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Abstract: In this paper, we study the evolution of a Finitary Random Interlacement (FRI) with
respect to the expected length of each fiber. In contrast to the previously proved phase transition
between sufficiently large and small fiber length, for all d ≥ 3, FRI is NOT stochastically monotone
as fiber length increases. At the same time, numerical evidence still strongly supports the existence
and uniqueness of a critical fiber length, which is estimated theoretically and numerically to be an
inversely proportional function with respect to system intensity.

Keywords: finitary random interlacement; percolation phase transition; critical value

1. Introduction

Phase transition, which qualitatively characterizes the change in the state of a system
under a continuous change in an external parameter, is ubiquitously found in probabilistic
models and statistical mechanics. In this paper, we investigate the phase transitions in the
Finitary Random Interlacement (FRI) introduced by Bowen in his study on Gaboriau–Lyons
problem [1]. In contrast to its profound connection with the von Neumann–Day problem, a
relatively simple description of FRI is given by Bowen in [1] as follows: Consider a random
network (G, V) in Zd, d ≥ 3. For each vertex x ∈ V, there lives Nx frogs, where Nx is
a Poisson random variable with mean udegx/(T + 1), degx is the degree of x and u, T
are two positive parameters. Each frog has a coin that lands on head with probability
T/(T + 1). At time t = 0, the frog flips the coin. If it lands on heads, the frog moves to a
random neighboring vertex with equal probability. It repeats this operation until the coin
lands on tails, at which point the frog stops forever. The FRI is the random multiset of
random walk paths of all frogs. It is worth noting that u gives a natural parameterization
of the ”vertex intensity“ of the FRI, as it is proportional to the expected number of vertices
visited by all frogs starting from each given point.

Since each path consists of a simple random walk for t steps and a geometric random
variable with mean T + 1 at t + 1 steps, a FRI can be roughly treated as a random network
(G, V) in Zd ”interlaced“ by fibers made of geometrically truncated simple random walk
(SRW) trajectories, with a multiplicative parameter u controlling its Poisson intensity and
truncation parameter T that determines the expected length of each fiber. As pointed out
by an anonymous referee (of a previous paper), an FRI can also be described as a variant of
the Random Interlacement (RI) [2] in Zd with weight [3], determined by capacity with a
discrete killing measure [4]. See Section 2 for more precise definitions and constructions for
FRI.

In the following, we denote by FIu,T
d the FRI in Zd with multiplicative parameter

u and truncation parameter T, which is the collection of edges traversed by ”fibers“ in a
Poisson point process. See Section 2.1 for details. A key character of the FRI is percolation
property, i.e., the existence and uniqueness of an infinite cluster within FIu,T

d . In contrast
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to RI, where Iu
d almost surely percolates for all d and u > 0, FRI has been proved in [5] to

have the following phase transition as an edge percolation model:

• Supercritical phase (Theorem 1, [5]): for all d ≥ 3 and u > 0, there is a 0 < T1(u, d) <
∞ such that for all T > T1, FIu,T

d almost surely percolates.
• Subcritical phase (Theorem 2, [5]): for all d ≥ 3 and u > 0, there is a 0 < T0(u, d) < ∞

such that for all 0 < T < T0, FIu,T
d has no infinite cluster almost surely.

Intuitively, the percolation can be visualized by running one realization under different
parameters u, T and plotting the first and second largest clusters restricted in a finite box
[0, 50]3. Two small clusters in Figure 1a, that corresponds to u = 1/6, T = 1.4, provide
some evidence that no infinite cluster exists, while a huge cluster along with a smaller
cluster in Figure 1d that corresponds to u = 1/6, T = 2.2 indicates that there may exist
only one infinite cluster. One can see that the phase transition may occur near T = 1.8, in
which the first and second largest clusters are almost of the same size. The dominance of
the first largest cluster can be apparently observed as T becomes larger, e.g., T = 2.0.

