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Abstract: The high quantile estimation of heavy tailed distributions has many important applications.
There are theoretical difficulties in studying heavy tailed distributions since they often have infinite
moments. There are also bias issues with the existing methods of confidence intervals (CIs) of high
quantiles. This paper proposes a new estimator for high quantiles based on the geometric mean.
The new estimator has good asymptotic properties as well as it provides a computational algorithm
for estimating confidence intervals of high quantiles. The new estimator avoids difficulties, improves
efficiency and reduces bias. Comparisons of efficiencies and biases of the new estimator relative
to existing estimators are studied. The theoretical are confirmed through Monte Carlo simulations.
Finally, the applications on two real-world examples are provided.

Keywords: efficiency; extreme value distributions; generalized Pareto distribution; Hill estimator;
mean square errors; order statistics; tail index; Weissman estimator

1. Introduction

Extreme value analysis (EVA) was first introduced by Leonard Tippett (Fisher and
Tippett, 1928 [1]). Tippett was working on how to make cotton thread stronger, he realized
that the strength of the weakest threads were the only factor that matters when it comes to
deciding the strength of the cotton thread. Nowadays, extreme value analysis is widely
used in almost all fields, from engineering, social science, economics, traffic predictions
to insurance and so on. People are interested in extreme events in these fields such as,
the shortest life span of a new engine, the maximum appreciation of the stock market,
the longest driving time on a highway at rush hour, or the biggest medical claim to an
insurance company. The distributions of these extreme events are usually unknown. In gen-
eral, EVA involves the extrapolation of an unknown distribution and its high quantiles.
Estimating high quantile based on observation is very important in EVA, since it gives the
corresponding value x for a very small exceeding possibility p.

There are certain risks, ones that are not decided by us or can barely be predicted
until right before they are about to happen. This can include things such as an earthquake,
terrorist attacks, a virus breakout, and so forth. For these events, we will need risk
management which is in place to minimize, monitor, and control the impact of unfortunate
events, or to maximize the realization of opportunities. Estimating the confidence interval
of high quantiles plays an important role in risk management. Since a high quantile is
located at the tail area, it heavily depends on the behaviour of the tail distribution, or
from the statistical point of view, it depends on the k largest order statistics. This leads
to the challenges of the instability in the choice of k, and the bias issues. There are many
research on the mathematical models and theoretical studies in the literature for estimating
confidence intervals of high quantiles, we review them in Section 2.

This paper proposes a new method to estimate high quantile of a heavy-tailed dis-
tribution. The new method has interesting improvements compared with other existing
methods. This paper makes three main contributions to methodology.

(1) This paper proposes a new estimation method based on a geometric mean with
good asymptotic properties. It is consistent and stable relative to the existing methods. The
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paper provides a computational algorithm which overcomes the mathematical difficulties
and bias problems of the estimation of confidence intervals of high quantiles of a heavy
tailed distribution.

(2) The Monte Carlo simulation studies on three heavy tailed distribution models:
Fréchet (0.25), GPD (0.5) and GPD(2) (GPD: generalized Pareto distribution). The simu-
lation results confirm that the proposed method is more efficient relative to the existing
quantile estimators.

(3) This paper uses the proposed estimation method to predict extreme values in
the flu in Canada, and gamma ray from solar flare examples. It is interesting to see that
these data sets fit the GPD model very well. We apply the proposed method to estimate
the confidence intervals of high quantiles. The numerical results show that the proposed
method gives more efficient results compared with other existing methods.

In this paper, we review several existing high quantile estimators with their behavior
in Section 2. We propose a new estimator for the confidence interval of high quantiles
based on the geometric mean and explore its asymptotic properties in Section 3. To
compare the new estimator with the existing estimators, Section 4 presents Monte Carlo
simulation results and the improvement of the proposed quantile estimator relative to
existing methods. In Section 5 we apply the proposed new method to construct confidence
intervals of high quantiles on flu in Canada and gamma ray examples. Finally, conclusions
and discussions are given in Section 6.

2. Existing Estimator for High Quantiles

Heavy-tailed distributions (de Haan and Ferreira, 2006 [2]) is important to extreme
value events.

Definition 1. A random variable X is said to have a heavy tail distribution if its distribution
function F(x) satisfies

1− F(x) = L(x)x−1/γ, x ∈ (−∞, ∞), as x → ∞, γ > 0,

where L(t) is a slowly varying function with lim
t→∞

L(tx)
L(t) = 1, for all x > 0. γ is the tail index.

Notice that we can have L(x) = (ln(x))b, b ∈ R (de Hann and Ferreira, 2006, p. 362
[2]). Since L(t) behaves approximately as a constant c, for simplicity, we assume that a
heavy tailed distribution satisfies

1− F(x, γ)→ cx−1/γ, x ∈ (−∞, ∞), as x → ∞, c > 0, γ > 0. (1)

Since the heavy tailed distributions decay slower than the exponential distributions
and have longer tails. A tail function is defined as

Definition 2. A tail function U(t) of any distribution function F(x) is defined as

U(t) =
(

1
1− F

)←−
, where “ ←− ” denotes the inverse function.

For the heavy tailed distribution in (1), we can rewrite the tail function as

U(t) =
(

1
ct−1/γ

)←−
= cγtγ = Ctγ, as t→ ∞, where cγ = (L(t))γ, let C = cγ. (2)

Definition 3. The quantile function Q(1− p, γ) of a heavy tailed distribution F(x, γ) in (1) for a
given probability 1− p is defined by

x1−p = Q(1− p, γ) = inf{x : F(x, γ) ≥ 1− p}, x ∈ (−∞, ∞), 0 < p < 1
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where Q(1− p, γ) is the generalized inverse function of F, we call Q(1− p, γ) the (1− p)th
quantile function of F(x).

Value at Risk (VaR) is widely used in risk management. When p is very small, x1−p
becomes a high quantile as the pth value at risk, we define

VaRp,γ = x1−p = Q(1− p, γ), 0 < p < 1, p is very small. (3)

Also we can use the tail function in (2) to write VaRp,γ as

VaRp,γ = U
(

1
p

, γ

)
= Ctγ, t =

1
p

, p = pn → 0, npn → 0, as n→ ∞.

The heavy-tailed models have a compulsory infinite right endpoint. In the case of
negative observations in the model, the sample size should be exclusively the number of
positive observations, n+, although a deterministic shift in the data is preferred by some
authors, to work only with positive values. In this paper, we use the real line (0, ∞).

To estimate VaRp,γ, let X1:n ≤ X2:n ≤ ... ≤ Xn:n be the order statistics from a random
sample X1, X2, ...Xn. We review the four high quantile estimation methods in the literature.

2.1. Quantile Function-Tail Index Method

For estimating high quantiles, we use the ln function, and estimate the tail index first

ln Q(p)
γ̂ = ln VaRp,γ̂ = ln x1−p,γ̂, 0 < p < 1, p is very small. (4)

To estimate high quantile function, we estimate the tail index first (Dekkers and de
Haan 1989 [3]). Hill (1975) [4] estimator is a well known consistent estimator for tail
index γ.

Definition 4. Consider the order statistics Xn−k:n, and k as an intermediate sequence of integers,
Hill estimator is defined as

γ̂H = H(k) =
1
k

k

∑
i=1

Ui, Ui = i
(

ln
Xn−i+1:n

Xn−i:n

)
, 1 ≤ i ≤ k. (5)

where k = kn → ∞, k ∈ [1, n), k = o(n) as n→ ∞.
The Hill estimator γ̂H = H(k) in (5) used largest k order statistics of a random sample.

