardware implementation is challenging. Therefore, for
conservative systems, analog circuit simulation is indispensable because it is a real analog
simulation.

As shown in Figure 9, the system is implemented by an analog electronic circuit with-
out scale transformation. A total of 10 analog multipliers accomplish seven quadratic terms
and two cubic terms in the system. Besides, there are five integrators and four inverters,
which are composed of some capacitors and resistors. The three-terminal memristor is
constructed at the bottom of Figure 9.
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Figure 11a,b showing different phase diagrams are consistent with the results of a 
numerical simulation showing in Figure 10a,b. It is verified that the proposed system pro-
duces conservative chaos. 

Figure 9. Circuit implementation of system Equation (15), with electronic parameters:
R1, R2, R3, R5, R6, R7, R8, R10, R11, R12, R13, R14, R15, R17, R19 = 10 KΩ; R4, R9 = 5 KΩ; R16, R18 =

100 KΩ; C1, C2, C3, C4, C5 = 10 nF.

Selecting the initial values [x0]
T = [0.2, 0.2, 0.2, 0.2, 0]T and parameters [α, β, γ]T =

[1, 0.1, 1]T, the phase portraits of numerical simulation are shown in Figure 10a,b. In the
analog circuit, the chips have a slight voltage deviation that corresponds to a small initial
value, so there is no need to add the initial voltage between the capacitor’s two pins.
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Figure 11a,b showing different phase diagrams are consistent with the results of a
numerical simulation showing in Figure 10a,b. It is verified that the proposed system
produces conservative chaos.
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7. Conclusions

This paper proposed a non-Hamiltonian conservative chaotic system by integrating
three-terminal memristor and 4D Euler equations. The dual-output pins of the three-
terminal memristor, satisfying the nature of the skew-symmetric matrix. The system has
generalized Hamiltonian; the conservation of the 4D Euler equation has been preserved.
The characteristics of either centers or saddles of the equilibrias of the system proved
the conservation property. Chaotic dynamics have been revealed by varying the weight
parameter of the three-terminal memristor. Changing the initial Hamiltonian of the system
will produce rich dynamics, which provides the way of producing quasiperiodic orbit and
chaos. The routes and mechanisms from quasiperiodic orbit to chaos have been provided
through energy bifurcation. With different initial Hamiltonian levels, the system will have
different dynamic ranges. Using energy and frequency adjustment, instead of trial-and-
error, the system produced the huge LEs, which is more suitable for encryption than other
chaotic systems. The analog circuit of the system was built physically, which confirmed
the chaotic existence of the system, and combined the three-terminal memristor and 4D
Euler equation successfully. By changing the different types of memristors, modifying the
dual outputs, and embedding it into the 4D Euler equation, keeping the conservative part
skew-symmetric nature, chaos can be generated under reasonable parameters.
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