0

5

40

10

15

50

20

30

25

40

30

35

30

40

20 20

10

10 0

(a) T = 1.4

0

50

10

40

20

50

30

30 40

40

3020

50

20
10

10

0 0

(b) T = 1.8

0

50

10

40

20

50

30

30 40

40

3020

50

20
10

10

0 0

(c) T = 2.0

0

50

10

40

20

50

30

30 40

40

3020

50

20
10

10

0 0

(d) T = 2.2

Figure 1. Illustrations of Finitary Random Interlacement (FRI) truncated in a box [0, 50]3: The first and second largest
clusters under u = 1/6 and different parameter T’s. The sub- and supercritical phases are demonstrated under T = 1.4
and T = 2.2, respectively. The simulations under T = 1.8 and T = 2.0 provide some evidence on the percolation phase
transition. (a) T = 1.4; (b) T = 1.8; (c) T = 2.0; (d) T = 2.2.

Moreover, a follow-up work [6] proved recently that for all d ≥ 3 and u > 0, there
is a T2(u, d) ∈ [T1(u, d), ∞) such that for all T > T2, the chemical distance on FIu,T

d is
asymptotically of the same order as the Euclidean distance. Reference [6] further proves
that FRI has local uniqueness property for all sufficiently large T. See [7] for precise
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definitions for chemical distance and local uniqueness. However, since FIu,T
d may be

nonmonotonic with respect to T, the existence of a subcritical and a supercritical phase is
insufficient to guarantee a critical value in between. It is conjectured in [5] that there is a
unique critical value Tc(u, d) such that FIu,T

d percolates when T > Tc and has no infinite
cluster almost surely when T < Tc.

The percolation phase transition is closely related to the trade-off mechanism with
respect to the parameter T: As T increases, there will be on average fewer and fewer fibers
starting from each vertex. In compensation however, the length of each remaining fiber
increases proportionally to T, so that we are less likely to see the start or end of any fiber
locally. In fact, as T → ∞, an FRI increasingly resembles the limiting model (which is the
classical RI itself) where all fibers are doubly infinite SRW trajectories. It has been proved
in [1] that FIu,T

d ⇒ Iu
d under the weak-* topology. With the observation above, it is natural

to ask how the FRI, as a random collection of edges, evolves with respect to T, or more
specifically, whether or not it has stochastic monotonicity [5].

Like random interlacement, FRI is by definition monotonically increasing with respect
to its intensity u. In contrast, it is shown in the paper that for all u > 0, the set of edges
covered by an FIu,T

d is NOT stochastically monotone in T for d ≥ 3. This reveals that the
evolution of FRI with respect to T might be more nontrivial than previously thought, and
makes the characterization of the phase diagram of T a more interesting question.

The nonmonotonicity of FRI casts shadows on the conjecture of existence and unique-
ness of critical value Tc. A large-scale parallel computing algorithm is employed to explore
the behavior of FRI when the fiber length factor T changes in the interval [T0, T1]. Our nu-
merical findings strongly suggest that, although no longer monotonic, for any d ≥ 3, u > 0,
FIu,T

d still has a unique critical value Tc of percolation. For the shape of the phase diagram,
we prove that u−1 has to be the correct asymptotic order of Tc as u → ∞, given that the
critical value exists; i.e., we find that there are 0 < c < C < ∞, such that for all sufficiently
large u

• FIu,T
d has no infinite cluster for all T < c/u;

• FIu,T
d has a unique infinite cluster for all T > C/u.

Moreover, for all small u, we prove that Tc has a polynomial upper bound with respect
to u such that for all δ > 0

• when d = 3, Tc ≤ O
(

1
u2+δ

)
;

• when d ≥ 4, Tc ≤ O
(

1
u1+δ

)
.

At the same time, our numerical tests also indicate that the phase diagram is inversely
proportional to u.

The rest of this paper is outlined as follows: in Section 2, we recall the precise definition
of FRI, together with some important notations and constructions crucial for our theoretical
and numerical discussions; in Section 3 we discuss the nonmonotonicity of the edge set of
FRI; in Section 4, we discuss theoretical results about characterization of of phase diagram;
our numerical explorations on the phase diagram are presented in Section 5.