Substitute γ̂H = H(k) defined in (5) into (4), then we obtain ln (1− p)th high quantile as

ln qH,p(k) = ln Q(p)
H (k) = ln x1−p,H(k), 0 < p < 1, p is very small. (6)

This estimator depends on k, small values of k provide high volatility whereas large values
of k induce considerable bias. Hence, semi-parametric extensions may be considered for
increasing the degree of freedom in the trade-off between variance and bias. Note that
the tail index γ is a parameter of a given distribution, and a quantile of a distribution is a
function of γ.

2.2. Weissman Method

Weissman (1978) [5] proposed the following semiparametric estimator of a high
quantile

Q(p)
γ̂ (k) = VaRp,γ̂ = x1−p,γ̂ = Xn−k:n

(
k

np

)γ̂

, 0 < p < 1, 1 ≤ k ≤ n− 1, and

ln Q(p)
γ̂ (k) = ln Xn−k:n + γ̂ ln

(
k

np

)
.
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We substitute γ̂H = H(k) in (5) into the function above, then we have,

ln Q̂(p)
H (k) = ln Xn−k:n + H(k) ln

(
k

np

)
, 1 ≤ k ≤ n− 1. (7)

Without any prior indication on k, the Weissman estimator shows a large volatility as
it depends on the fraction sample k. Although the minimization of the bias and MSE can be
considered as a criterion to select k, it is impractical as they are unknown. Other methods
for the selection of sample fraction k can be found in Beirlant et al. (1996) [6]; Dreea and
Kaufmann (1998) [7]; Guillou and Hall (2001) [8]; Gomes and Oliveira (2001) [9].

The optimal k value through the tail index Hill estimator H, k0, is given by formula
(15) in Section 2.4 Optimal k Values.

2.3. Reduced-Bias Method

Hall and Welsh (1985) [10] proposed a second-order expansion on the tail function U
in (2)

U(t) = Ctγ

(
1 +

A(t)
ρ

+ o(tρ)

)
, A(t) = γβtρ, as t→ ∞, (8)

with C, γ > 0, ρ < 0, and β 6= 0. Where β is the scale second-order parameter and ρ is the
shape second-order parameter.

To further reduce the bias of quantile estimators which requires us to observe the
behavior of the estimation of the second-order parameters β and ρ. Second-order reduced-
bias was discussed by Peng (1998) [11], Beirlant, Dierckx, Goegebeur and Mattys (1999) [12],
Freueverger and Hall (1999) [13], Gomes, Martins and Neves (2000) [14], Caeiro and
Gomes (2002) [15], Gomes, Figueiredo and Mendonea (2004) [16], among others. Comes
and Pestana (2007) [17] considered the estimators

(
ρ̂τ(k), β̂ρ̂(k)

)
for the second-order

parameters (ρ, β).
Careiro et al. (2005, p. 122) [18] advises the the use of turning parameter τ in the

estimation of ρ. It provides higher stability as functions of k, the number of the top order
statistics used, for a wide range of large k value, by means of any stability criterion.
Definition 5. Caeiro et al. (2005) [18] defined the bias-corrected Hill estimator

H(k) ≡ H
β̂,ρ̂(k) = H(k)

(
1− β̂

1− ρ̂

(n
k

)ρ̂
)

, (9)

where H(k) is defined in (5). For a tuning real parameter τ ∈ R,

ρ̂τ(k) ≡ ρ̂n
(τ)(k) = min

0,
3
(

T(τ)
n (k)− 1

)
T(τ)

n (k)− 3

 (10)

T(τ)
n (k) =



(
M(1)

n (k)
)τ
−
(

M(2)
n (k)

2

) τ
2

(
M(2)

n (k)
2

) τ
2
−
(

M(3)
n (k)

6

) τ
3

if τ 6= 0;

ln
(

M(1)
n (k)

)
− 1

2 ln

(
M(2)

n (k)
2

)
1
2 ln

(
M(2)

n (k)
2

)
− 1

3 ln

(
M(3)

n (k)
6

) if τ = 0,

M(j)
n (k) =

1
k

k

∑
i=1

(log Xn−i+1:n − log Xn−k:n)
j, j = 1, 2, 3.

β̂ρ̂(k) =
(

k
n

)ρ̂ dρ̂(k)D0(k)− Dρ̂(k)
dρ̂(k)Dρ̂(k)− D2̂ρ

(k)
, (11)
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where for any θ ≤ 0, dθ(k) =
1
k

k

∑
i=1

(
i
k

)−θ

and Dθ(k) =
1
k

k

∑
i=1

(
i
k

)−θ

Ui,

with Ui as defined in (5) that 1 ≤ i ≤ k, and (10) achieves consistency if
√

kA(n/k) → ∞ as
n→ ∞ and ρ̂− ρ = oρ(1/ ln n).

The corresponding ln-quantile estimator with the tail index estimator H in (9) is

ln Q̂(p)
H

(k) = ln Xn−k+1:n + H(k) ln
(

k
np

)
, 1 ≤ k ≤ n− 1. (12)

A similar estimator to the estimator in (12) is considered in Lekina et al. (2014) [19] and
Lekina (2010) [20].

Gomes and Pestana (2007) [17] considered the ln-Var estimator

ln Q(p)
γ̂ (k) = ln Xn−k+1:n + γ̂

(
ln
(

k
np

)
+ Cp

(
k; β̂, ρ̂

))
, Cp(k; β̂, ρ̂) = β̂

(n
k

)ρ̂

(
k

np

)ρ̂
− 1

ρ̂
.

(13)
Substitute the estimator H in (9) into (13), we have another estimator for high quantile as

ln Q(p)
H (k) = ln Xn−k+1:n + H(k)

(
ln
(

k
np

)
+ Cp

(
k; β̂, ρ̂

))
. (14)

2.4. Optimal k Values

As discussed previously, we have problem that the estimation varies as the k varies,
and it become very unreliable when k is large. Gomes and Pestana (2007) [17] suggested to
use the numerically estimated optimal k values.

The optimal k for the tail index estimator through Hill estimator H(k) in (5) is k0,

k0 =

(
(1− ρ)n−ρ

β
√
−2ρ

) 2
1−2ρ

. (15)

The optimal k for the semiparametric quantile estimator ln QH(k) in (7), is kQH
0 ,

kQH
0 = arg min

k

{
ln2
(

k
np

)(
1
k
+

β2(n/k)2ρ

(1− ρ)2

)}
. (16)

The optimal k for the second-order reduced-bias quantile estimator ln Q(p)
H

(k) in (12)

and ln Q(p)
H (k) in (14) should be larger than k0, is k01,

k01 =

(
1.96(1− ρ)n−ρ

|β|

) 2
1−2ρ

. (17)

By using these optimal k values, all the quantile estimators provide better results.
However, with an unknown distribution, and estimated second-order parameters, these
numerically estimated k values are not always accurate. Since all the quantile estimators
are so sensitive to the k value, in this paper, we propose a new quantile estimator which
does not depends on k.

3. New Estimator for High Quantile
3.1. New Estimator

Our goal is to improve the quantile estimators in Section 2. There are bias issues and
difficult in determining k with the existing estimating methods. In order to overcome these
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problems, Huang (2011) [21] proposed a new quantile estimator which is the geometric
mean of the reduced-bias quantile estimator in (14).

Definition 6.

Q̂(p)
New,γ̂ =

[
n−1

∏
k=1

(
Xn−k+1:n

(
k

np

)γ̂
)] 1

n−1

, 0 < p < 1, 1 ≤ k ≤ n− 1. (18)

where Xn−k:n is the (k + 1)th top order statistic, γ̂ is any consistent estimator for γ, and Q stands
for quantile function.

Based on (16), (20) can be written as

ln Q̂(p)
New,γ̂ =

1
n− 1

n−1

∑
k=1

[
ln Xn−k+1:n + γ̂

(
ln
(

k
np

)
+ αCp(k; β̂, ρ̂)

)]
, (19)

where 0 < p < 1 and α is a constant that α ∈ R.
αCp(k; β̂, ρ̂) is the adjustment term, where Cp(k; β̂, ρ̂) is defined in (13) that reduces

bias using the second-order parameters. α is a key value depends only on n to furthermore
reduce the bias by observing the behavior of the second-order parameters. We will discuss
the choice of α in Section 4.

Sections 3–5 will show that the new estimator ln Q̂(p)
New,γ̂ has good properties, and

1. The new quantile estimator ln Q̂(p)
New,γ̂ has the least bias, the smallest MSE and the

highest efficiency.
2. The new quantile estimator ln Q̂(p)

New,γ̂ is consistent and does not depend on k as the
existing quantile estimators does.

3. The confidence interval based on the new quantile estimator ln Q̂(p)
New,γ̂ is the most

efficient compared to the existing methods, where it not only has the shortest length of the
interval, but also has the highest probability coverage of the true value in most cases.

3.2. Asymptotic Properties of the New Estimator lnQ̂(p)
New,H

Using the Hall-Welsh class of model in (8), we derive that the new estimator ln Q̂(p)
New,γ̂

in (19) has the asymptotic properties under following conditions, when γ̂ = H in (5).

Condition 1 (C1). For intermediate k, k = kn → ∞. k ∈ [1, n), k = o(n), as n→ ∞.
Condition 2 (C2). ln(npn) = o

(√
k
)

, limn→∞
√

kA
( n

k
)
= λ ∈ R, where A is in (8).

Theorem 1. Under (C1) and (C2), if we use γ̂ = H in (5), then lnQ̂(p)
New,H

has a asymptotic
normal distribution

(
ln Q̂(p)

New,H
− ln VaRp

)
d−→

n→∞
Normal

0,
γ2

(n− 1)2

n−1

∑
k=1

[ln k
np ]

2

k
+ w

n−1

∑
n−1

∑
i<j

 ln
(

i
np

)
ln
(

j
np

)
√

i • j

. (20)

The asymptotic mean, variance and efficiency of ln Q̂(p)
New,H

(k) in (19) relative to ln Q(p)
H (k)

in (14) are given by
E
(

ln Q̂(p)
New,H

)
≈

n→∞
ln VaRp;
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Var
(

ln Q̂(p)
New,H

)
≤

n→∞

γ2

(n− 1)2

n−1

∑
k=1

[ln k
np ]

2

k
+ w

n−1

∑
n−1

∑
i<j

 ln
(

i
np

)
ln
(

j
np

)
√

i • j

; (21)

EFF
(

ln Q̂(p)
New,H

)
ln Q̂(p)

H
(k)

≥
n→∞

(n− 1)2

(
ln
(

k
np

))2

k
n−1
∑

k=1

[ln k
np ]

2

k + w ∑n−1 ∑n−1

i<j

[
ln
(

i
np

)
ln
(

j
np

)
√

i•j

] > 1, (22)

for k = 1, ..., n− 1,

where w is the weight, w = max
i 6=j

ρ+ij , 0 ≤ w ≤ 1, ρ+ij =
∣∣∣ρij

∣∣∣, 0 ≤ ρ+ij ≤ 1; ρijis correlation

coefficient of ln Q(p)
H (i) and ln Q(p)

H (j)

ρij =
Cov

[
ln Q(p)

H (i), ln Q(p)
H (j)

]
√(

Var
(

ln Q(p)
H (i)

)
Var

(
ln Q(p)

H (j)
)) , i 6= j, i, j = 1, ..., n− 1, − 1 ≤ ρij ≤ 1, and

EFF
(

ln Q̂(p)
New,H

)
ln Q̂(p)

H
(k)

=
Var

(
ln Q(p)

H (k)
)

Var
(

ln Q̂(p)
New,H

) , where Var
(

ln Q(p)
H (k)

)
≈

n→∞
γ2

(
ln
(

k
np

))2

k
.

See Appendix A for the proof of Theorem 1.

3.3. The C.I. for The New Estimator lnQ̂(p)
New,H

Theorem 2. Under conditions (C1) and (C2), a (1− α)100% confidence interval for ln VaRp by

using ln Q(p)
New,H in (19) is given by

(
LCL

ln Q̂(p)
New,H

(k), UCL
ln Q̂(p)

New,H

(k)
)
=
(

ln Q̂(p)
New,H

−UCLH(k)b3, ln Q̂(p)
New,H

+ UCLH(k)b3
)

(23)

where z1−α/2 is the (1− α/2)th quantile of standard normal distribution, and

b3 =
z1−α/2

n− 1

√√√√√n−1

∑
k=1

[ln
(

k
np

)
]2

k
+ w

n−1

∑
n−1

∑
i 6=j

 ln
(

i
np

)
ln
(

j
np

)
√

i • j

, UCLH(k) =
H

1− z1−α/2√
k

.

See Appendix A for the proof of Theorem 2.

Remark 1. Note that in the CI in (23), the main term ln Q̂(p)
new,H

does not depend on k, only the
error terms UCLH(k)b3 depends on k.

Remark 2. In Section 4 Simulations and Section 5 Applications, we use the maximum weight
w = 1 in Formula (23), thus, we use maximum CI length for new proposed estimator lnQ̂(p)

New,H
comparing with existing methods. Even with maximum CI length. Sections 4 and 5 show that the
new estimator obtained confidence interval in (23) is still shorter than existing estimators obtained
confidence intervals for most of k values.
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4. Simulations
4.1. Computer Simulations of Quantile Estimators

To verify that the new estimator ln Q̂(p)
new,H

has good properties, we use simulations
and compare the new estimator to the existing estimators using the following statistics

1. The expected value E[·].
2. The root of mean squared errors RMSE[·].
3. The relative efficiencies REFF[·]

REFFQ̃H or H
=

√√√√√ MSE
[
ln q(p)

H (k0)
]

MSE
[
ln Q̃(p)

H or H (k0)
] for Q̃ = Q or Q, p = 1/(2n), k0 is defined in (15). (24)

In this Section, we choose models of Fréchet (0.25), GPD (0.5), GPD (2) to compare with
the simulation results of Gomes and Pestana (2007) [17]. We use four quantile estimators in
Table 1 to run simulations. When |ρ| ≤ 1, estimators β̂ and ρ̂ in H use the tuning parameter
τ = 0, otherwise, use τ = 1

Table 1. The four ln-quantile estimators we use in simulations.

Quantile Estimators Defined in Tail Index Estimator

ln Qγ̂=H= ln qH (6) H in (5)

ln QH (7) H in (5)

ln Q̃H
ln QH when ρ 6= −1 in (12)
ln QH when ρ = −1 in (14)

H in (9)

lnQ̂new,H (19) H in (9)

(1) The Fréchet distribution (Fréchet, 1927) [22] has the c.d.f.

F(x) = exp
(
−x−

1
γ

)
, x > 0, γ > 0. (25)

An estimator of the pth ln-high quantile function is

ln Q(p)
γ̂ = ln x1−p,γ̂ = −γ̂ ln

(
ln
(

1
1− p

))
, 0 < p < 1, p is very small.

(2) The generalized Pareto distribution (GPD) (de Zea Bermudeza and Kotz, 2010) [23]
has the c.d.f.

F(x; γ) = 1− (1 + γx)−
1
γ , x ≥ 0, γ 6= 0, (26)

for γ > 0, an estimator of the pth ln-high quantile function is

ln Q(p)
γ̂ = ln VaRγ̂ = ln x1−p,γ̂ = ln

(
p−γ̂ − 1

γ̂

)
, 0 < p < 1, p is very small.