2. Definitions and Notations

In this section, we recall the precise definition of FRI, together with some important
notations and constructions in [1,5,6]. We start with some standard notations for simple
random walks. Without causing further confusion, we will use Zd to denote both vertices
and (the nearest neighbor) edges in the d−dimensional lattice throughout this paper. Then,
for a subgraph G = (V, E) ⊂ Zd, we call it connected if any v1, v2 ∈ V can be connected by
a collection of edges in E. For 1 ≤ j ≤ d, let xj ∈ Rd satisfy x(i)j = 1{i=j}, 1 ≤ i ≤ d. Denote

the edges {0, xj} and {0,−xj} by ej and −ej. Note that {ej}d
j=1 form the basis of Zd. For

any subset of vertices A ⊂ Zd, let
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∂in A =
{

x ∈ A, s.t.∃y ∈ Ac, ‖x− y‖1 = 1
}

∂out A =
{

x ∈ Ac, s.t.∃y ∈ A, ‖x− y‖1 = 1
}

be the inner and outer boundary of A. We let B(x, n), x ∈ Zd, n ≥ 1 be the l∞ box in Zd

centered at x of radius n, i.e.,

B(x, n) = {y ∈ Zd, ‖x− y‖∞ ≤ n}.

Moreover, we abbreviate B(0, n) by B(n).
In this paper, we denote by {Xn}∞

n=0 a simple random walk (SRW) in Zd starting from
X0, with its distribution denoted by PX0(·). Note that for any integer 0 ≤ n0 ≤ ∞, the SRW

trajectory {Xn}n0
n=0 naturally induces a collection of edges

{
{Xi, Xi+1}

}n0−1

i=0
. Moreover,

for any T > 0, let GT ≥ 0 be a geometric random variable with p = 1/(T + 1) which is
independent to {Xn}∞

n=0. Then we call {Xn}GT
n=0 a geometrically killed SRW with parameter

T, and denote its distribution by P(T)
X0

(·) with the convention P(∞)
X0

(·) = PX0(·).
Moreover, we denote by

H̄(T)
d,A = inf{n ≥ 0, X(T)

n ∈ A}

H(T)
d,A = inf{n ≥ 1, X(T)

n ∈ A}

the first hitting and first returning times to A, with the convention inf ∅ = ∞.

Remark 1. It is worth noting that H(T)
d,A ≡ ∞ when GT = 0.

For a finite subset A and vertex x ∈ Zd, define the killed escape probability

Es(T)d,A(x) = P(T)
x (H(T)

d,A = ∞), (1)

together with the killed equilibrium measure

e(T)d,A(x) = (2d)× Es(T)d,A(x)1x∈A, (2)

and the killed capacity
cap(T)

d (A) = ∑
x∈Zd

e(T)d,A(x). (3)

We also abbreviate H̄(T)
d,A , H(T)

d,A , Es(T)d,A, e(T)d,A, and cap(T)
d to H̄d,A, Hd,A, Esd,A, ed,A, and

capd, respectively, when T = ∞.

Remark 2. Factor 2d in the killed equilibrium measure is added for technical reasons to make FRI
converge to RI with the same intensity as T → ∞. See [1] for details.

It is worth noting that for x ∈ A \ ∂in A,

Es(T)d,A(x) = P(GT = 0) = 1/(1 + T). (4)

2.1. Definition of FRI

According to [5], there are two equivalent definitions of the Poisson point process
corresponding to FRI. Denote the set of all finite paths on Zd by W [0,∞)

d . Since W [0,∞)
d is

countable, the measure v(T)d = ∑x∈Zd
2d

T+1 P(T)
x is a σ− finite measure on W [0,∞)

d .
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Definition 1. For 0 < u, T < ∞, the finitary random interlacements PFIu,T
d is a Poisson point

process on W [0,∞)
d with intensity measure uv(T)d . The law of PFIu,T

d is denoted by Pu,T .