4.2. The Choice of α

As mentioned in Section 3, α is a key value to reduce the bias of the ln Q̂(p)
New,γ̂ defined

in (19). We developed an algorithm to estimate α based on the results of m− simulation
runs:

Step 1: For a fixed sample size n, the αi(n) in ith iteration, i = 1, ..., m, m = 500, is the true
solution of equation

ln Q̂(p)
New,Hi

=
1

n− 1

n−1

∑
k=1

[
ln Xi,n−k+1:n + Hi

(
ln
(

k
np

)
+ αCp(k; β̂, ρ̂)

)]
= ln VaRp, i = 1..., m,
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then α(n) = 1
m ∑m

i=1 αi(n). Note that α(n) depends on n. ln VaRp is the true lnVaR value.

Step 2: Obtain estimator α̂(n) based on the linear regression (LR) models where α is
related to n. We collect data set (αj, nj), j = 1, ..., l, with the sample size l.

α̂(n) =


ρ̂(n), |ρ(n)| < 1, for GPD(0.5);

1.7488− 0.0002n + 2.9693X1+2.6604X2, |ρ(n)| ≥ 1,
for Fréchet (0.25), X1 = β̂(n); X2=ρ̂(n);
for GPD(2), X1=ρ̂(n); X2=β̂(n).

(27)

Note that the estimate α̂(n) in (27) depends the parameters of the models and LR
relationship with sample size n.

Remark 3. If we assume αj in (αj, nj), j = 1, ..., l, is normally distributed, based on (Bickel and
Doksum, 2015, pp. 286–388) [24], then α̂(n) is a maximum likelihood estimator (MLE) and has an
asymptotic normal distribution. Since the estimator α̂(n) only depands to n not related to the order
statistics, it will not affect the asymptotic proprties of the proposed estimator ln Q̂(p)

New,γ̂ in (19).

4.3. Simulation of Fréchet (0.25). GPD (0.5) and GPD (2)

Tables 2–4 list the results of simulations under the Fréchet (0.25), GPD (0.5) and GPD
(2), where N = 500 iterations for sample size n = 500, 1000, 2000, 5000 and p = 1/(2n).
With α̂(n) in (27), we compare mean values, mean squared errors (MSE) and REFF of the
four ln VaR estimators in Table 1, at optimal level k = k0 based on (15) Note that the new
estimator ln Q̂(p)

New,γ̂ has the highest REFF values among the four estimators which are in

bold in all three models. The simulation MSE of ln Q̂(p)
New,γ̂ is defined as

MSE
(

ln Q̂(p)
New,γ̂

)
=

1
N ∑N

i=1

(
ln Q̂(p)

New,γ̂,i − ln VaRp

)2
,

where ln Q̂(p)
New,γ̂,i is the ln Q̂(p)

New,γ̂ in the ith iteration, i = 1, ..., N. So do for other ln-quatile
estimators.

Figures 1–3 are based on Tables 2–4 results, Figure 1 is for Fréchet (0.25), we use
N = 500 iterations, sample size n = 1000, γ = 0.25, ρ = −1, β = 0.5, p = 1/2n. The new
estimator ln Q̂(p)

New,γ̂ has the best performance with the least bias and RMSE. It does not
change as k varies. Figures 2 and 3 are for GPD(0.5) and GPD(2), N = 500 iterations, sample
size n = 1000, γ = 0.5 and 2, ρ = −γ, β = 1, p = 1/2n. We note that the new estimator
ln Q̂new,H is the best estimator as well, with the least bias, consistency as k varies, and the

smallest RMSE. Note that ln Q̂(p)
New,γ̂ values are very close to the true lnVaRp values.
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Table 2. Fréchet (0.25), N = 500, β = 0.5, ρ = −1. Mean, MSE, REFF of the ln VaR Estimators. The highest REFF values are in bold.

n 500 1000 2000 5000

ln VaRp, p = 1/(2n) 1.7268 1.9002 2.0735 2.3026

k0 126 200 318 585

α̂(n) = LR 1.1218 1.1400 0.4991 −0.0357

ln qH Mean (MSE) 1.8526 (0.0429) 2.0038 (0.0300) 2.1657 (0.0228) 2.3755 (0.0147)

REFF 1 1 1 1

ln QH Mean (MSE) 1.7906 (0.0219) 1.9540 (0.0154) 2.1239 (0.0115) 2.3431 (0.0074)

REFF 1.4004 1.3933 1.4104 1.4125

ln QH Mean (MSE) 1.7092 (0.0206) 1.8849 (0.0141) 2.0764 (0.0111) 2.3073 (0.0072)

REFF 1.4419 1.4576 1.4347 1.4257

ln Q̂new,H Mean (MSE) 1.7185 (0.0095) 1.8791 (0.0065) 2.0716 (0.0051) 2.2798 (0.0044)

REFF 2.1252 2.1399 2.1139 1.8231

Table 3. GPD (0.5), N = 500, β = 1, ρ = −0.5. Mean, MSE, REFF of the ln VaR estimators. The highest REFF values are in bold.

n 500 1000 2000 5000

ln VaRp, p = 1/(2n) 4.1149 4.4710 4.8242 5.2883

k0 34 48 68 107

α̂(n) = ρ̂ −0.7512 −0.7482 −0.7427 −0.7244

ln qH Mean (MSE) 4.7019 (0.6349) 4.9773 (0.4863) 5.3065 (0.4554) 5.7209 (0.3427)

REFF 1 1 1 1

ln QH Mean (MSE) 4.2913 (0.2172) 4.6258 (0.1628) 4.9904 (0.1491) 5.4485 (0.1074)

REFF 1.7159 1.7282 1.7478 1.7865

ln QH Mean (MSE) 4.1140 (0.1654) 4.4801 (0.1267) 4.8656 (0.1166) 5.3434 (0.0825)

REFF 1.9663 1.9591 1.9763 2.0379

ln Q̂new,H Mean (MSE) 3.9076 (0.0779) 4.4239 (0.0233) 4.8674 (0.0241) 5.4359 (0.0382)

REFF 2.8657 4.5666 4.3428 2.9954

Table 4. GPD(2), N = 500, β = 1, ρ = −2. Mean, MSE, REFF of the ln VaR estimators. The highest REFF values are in bold.

n 500 1000 2000 5000

ln VaRp, p = 1/(2n) 13.1224 14.5087 15.8949 17.7275

k0 170 269 515 1071

α̂(n) = LR −2.7893 −2.8417 −2.8687 −3.1684

ln qH Mean (MSE) 13.6276 (1.3232) 14.9415 (0.9745) 16.2733 (0.6548) 18.0099 (0.3833)

REFF 1 1 1 1

ln QH Mean (MSE) 13.4502 (0.9965) 14.8004 (0.7283) 16.1618 (0.4779) 17.9283 (0.2804)

REFF 1.1523 1.1567 1.2412 1.1693

ln QH Mean (MSE) 13.1933 (0.8926) 14.5960 (0.6477) 15.9719 (0.4491) 17.7717 (0.2751)

REFF 1.2175 1.2267 1.2075 1.1804

ln Q̂new,H Mean (MSE) 13.0009 (0.6007) 14.4907 (0.3680) 15.8926 (0.3070) 17.6429 (0.2127)

REFF 1.4841 1.6274 1.4606 1.3426
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Figure 1. Underlying Fréchet (0.25), ρ = −1, β = 0.5. N = 500, n = 1000. (a) The means of ln-quantile estimators with the
true ln VaR0.0005 ≈ 1.9 (ln Q̂0.0005

new,H
≈ 1.88). (b) The RMSE of Ln-quantile estimation, p = 0.0005, α̂ = 1.14.

Figure 2. Underlying GPD (0.5), ρ = −0.5, β = 1, N = 500, n = 1000. (a) The means of ln-quantile estimators with the true
ln VaR0.0005 ≈ 4.47 (ln Q̂0.0005

new,H
≈ 4.42). (b) The RMSE of Ln-quantile estimation, p = 0.0005, α̂ = −0.7482.

Figure 3. Underlying GPD (2), ρ = −2, β = 1, N = 500, n = 1000. (a) The means of ln-quantile estimators with the true
ln VaR0.0005 ≈ 14.51 (ln Q̂0.0005

new,H
≈ 14.49). (b) The RMSE of ln-quantile estimators, p = 0.0005, α̂ = −2.8417.
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4.4. Simulations of Confidence Intervals

By Gomes and Pestana (2007) [17], the 95% confidence interval of the true tail index
using H is

(LCLH(k), UCLH(k)) =

 H(k)

1 + β(n/k)ρ

1−ρ + 1.96√
k

,
H(k)

1 + β(n/k)ρ

1−ρ − 1.96√
k

 (28)

and the 95% confidence interval of the true tail index using H is

(LCLH(k), UCLH(k)) =

 H(k)
1 + 1.96√

k

,
H(k)

1− 1.96√
k

 (29)

Next, we compute the confidence intervals for the true ln-quantile by using the
quantile estimators. We only use three out of four quantile estimators in Table 1, except
ln qH which has the worst result. Therefore, we compare CIs only using ln QH , ln Q̃H and
ln Q̂new,H in (30), (31) and (23). Thus

(1) The 95% confidence interval for the true ln VaRp using ln QH is

LCLln QH (k) = min ln QH(k)− LCLH(k) ln
(

k
np

)
b2, ln QH(k)−UCLH(k) ln

(
k

np

)
b2;

UCLln QH (k) = max ln QH(k) + LCLH(k) ln
(

k
np

)
b1, ln QH(k) + UCLH(k) ln

(
k

np

)
b1.

(30)

where LCLH(k), UCLH(k) is given in (28), and

b1 =
1.96√

k
− β(n/k)ρ

1− ρ
, b2 =

1.96√
k
+

β(n/k)ρ

1− ρ
.

(2) The 95% confidence interval for the true ln VaRp using ln Q̃H is

LCLln Q̃H
(k) = ln Q̃H −UCLH(k) ln

(
k

np

)
1.96√

k
,

UCLln Q̃H
(k) = ln Q̃H + UCLH(k) ln

(
k

np

)
1.96√

k
; (31)

where LCLH(k), UCLH(k) is given in (29), and
(3) The 95% confidence interval for the true ln VaRp using ln Q̂new,H is given in (24).

To compare new proposed CI in (23) to CIs in (30) and (31), we use evaluate the length
and probability coverage of the CIs.

The length of CI is given as

length of CI = UCLquantile estimator − LCLquantile estimator.

and the efficiency of the length of 95% CI is given as

EFFlength =
C.I. length o f ln QH at kQH

0

C.I. length o f ln QH or ln Q̂new,H at k01
. (32)
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Figure 4. Fréchet (0.25) model, 95% confidence interval of quantile estimators, N = 500, n = 1000, p = 0.0005,
β = 0.5, ρ = − 1, α(1000) = LR = 1.14, kQH

0 = 165, k01 = 395. Note that ln Q̂new,H (purple) has shortest CI with
length 0.2668. (The solid circles “•” in the plot are the values of the quantile estimators at their optimal k level).

Figure 5. The GPD (0.5) model, 95% confidence interval of quantile estimators, N = 500, n = 1000, p = 0.0005,
β = 1, ρ = − 0.5, α̂(1000) = ρ̂ = −0.7482, kQH

0 = 28, k01 = 93. Note that ln Q̂new,H (purple) has shortest CI with
length 0.7094. (The solid circles “•” in the plot are the values of the quantile estimators at their optimal k level).

Figure 6. The GPD (2) model, 95% confidence interval of quantile estimators N = 500, n = 1000, p = 0.0005, β = 1, ρ = −2,
α̂(1000) = LR = −2.8417, k̂0 = 75, k̂QH

0 = 80, k̂01 = 70. Note that ln Q̂new,H (purple) has shortest CI with length 2.2511. (The
solid circles “•” in the plot are the values of the quantile estimators at their optimal k level).
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Also, the confidence interval is more efficient when it has a higher coverage of the
true value under the simulations, where the probability coverage of 95% CI is defined as

P.C. =
number of 95% CI’s contains the true value

number of 95% CI’s simulated in total
∗ 100%.

and the efficiency of the probability coverage of 95% CI is given as

EFFP.C. =
|P.C.ln QH − 95%|∣∣∣∣(P.C.ln QH

or P.C.ln Q̂new,H

)
− 95%

∣∣∣∣ . (33)

when EFFP.C. is bigger means it is more efficient.
Figures 4–6 show the 95% confidence interval of the three ln-quantile estimators under

Fréchet (0.25), GPD (0.5 and 2) with p = 0.0005. We compare the size of each confidence
interval at their optimal k level, and the probability coverage of each confidence interval
at their optimal k level. Recall, the optimal k level for ln QH is at kQH

0 based in (16), the
optimal k level for ln Q̃H and ln Q̂new,H is at k01 based in (15).

Table 5 compare the efficiencies of 95% CI of the three quantile estimators under
Fréchet (0.25), GPD (0.5 and 2). The efficiency of 95% CI can be compared by the length of
CI and the probability coverage of CI, denoted by EFFlength and EFFP.C..

Table 5. N = 500, n = 1000, efficiencies of 95% CI for ln VaR0.01.

CI of at Optimal k Length EFFlength
Probabolity

Coverage
EFFP.C.

ln QH kQH
0 = 165 0.5142 1 94.2% 1

Fréchet (0.25) ln QH k01= 395 0.3564 1.4517 96.7% 0.4706

ln Q̂new,H k01= 395 0.2668 1.9275 99.6% 0.1739

ln QH kQH
0 = 28 2.4922 1 47.4% 1

GPD(0.5) ln QH k01= 93 1.5204 1.6392 79.0% 2.9750

ln Q̂new,H k01= 93 0.7094 3.5130 99.6% 10.3478

ln QH kQH
0 = 270 3.4410 1 79.7% 1

GPD(2) ln QH k01= 511 2.7291 1.2609 83.2% 1.2966

ln Q̂new,H k01= 511 2.2511 1.5286 99.6% 3.3261

In this section, we compared the new quantile estimator ln Q̂(p)
new,H

in (19) with the

existing methods. ln Q̂(p)
new,H

has the least bias, the smallest RMSE, and not depends on
k too much. It also has the smallest length and the highest probability coverage in 95%
confidence interval in most cases. The simulation results verify that ln Q̂new,H is the best
quantile estimator among all three methods. Next section, we apply the new estimator
ln Q̂(p)

new,H
to real world examples.

5. Applications

We will study two real-world examples in this Section. We are interested in the
population that is above the threshold for each example. The goal is to estimate the
(1− p)th high quantiles of the example, where 0 < p < 1 is a very small. We use the four
quantile estimators in table 1 ln qH , ln QH , ln QH and ln Q̂new,γ̂ in (21), and compare their
performances.
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A. Procedure:
Step 1: Choose and collect data of examples of real life extreme events.
Step 2: Run Goodness-of-Fit tests to check if data is heavy distributed.
Step 3: Estimate the high quantiles and construct the confidence intervals by using the

new method and the existing methods.
Step 4: Compare the results of the new method to the existing methods and make

Prediction

B. Estimators
1. Two tail index estimators H(k) in (5) and H(k) in (9).
2. Four quantile estimators (6), (7), (12) and (19) are in Table 1.
3. We use α̂(n) in (27) for the new estimator ln Q̂(p)

new,H
in (19) for the GPD model.