Definition 2. For each site x ∈ Zd, Nx is a Poisson random variable with parameter 2du
T+1 . Start

Nx independent geometrically killed simple random walks starting at x with killing rate 1
T+1 . Then,

one may equivalently define PFIu,T
d as a point measure on W [0,∞)

d composed of all the trajectories
above from all sites in Zd.

With the Poisson point process PFIu,T
d defined as above, we define FIu,T

d as the
collection of all edges traversed by PFIu,T

d , which is a random subset of edges in Zd.

2.2. Configurations within a Finite Set

In fact, given a finite set K ⊂ Zd, the distribution of FRI within K can be described
precisely. By Lemma 2.2 of [5], if we start Nx ∼ Pois

(
u ∗ e(T)d,K (x)

)
independent random

walks with distribution P(T)
x for any x ∈ K (denote all these trajectories by

{
ηi
}NK

i=1), then⋃NK
i=1 ηi ∩ K has the same distribution as FIu,T

d ∩ K.

2.3. Stochastic Dominance and Monotonicity

A sufficient condition for the existence of the critical value Tc is the stochastic mono-
tonicity with respect to T. More precisely, if for any T′ > T there is a coupling between
FIu,T′

d and FIu,T
d such that FIu,T

d ⊂ FIu,T′
d almost surely, then Tc must exist. Therefore,

we need the concept of stochastic dominance to describe the existence of the coupling.

Definition 3 (Definition 2.1, Chapter 2 of [8]). Assume that X is a compact metric space with a
given partial order. Say a function f on X is monotone if f (η) ≤ f (ζ) for any η, ζ ∈ X, η ≤ ζ.
Then, for two probability measures µ1, µ2 on X, say µ2 stochastically dominates µ1 (written by

µ1
d
≤ µ2) if and only if for any monotone function f on X,∫

f dµ1 ≤
∫

f dµ2.

By Theorem 2.4 in the Chapter 2 of [8], we know that the coupling mentioned above

exists if and only if FIu,T
d

d
≤ FIu,T′

d .

3. Nonmonotonicity and Single Edge Density

In this section, we first show that unlike the Random Interlacement, an FRI is not
stochastically monotone in T for all u > 0 and d ≥ 3. The following proof was taught
to us by an anonymous referee. Recalling the definition of stochastic monotonicity, to

prove/disprove FIu,T1
d

d
≥ FIu,T2

d for all T1 ≥ T2, it is equivalent to verify whether or not
for all monotonically increasing functions ϕ on Zd, one always has

E
[

ϕ
(
FIu,T1

d

)]
≥ E

[
ϕ
(
FIu,T2

d

)]
.

In particular, we can first take the test function as the very simple form as follows: for
each integer n ≥ 1, define

ϕ0,n(E) = 1∃~e={x1,x2}∈E, s.t. {x1,x2}∩B(n) 6=∅.

i.e., ϕ0,n(E) stands for the event where at least one edge in E traverses B(n).

Theorem 1. For any d ≥ 3, u > 0, FRI does not have stochastic monotonicity with respect to T.



Entropy 2021, 23, 69 6 of 24

Proof. Recalling the definition of ϕ0,n(·), one may define

Au,T
n,d =

{
ϕ0,n

(
FIu,T

d

)
= 0

}
to be the event that the FRI fails to intersect B(n). It now suffices to prove that for any
d ≥ 3 and u > 0 there exists n(d) ≥ 1 and 1 < T0(d) < ∞ such that

P(Au,T0
n,d ) > P(Au,1

n,d). (5)

Recalling (3) and the construction in Section 2.3, we have for all T > 0,

P(Au,T
n,d ) = exp

(
− T

T + 1
ucap(T)

d (B(n))
)

.