Remark 4. In applications, the GPD is used as a tail approximation to the population distribution
from which a sample of excesses x− µ above some suitably high threshold µ are observed. The GPD
is parameterized by location, scale and shape parameters µ, λ > 0 and γ, and can equivalently be
specified in terms of threshold excesses x− µ or, as here, exceedances x > µ, as three parameters
(γ, µ, λ) GPD in (34) (de Zea Bermudeza and Kotz, 2010) [23],

Hγ(x) = 1−
(

1 + γ
x− µ

λ

)− 1
γ

, 0 < µ < x < (0∨ (−γ))−1, λ > 0, (34)

Traditionally, the threshold was chosen before fitting, giving the so-called fixed threshold approach
(Pickands, 1975 [25], Balkema and de Haan, 1974 [26]). It is common for practitioners to assume a
constant quantile level, determined by some assessment of fit across all or a subset of the datasets
(Scarrott and McDonald, 2012, p.36 [27]). In our application, the threshold is pre-determined by
physical considerations, that is, number of type A flu viruses detected weekly in Canada above the
average in flu season, and the counts of gamma ray released from significant solar flares (M and X
rated) during the Sun’s active years. Although it is possible to make some arbitrary definition of
the choice of the threshold, it is preferable not to become involved with such delicate question. The
application of the proposed method is presented in both examples for illustrative purpose.

5.1. Flu in Canada Example

According to the WHO (World Health Organization, 2020 [28]), seasonal influenza
is a common infection of the airways and lungs that can spread easily among humans.
There are 37 million people in Canada, and flu season usually runs from November to
April. Most people recover from the flu in about a week. However, influenza may be
associated with serious complications such as pneumonia, especially in infants, the elderly
and those with underlying medical conditions like diabetes, anemia, cancer, and immune
suppression. On average, the flu and its complications send about 12,200 Canadians to the
hospital every year, and around 3500 Canadians die. There are 3 types of flu viruses, A, B
and C. Type A flu virus is the most harmful, and it is constantly changing and is generally
responsible for the large flu epidemics. The 1918 Spanish Flu, 1957 Asian Flu, 1968 Hong
Kong Flu, 2009 Swine flu, and the most recent 2014 H5N1 Bird Flu are all type A flu. In this
paper, we study type A viruses in Canada.

We collected the number of the type A flu viruses detected weekly in Canada, from 1
January 1997 to 31 December 2019, resulting in a sample size of n∗ = 994 weeks. According
to the WHO, the average number of type A flu viruses detested per week in the flu
season, November to April, is 953, for the past 10 years. We set 953 viruses/week as the
threshold, which reduced our sample size to n = 111 weeks. Full data-set is available at
http://apps.who.int/influenza/gisrs_laboratory/flunet/en.

Figure 7a shows a Flu chart in n∗ = 994 weeks of type A flu viruses detected in Canada,
and n = 111 weeks remaining after the threshold, of average 953 flu viruses. For each flu
incubation period, a flu virus can last from one up to few weeks, that is why some arches
are narrow and some arches are more bell shaped in this figure. The top three weeks are

http://apps.who.int/influenza/gisrs_laboratory/flunet/en
http://apps.who.int/influenza/gisrs_laboratory/flunet/en
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circled in the plot. Figure 7b shows a histogram of n∗ = 994 weeks data. We are interested
in the 99% quantile, x0.99, such that 99% chance that the viruses detected in a given week
would be less than this value, or equivalently, with a 1% possibility, the number of flu
viruses detested in a given week would be in excess of this value. This information is useful
for monitoring and studying the virus, also is helpful for medical organizations that deal
with disease control and prevention, pharmaceutical availability, and hospital resource
readiness, especially during a serious flu outbreak. x̂0.99 is approximately located in the
plot. In this paper, we propose a new estimate high quantiles method, and compare it with
existing methods.

Figure 7. Flu original data from 1 January 1997 to December 31 2019, n∗ = 994 weeks, (a) Flu chart of type A flu viruses
detected in Canada, and n = 111 weeks remaining after the threshold, of average 953 flu viruses. (b) Histogram of the
number of type A flu viruses detected in Canada.

Our interest is to find the 5%VaR and 1% VaR of the number of type A flu viruses
detested in a week, and their 95% confidence intervals.

5.1.1. Goodness-of-Fit Test

Through data transformation Yi = Xi−µ
λ , i = 1, ..., n, n = 111. Take µ = 953 as

the threshold, the maximum likelihood estimators (MLE) are λ̂MLE = 1275.97287 and
γ̂MLE = 0.01345. Figure 8a is the log-log plot of GPD curve with the horizontal axis ln (x)
against the vertical axis ln (P{x < X}). Visually the transformed data fit the one parameter
GPD in (26) the best using γ̂MLE (red curve). Figure 8b shows the GPD density curve (red
curve) fits the histogram very well.

Figure 8. After threshold 953 flu viruses, Flu transformation data, n = 111, (a) Log-log plot of flu in Canada example.
(b) Estimate GPD curve and the 99% high quantile and histogram of the distribution of type A flu viruses detested weekly.
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Beside visual view of Figure 8, we also carry on the three goodness-of-fit tests: the
Kolmogorov-Smirnov (K-S) test (Kolmogorov, 1933 [29]), Anderson-Darling (A-D) test, and
Cramér von Mises (C-v-M) test (Anderson-Darling, 1952 [30]). All three tests are based
on the maximum vertical distance between the empirical distribution function and the
observations, and the parent distribution function is the GPD.

The Hypothesis for all three tests is

H0 : F(x) = F∗(x), for all values of x

H1 : F(x) 6= F∗(x), for at least one value of x

F(x) is the true but unknown distribution of the sample. F∗(x) is the theoretical
distribution, in our project, the parent distribution, GPD. Sn(x) is the empirical distribution
and step function of the sample. It is defined as

Sn(x) =
1
n

n

∑
i=1

I(−∞,x](Xi), where IA =

{
1, if x ∈ A;
0 if x /∈ A.

where −∞ < x < ∞, 0 ≤ Sn(x) ≤ 1.
The test statistics under H0 of K− S test is

T = sup
x
|F∗(x)− Sn(x)|. (35)

Based on Table 6 goodness of fit tests’ results, we set the GPD model for the flu in
Canada data. We define the absolute errors (AE) in (34) and integrated errors (IE) in (35) as

IE =
1

Xn:n − Xn−r+1:n

(∫ Xn:n

Xn−r+1:n

[Sn(x)− F∗(x)]2dx
)1/2

. (36)

Table 6. The goodness-of-fit tests under the GPD model for the flu in Canada data.

Goodness-of-Fit Tests

K-S Test A-D Test C-v-M Test

Test
Statistics p-Value Test

Statistics p-Value Test
Statistics

p-Value

γ̂MLE 0.0628 0.6406 0.4475 0.8007 0.0621 0.8006

For both AE and IE, we use 3 different r values by letting r = n
10 th, r = n

2 th , and
r = nth top statistics. Table 7 lists the AE and IE errors which are very small.

Table 7. AE and IE under the GPD model for the flu in Canada data by using γ̂MLE.

Absolute Errors (AE) Integrated Errors (IE)

rth Highest Amount
of Type A Viruses

rth Highest Amount
of Type A Viruses

r = 12 r = 56 r = 111 r = 12 r = 56 r = 111

γ̂MLE 0.0450 0.0450 0.0628 0.0085 0.0071 0.0074

Next, we estimate the high quantiles and their confidence interval for this example.

5.1.2. Compare Four Estimation Methods

We use the four estimators in Table 1: ln qH , ln QH , ln QH , and the new estimator
ln Q̂new,H .
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We use ρ̂τ(k) in (10), and β̂ρ̂0(k) in (11). To decide if the tuning parameter τ = 0 or 1,
consider {ρ̂τ(k)}k∈k, for k ∈ k = (

[
n0.995], [n0.999]), and compute their median xτ , then

τ = arg min
k

∑
k∈k

(ρ̂τ(k)− xτ)
2.

With n = 111, we get k ∈ k = (108, 110) and xτ = 109, then ∑k∈k(ρ̂0(k)− xτ)2 ≈ 36116 <

∑k∈k(ρ̂1(k) − xτ)2 ≈ 37033, conclude that τ = 0, thus we have ρ̂0(k1) = −0.7101 and
β̂ρ̂0(k1) = 1.026571, where k1 is the optimal k value. Figure 9 shows the results.

Figure 9. For flu in the Canadian data, n = 111, (a) Estimates of the second-order parameter ρ̂ and ρ̂τ(k), τ = 0; (b)
Estimates β̂ and β̂ρ̂0

(k). (c) Tail index estimators, H, H; (d) ln-quantile estimators, p = 0.01. The solid circles “•” in the plot
are the values of the quantile estimators at their optimal k level.

Figure 9a shows estimates of the second-order parameters ρ through ρ̂ and ρ̂τ(k),
τ = 0; Figure 9b shows Estimates β̂ and β̂ρ̂0(k). Figure 9c shows the two estimated tail
index, H, H, H = 0.4379 at its optimal level using k̂0= 21 based on (15) and H = 0.3736 at
its optimal level using k̂01=42 based on (17). Figure 9d shows four quantile estimators of
flu in Canada example, with p = 0.01. The full circles “•” in the plot are the values of the
quantile estimators at their optimal k level. We note that ln Q̂(p)

new,H
has a constant value,

which does not depend on k.
Figure 10 compares the confidence intervals of three quantile estimators in (7), (12)

and (19). This figure shows that the new quantile estimator ln Q̂(p)
new,H

has the smallest
confidence interval with length 0.7966, where we use α̂ = ρ̂ = −0.7101. (The solid circles
“•” in the plot are the values of the quantile estimators at their optimal k level).

Figure 10. 95% confidence interval of three ln-quantile estimators after the threshold 953 for the flu in Canada example.
n = 111, p = 0.01. Note that ln Q̂new,H (purple) has shortest CI with length 0.7966. (The solid circles “•” in the plot are the
values of the quantile estimators at their optimal k level).
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In Table 8, we compare the four ln-quantile estimators and their mean, median, VaR0.05
and VaR0.01. Table 9 compares the size of confidence intervals at ln VaR0.01 and VaR0.01 of
the three quantile estimators.

Table 8. Estimated VaR0.05 and VaR0.01 for the flu in Canada data. (Unit: Type A flu viruses).

Estimation α̂ γ̂ Mean Median VaR0.05 VaR0.01

ln QH N/A H = 0.4370 3219.29 2257.03 4519.70 8159.10

ln QH N/A H = 0.3736 2989.93 2130.78 3736.80 6031.79

ln Q̂new,H ρ̂ = − 0.7101 H = 0.3736 2989.93 1690.07 2924.80 5499.85

Table 9. The 95% confidence interval for ln VaR0.01 and VaR0.01.

Estimation
Method k LCL ln VaR0.01

(VaR0.01)
UCL Length EFF

ln QH k̂0= 21 0.6920 1.7312 2.1452 1.4531 1

(QH) (3502.14) (8159.10) (11854.31) (8352.17) (1)

ln QH k̂01= 42 0.7929 1.3814 1.9698 1.1770 1.2346

(QH) (3772.58) (6031.78) (10101.19) (6328.21) (1.3197)

ln Qnew,H k̂01= 42 0.8724 1.2707 1.6690 0.7966 1.8242

(Qnew,H) (4006.07) (5499.85) (7724.49) (3718.42) (2.2462)

In Table 9, we compared QH , QH and Qnew,H , the Qnew,H has the shortest confidence
interval with the highest efficiency of 2.2462.

5.1.3. Summary

Based on Figure 10 and Table 9, we conclude that the new estimator ln Q̂new,H in (19)
is the best estimator for Flu in Canada example. We can predict that at VaR0.01, we expect
5500 type A flu viruses during a flu outbreak after threshold 953/week. This is shown in
Figure 8b.

5.2. Gamma Ray of Solar Flare Example

Gamma ray has the most penetrating power among all the radiations. The burst of
gamma rays are thought to be, due to the collapse of stars called hypernovas, the most
powerful events so far discovered in the cosmos. The measurement of gamma rays are in
counts, and it is the number of atoms in a given quantity of radioactive material that are
detected by an instrument to have decayed. We have collected gamma ray data from solar
flares, from November 2008 to September 2020, from NASA (National Aeronautics and
Space Administration, 2020 [31]). Full data-set is available at http://hesperia.gsfc.nasa.
gov/fermi/gbm/qlook/fermi_gbm_flare_list.txt.

The solar flare travels hundreds of miles per second, and can reach the Earth within
hours. It can disrupt communication navigational equipment, damage satellites, and
even cause blackouts by damaging power plants. In 1989, a strong solar storm knocked
out the power grid in Québec, Canada, causing 6 million people to lose power for more
than 9 hours, and it cost millions of dollars to repair. It can bring additional radiation
around the north and south poles, a risk that forces airlines to reroute flights. The Fermi
Gamma-ray Space Telescope was launched in late 2008 to explore high-energy phenomena
in the Universe. It is worth noting that more than one trigger may have occurred during
the flare, the one nearest the peak of the flare is listed, resulting in a sample size of 5128.

http://hesperia.gsfc.nasa.gov/fermi/gbm/qlook/fermi_gbm_flare_list.txt
http://hesperia.gsfc.nasa.gov/fermi/gbm/qlook/fermi_gbm_flare_list.txt
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Solar flares are classified as A, B, C, M or X according to the peak flux (in watts per square
meter, W/m2) of 1 to 8 angstrom (The angstrom is a unit of length equal to 1/10,000,000,000
(one ten-billionth) of a meter.) X-rays near the Earth, as measured on the GOES spacecraft.
Gamma ray activity is correlated with the X ray activity, as shown in Figure 11 (NOAA,
2020 [32]. When the amount of gamma ray released is over 5 million counts, it usually
corresponds to an X rated flare or significant M rated flares.

Figure 11. Two weeks plot of gamma ray & X ray from July 2 to 16, 2012.

Figure 12a shows a Gamma ray chart of n∗ = 5128 flares, and n = 104 flares remaining
after the threshold of 86 million counts. The most powerful gamma ray was released in
March 7, 2012 with nearly 1.5 billion counts, the sun was brightened by 1000 times, and
became the brightest object in the gamma ray sky. The top three events are circled in the
chart. Figure 12b shows a histogram of n∗ = 5128 flares. We are interested in the 99%
quantile, x0.99, such that 99% gamma ray released from solar flares are under this value, or
equivalently, with a 1% possibility, the amount of gamma ray a solar flare releases would be
in excess of this value. During the spring and fall, the satellites that are used to detect solar
flares experience eclipses, in which the Earth or the Moon blocks between the satellites
and the Sun for a short period every day. Eclipse season lasts for about 45 to 60 days and
ranges from minutes to just over an hour. The quantile estimation would provide useful
predictions for these times. x̂0.99 is approximately located in the plot since we do not know
this value yet.

Figure 12. Gamma ray original data from November 2008 to April 2017, n∗ = 5182, (a) Gamma ray released V.S solar flare
occurred. After the threshold of 86 million counts, n = 104 flares remaining. (b) Histogram of gamma ray released from
solar flares.
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We chose the threshold as the mean of the data from the peak period. The solar cycle
is every 11.6 years, and the sun’s activity peaked from 2011 to 2014. In Figure 12a we can
see that the top 3 flares, in fact, almost 90% of the top 100 flares, are from the 2011 to 2014
time period. Taking the average of all the X rated and significant M rated flares from this
peak period, we obtained a mean of 86 million counts, resulting in a remaining sample size
of n = 104.