Thus, we only need to show that

2cap(T0)
d (B(n)) < cap(1)

d (B(n)). (6)

The proof of (6) is based on the following well-known estimate on the capacity of
a box:

Lemma 1 (Proposition 6.5.2 in [9]). There are constants c1, c2 > 0 such that for all R > 0,

c1Rd−2 ≤ cap
(

B(R)
)
≤ c2Rd−2.

Note that lim
T→∞

cap(T)
d (B(n)) = capd(B(n)), then, there is a T0 < ∞ such that

cap(T0)
d (B(n)) ≤ 2capd(B(n)) ≤ 2c2Rd−2. At the same time, by (4)

cap(1)
d (B(n)) ≥ ∑

x∈B(n−1)
e(1)d,B(n)(x) ≥ (2n− 1)d/2

> 2c2(2n + 1)d−2 ≥ cap(T0)
d (B(n)).

With Theorem 1, one may also consider the evolution of the FRI density for varying
T’s. Let ϕ1(E) = 1e1∈E and thus the ”single edge density“

E
[

ϕ1

(
FIu,T

d

)]
= P

(
e1 ∈ FIu,T

d

)
∆
= pd,u(T) (7)

gives the probability that any single (undirected) edge is traversed by the FRI. By translation
invariance, pd,u(T) is proportional to the expectation of the number of edges traversed by
FRI within a given set. The following proposition shows that the density of and FRI is not
monotone in T for d = 3, 4, but becomes monotonically increasing for higher dimensions.

Proposition 1. For any u ∈ (0, ∞), pd,u(T) ∈ C1(0, ∞). Moreover, there are t0(d) > 0 and
T0(d) < ∞ such that

• for any d ≥ 3, p′d,u(T) > 0 for all T ∈ (0, t0);
• for d ∈ {3, 4}, p′d,u(T) < 0 for all T ∈ (T0, ∞);
• there exists d0 = d0(u) < ∞ such that p′d,u(T) > 0 for all T ∈ (0, ∞) and d ≥ d0.

Remark 3. As a direct corollary of Theorem 1 and Proposition 1, one may see that, for sufficiently
large d, FRI is not monotone as well with respect to its edge density. We expect this should also hold
for all d ≥ 3.
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Before presenting the proof of Proposition 1, we first cite the following useful result
directly from Exercise 11.1 [9] on the expected length of excursion given a SRW that returns
to where it starts.

Lemma 2 (from Exercise 11.1, [9]). Suppose d ≥ 3 and Yn is a simple random walk in Zd with
Y0 = 0 and let Γ = min{j > 0 : Yj = 0}. Then,

P(Γ = 2n) � n−d/2, n→ ∞.

In particular,

E[Γ|Γ < ∞]

{
= ∞, d ≤ 4,

< ∞, d ≥ 5.

We also need a ”high dimensional“ version of Lemma 2. The main technicalities
involved in the proof are asymptotic estimates for high-dimensional SRW’s, which are not
directly related to the main scope of this paper, so we leave it in Appendix A.

Lemma 3. For d ≥ 5, let

Rd = E0[Hd,{0,x1}1Hd,{0,x1}<∞] < ∞.

Then, limd→∞ Rd = 0.

Now we are able to prove Proposition 1.

Proof of Proposition 1. We denote the event {e1 is not contained by the trajectory} by F
and then calculate Pu,T

(
e1 /∈ FIu,T

d

)
. First, we need to calculate P(T)

x2 (F) and P(T)
−x1

(F).

Denote that E1 = P(T)
−x1

(
H(T)

d,{0,x1}
= ∞

)
and E2 = P(T)

x2

(
H(T)

d,{0,x1}
= ∞

)
. We have

P(T)
x2 (F) =E2 +

∞

∑
n=1

P(T)
x2

(
H(T)

d,{0,x1}
= n, F

)
=E2 +

∞

∑
n=1

P(T)
x2

(
H(T)

d,{0,x1}
= n

)[ 1
T + 1

+
T

T + 1

(
2d− 2

2d
P(T)

x2 (F) +
1

2d
P(T)
−x1

(F)
)]

=E2 + (1− E2)

[
1

T + 1
+

T
T + 1

(
2d− 2

2d
P(T)

x2 (F) +
1

2d
P(T)
−x1

(F)
)]

.

(8)

In the same way, we have

P(T)
−x1

(F) = E1 + (1− E1)

[
1

T + 1
+

T
T + 1

(
2d− 2

2d
P(T)

x2 (F) +
1

2d
P(T)
−x1

(F)
)]

. (9)

Combine (8) and (9),

P(T)
x2 (F)

[
1 + (E2 − E1) ∗

T
T + 1

∗ 2d− 2
2d

]
=P(T)
−x1

(F)
[

1 + (E1 − E2)
T

T + 1
∗ 1

2d

]
+ (E2 − E1)

T
T + 1

.
(10)
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By (8) and (10), we have

P(T)
−x1

(F) ∗
(1− E2) ∗ T

T+1 ∗
1

2d

1− T
T+1 ∗

2d−2
2d ∗ (1− E2)

+
E2 + (1− E2) ∗ 1

T+1

1− T
T+1 ∗

2d−2
2d ∗ (1− E2)

=P(T)
−x1

(F) ∗
1− (E2 − E1) ∗ T

T+1 ∗
1

2d

1 + (E2 − E1) ∗ T
T+1 ∗

2d−2
2d

+
(E2 − E1)

T
T+1

1 + (E2 − E1) ∗ T
T+1 ∗

2d−2
2d

.

(11)

Therefore,

P(T)
−x1

(F) =
E2 + (1− E2)

1
T+1 − (E2 − E1)

2
2d

T
T+1

1−
[

2d−1
2d (1− E2) +

1
2d (E2 − E1)

]
T

T+1

=

[
2d−2

2d E2 +
2

2d E1

]
T + 1[

2d−2
2d E2 +

1
2d E1 +

1
2d

]
T + 1

.

(12)

In the same way, we have

P(T)
x2 (F) =

[
2d−1

2d E2 +
1

2d E1

]
T + 1[

2d−2
2d E2 +

1
2d E1 +

1
2d

]
T + 1

. (13)

Therefore,

P(T)
0 (F) =

1
T + 1

+
T

T + 1

[
2d− 2

2d
P(T)

x2 (F) +
1

2d
P(T)
−x1

(F)
]

=

[
2d−2

2d E2 +
1

2d E1

]
T + 1[

2d−2
2d E2 +

1
2d E1 +

1
2d

]
T + 1

.
(14)

Restricted on {0, x1}, there are Pois
(

2du ∗ Es(T)d,{0,x1}
(0)
)

independent trajectories

starting from 0 and Pois
(

2du ∗ Es(T)d,{0,x1}
(1)
)

trajectories starting from 1. Note that

Es(T)d,{0,x1}
(0) = Es(T)d,{0,x1}

(1), we have

Pu,T
(

e1 /∈ FIu,T
d

)
=

 ∞

∑
m=0

exp
(
−2du ∗ Es(T)d,{0,x1}

(0)
)(2du ∗ Es(T)d,{0,x1}

(0)
)m

m!

(
P(T)

0 (F)
)m


2

= exp
(
−4du ∗ Es(T)d,{0,x1}

(0)
(

1− P(T)
0 (F)

))
.

(15)

Let f (T) = Es(T)d,{0,x1}
(0) = Esd,{0,x1}(0) +

∞
∑

n=1
P0

(
Hd,{0,x1} = n

)(
1−

(
1− 1

T+1

)n
)

and g(T) = 1− P(T)
0 (F) =

1
2d T[

2d−2
2d E2+

1
2d E1+

1
2d

]
T+1

. We have

f ′(T) =− 1
(T + 1)2

∞

∑
n=1

[
P0

(
Hd,{0,x1} = n

)
∗ n ∗

(
1− 1

T + 1

)n−1
]

=− 1
T(T + 1)

∞

∑
n=1

[
P0

(
Hd,{0,x1} = n

)
∗ n ∗

(
1− 1

T + 1

)n
]

=− 1
T(T + 1)

∗ E(T)
0

[
H(T)

d,{0,x1}
; 1 ≤ H(T)

d,{0,x1}
< ∞

]
< ∞.