For the Gamma ray of solar flare example, our goal is to find out the high quantiles,
specifically, the 5% VaR and 1% VaR of the amount of gamma ray a solar flare would
release, and their 95% confidence intervals.

5.2.1. Gooness-of-Fit Tests

Similar as Flu in Canada Example, we set µ = 86 million, and obtain λ̂MLE =
171.0708592, and γ̂MLE = 0.2580384847. Figure 13a is a log-log plot of gamma ray data
under GPD model, with the horizontal axis ln (x) against the vertical axis ln (P{x < X}).
Figure 13b shows the histogram fits the GPD model.

Figure 13. After threshold 86 millions count, transformation data, n = 104, (a) Log-log plot of gamma ray from solar flare
example. (b) The Estimate GPD and the 99% high quantile of the distribution of gamma ray released by solar flare.

Next, we will perform three goodness-of-fit tests: Kolmogorov-Smirnov test, the
Anderson-Darling test and the Cramér-von-Mises test. The results listed in Table 10, the
data fits the GPD with γ̂MLE the best, nearly 59%.

Table 10. Compare the goodness-of-fit tests under the GPD model for the gamma ray data.

Goodness-of-Fit Tests

K-S Test A-D Test C-v-M Test

Test
Statistics p-Value Test

Statistics p-Value Test
Statistics

p-Value

γ̂MLE 0.0697 0.5750 0.7276 0.5362 0.0991 0.5893

In Table 11, all the errors are less than 0.07 for AE, and less than 0.01 for IE.

Table 11. AE and IE under the GPD model for the gamma ray data using γ̂MLE .

Absolute Errors (AE) Integrated Errors (IE)

rth Highest Gamma Ray Released rth Highest Gamma Ray Released

r = 11 r = 53 r = 104 r = 11 r = 53 r = 104

γ̂MLE 0.0359 0.0697 0.0697 0.0062 0.0092 0.0089
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Next, we can compare the four high quantile estimators and their confidence intervals
of this example.

5.2.2. Compare Four Estimation Methods

Similar as Example 1, we use the four quantile estimators in Table 1: ln qH , ln QH ,
ln QH , and the ln Q̂new,H .

We use ρ̂τ(k) and β̂ρ̂0(k), and τ = 0, thus we have ρ̂0(k1) = −0.7269 and
β̂ρ̂0(k1) = 1.0257, where k1 is the optimal k value for the second-order parameters. The
results are in Figure 14.

Figure 14. For gamma ray of solar flare example, n = 104, (a) Estimates of the second-order parameters ρ̂ and ρ̂τ(k), τ = 0,
(b) Estimates β̂ and β̂ρ̂0

(k). (c) Tail index estimators, H, H. (d) ln-quantile estimators, p = 0.01. The solid circles “•” in the
plot are the values of the quantile estimators at their optimal k level.

Figure 14a shows the estimates of the second-order parameters ρ̂ and ρ̂τ(k), τ = 0.
Figure 14b shows β̂ and β̂ρ̂0(k). Figure 14c shows the two different tail index estimators, H,
H. We have H = 0.5324 at its optimal level with k̂0 = 21, H = 0.6517 at its optimal level
with k̂01 = 41. Figure 14d shows all four quantile estimators of gamma ray example, with
p = 0.01. We note that ln Q̂new,H has a constant value which does not depend on k.

Figure 15 compares the confidence intervals of our ln-quantile estimators in (7), (12)
and (19). This figure shows that the new quantile estimator ln Q̂new,,H has the smallest
confidence interval with length 1.4451, where we use α̂ = ρ̂ = −0.7269. The solid circles
“•” in the plot are the values of the quantile estimators at their optimal k level.

Figure 15. 95% confidence interval of three ln-quantile estimators after threshold of 86 million counts for the gamma ray
example. n = 104, p = 0.01. Note that ln Q̂new,H (purple) has shortest CI with length 1.4451. (The solid circles “•” in the
plot are the values of the quantile estimators at their optimal k level).
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In Table 12, we compare all four quantile estimators under VaR0.05 and VaR0.01.
Table 13 compares the size of confidence intervals of ln VaR0.01 and VaR0.01 by three quan-
tile estimators.

Table 12. Estimated VaR0.05 and VaR0.01 in the gamma ray example. (Unit: million counts).

Estimation
Method α̂ γ̂ Mean Median VaR0.05 VaR0.01

ln QH N/A H = 0.5324 451.82 315.27 867.12 1926.04

ln QH N/A H = 0.6517 577.22 232.28 742.01 1958.67

ln Q̂new,H ρ̂ = −0.7269 H = 0.6517 577.22 189.35 441.60 1102.57

Table 13. The 95% confidence interval of ln VaR0.01t.and VaR0.01.

Estimation
Method k LCL ln VaR0.01

(VaR0.01) UCL Length EFF

ln QH k̂0 = 21 1.0807 2.3755 2.8864 1.8057 1

(QH) (590.12) (1926.04) (3153.18) (2563.06) (1)

ln QH k̂01 = 41 1.3367 2.3930 3.4494 2.1128 0.8547

(QH) (737.14) (1958.67) (5471.71) (4734.56) (0.5414)

ln Qnew,H k̂01 = 41 1.0595 1.7821 2.5047 1.4451 1.2495

(Qnew,H) (579.55) (1102.57) (2179.85) (1600.30) (1.6016)

Table 13 shows that the new estimator has the shortest confidence interval, compared
to lnQH , and lnQH , with the highest efficiency of 1.6016.

5.2.3. Summary

Based on Figure 15 and Table 13, we conclude that the new estimator ln Q̂new,H in (19)
is the best estimator for Gamma Ray example. We predict that VaR0.01 is a gamma ray
release of 1102.57 million counts, this is most likely an X rated solar flare. This is shown in
Figure 13b.

6. Conclusions

Based on the studies in this paper, we conclude that:
1. High quantile and its CI estimation provides important information for risk man-

agement and for extreme event predictions.
2. Based on the theoretical and simulation results, the proposed new method for

estimating confidence interval of high quantiles has advantages properties comparing
with other existing methods. The estimation is consistent and stable with less error. The
proposed method provides a useful computational algorithm to the readers.

3. The confidence interval of high quantile obtained by the new proposed method also
has the highest efficiency compared to the existing methods, in terms of having the smallest
size of confidence interval, and the highest probability coverage of the true quantile values
in most cases.

4. Based on the analysis of the two real-world examples, flu in Canada and gamma
ray from the solar flare, we can see that the new proposed method can be applied to many
more fields, including other extreme events such as insurance claims, natural disasters,
stock market predictions and pandemic disease monitoring.
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Appendix A. Proofs of Theorems 1 and 2

Lemma 1. The sum of Cov
[
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]
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Lemma 2. Under conditions (C1) and (C2), for ln Q(p)
H (k) in (14) by use Theorem 5.1, formula

(5.2) in Gomes and Pestana (2007, p.285 [17]), as n→ ∞,
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http://hesperia.gsfc.nasa.gov/fermi/gbm/qlook/fermi_gbm_flare_list.txt
https://www.who.int/influenza/gisrs_laboratory/flunet/en
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then the asymptotic expected value and variance are

E
(
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)
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Proof of Theorem 1. Under conditions (C1) and (C2), in the Hall-Welsh class of models in
(6), where H is in (8) with conditions
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where Vk is an asymptotic standard normal random variable.
By Schwartz inequality and Lemma 1 formula (A1), sinece α is a contant in (19), based

on asympototic properties of Cp(k; β̂, ρ̂) in (13) (Gomes and Pestana, 2007, p.286 [17]), we
have that
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Therefore when n is large enough, use Lemma 2, formula (A2),
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Furthermore, we use (21) and (A2), we obtain (22) as
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