(16)
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Meanwhile,

g′(T) =
1

2d[(
2d−2

2d E2 +
1

2d E1 +
1

2d

)
+ 1

T

]2 ∗
1

T2

=
1

2d[(
2d−2

2d E2 +
1

2d E1 +
1

2d

)
T + 1

]2
∆
=

1
2d

(aT + 1)2 ,

(17)

where a = 2d−2
2d E2 +

1
2d E1 +

1
2d . Combine (16) and (17),

( f · g)′(T) =Es(T)d,{0,x1}
(0) ∗

1
2d

(aT + 1)2 −
1

T(T + 1)

∗ E(T)
0

[
H(T)

d,{0,x1}
; 1 ≤ H(T)

d,{0,x1}
< ∞

]
∗

1
2d T

aT + 1

=
1

2d
(aT + 1)2

[
Es(T)d,{0,x1}

(0)− aT + 1
T + 1

∗ E(T)
0

[
H(T)

d,{0,x1}
; 1 ≤ H(T)

d,{0,x1}
< ∞

]]
< ∞.

(18)

Therefore, pd,u(T) = 1− exp
(
−4du ∗ f (T) ∗ g(T)

)
∈ C1(0, ∞).

Note that ∀d ≥ 3, lim
T→0+

Es(T)d,{0,x1}
(0) = 1, and lim

T→0+
E(T)

0

[
H(T)

d,{0,x1}
; 1 ≤ H(T)

d,{0,x1}
< ∞

]
= 0 , we have

lim
T→0+

( f · g)′(T) = 1
2d

> 0. (19)

Similar to Lemma 2, for d = 3, 4, E0

[
H{0,x1}; 1 ≤ H{0,x1} < ∞

]
= ∞. Then, we have

lim
T→∞

E(T)
0

[
H(T)

d,{0,x1}
; 1 ≤ H(T)

d,{0,x1}
< ∞

]
= ∞. (20)

Note that lim
T→∞

Es(T)d,{0,x1}
(0) = Esd,{0,x1}(0), we know that ∃T0 > 0 such that ∀T > T0,

Es(T)d,{0,x1}
(0)− aT + 1

T + 1
∗ E(T)

0

[
H(T)

d,{0,x1}
; 1 ≤ H(T)

d,{0,x1}
< ∞

]
< 0. (21)

For d ≥ 5, it is fundamental to construct a coupling between SRWs on Zd and Z3 such
that

{
Hd,{0,x1} < ∞

}
⊂
{

H3,{0,x1} < ∞
}

. Thus,

Es(T)d,{0,x1}
(0) > Esd,{0,x1}(0) ≥ Es3,{0,x1}(0). (22)

By Lemma 3, there exists d0 such that for any d > d0 and T > 0,

E(T)
0 [Hd,{0,x1}1Hd,{0,x1}<∞] < E0[Hd,{0,x1}1Hd,{0,x1}<∞] ≤ Es3,{0,x1}(0). (23)

By (18), (22), and (23), for any d > d0 and 0 < T < ∞, we have[
Es(T)d,{0,x1}

(0)
(

1− P(T)
0 (F)

)]′
>

1
2d

(aT + 1)2

[
Es3,{0,x1}(0)− Es3,{0,x1}(0)

]
= 0. (24)

Recall that pd,u(T) = 1− exp
(
−4du ∗ Es(T)d,{0,x1}

(0)
(

1− P(T)
0 (F)

))
, then the proof is

complete.
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Remark 4. Though it is true that Lemma 2 as stated is for the expected time of returning to 0
rather than to {0, x1}, the result and proof are exactly parallel for returning to any finite subset. So,
we decide to cite [9] rather than repeat the proof.

Remark 5. Note that Proposition 1 gives an alternative proof for nonmonotonicity when d = 3, 4.

In addition to the aforementioned theoretical proof, the low-dimensional nonmono-
tonicity can also be verified in numerical simulation. In Figure 2, we present numerical
approximations of p3,1/6(50) and p3,1/6(500) achieved from 4× 106 i.i.d. stochastic realiza-
tions.

0 0.5 1 1.5 2 2.5 3 3.5 4

10
6

0.22

0.221

0.222

0.223

0.224

0.225

0.226

0.227

0.228

Figure 2. Numerical approximations to p3,1/6(50) and p3,1/6(500) by 4× 106 i.i.d. stochastic realizations.

In Figure 2, a significant difference between the blue and red curves is observed. With
4× 106 i.i.d. stochastic realizations, we have the frequencies

Nb
d
= B

(
4× 106, p3,1/6(50)

)
, Nr

d
= B

(
4× 106, p3,1/6(500)

)
.

So, their standard deviations can be bounded from above by 1/(2 × 2 × 103) =
2.5 × 10−4. However, the difference between our approximations is about 1.7 × 10−3,
which is larger than 4 times the upper bound of standard deviation. In Figure 3, we
numerically approximate the single edge density p3,1/6(·) for different T with spacing
∆T = 0.01, and each point is evaluated by 4× 106 i.i.d. stochastic realizations. In spite
of some stochastic fluctuations, the trend of nonmonotonicity is clear and the probability
seems to reach maximum at Tmax ≈ 50.
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0 50 100 150 200 250

0.222

0.2225

0.223

0.2235

0.224

0.2245

0.225

0.2255

0.226

0.2265

0.227

0 50 100 150 200 250

0

0.05

0.1

0.15

0.2

0.25

Figure 3. Numerical approximations for p3,1/6(u), T ∈ [0, 250] with spacing ∆T = 0.01. Each point
is evaluated by 4× 106 i.i.d. stochastic realizations. The probability seems to be nonmonotonic and
reaches its maximum at about Tmax = 50.

4. Characterization of Phase Diagram

In this section, we focus on the (potential) phase diagram of edge percolation in FRI.
We start with proving the uniqueness of infinite cluster in FRI by the classical “finite energy”
argument. We put technical details of the proof in Appendix B.

Theorem 2. For any d ≥ 3 and u, T > 0,

Pu,T(FRI has at most one in f inite cluster) = 1.

Remark 6. Theorem 2 is similar to, though slightly stronger than, Theorem 4 [5], where the
uniqueness was proved for sufficiently large T’s.

Theorem 3. For all d ≥ 3 and FRI FIu,T
d , we have the following:

1. If FIu,T
d has an infinite cluster almost surely, then so does FIu′ ,T

d for all u′ > u.
2. (Theorem 1, [5]) For all u > 0, there is a 0 < T1(u, d) < ∞ such that for all T > T1, FIu,T

d
almost surely percolates.

3. Let pc
d be the critical edge density for d−dimensional Bernoulli bond percolation. For any

u > −2 log
(

1− pc
d

)
, there exist some δ = δ(u, d) > 0 such that FIu,T

d percolates almost

surely for T ∈ [(1 + δ)−1, 1 + δ]. Moreover, for any fixed d, δ(u, d) � u as u→ ∞.
4. For any d ≥ 3, there is Ud < ∞, such that for all u ≥ Ud, FIu,T

d percolates almost surely for
all T ≥ (1 + δ(u, d))−1.

5. For any 0 < δ < 1 and m0 > 0, there exists constant M = M(d, δ, m0) < ∞ such that

(a) when d = 3, ∀0 < u ≤ m0, T > M
u2+δ , FIu,T

d almost surely percolates;
(b) when d ≥ 4, ∀0 < u ≤ m0, T > M

u1+δ , FIu,T
d almost surely percolates.

Remark 7. A statement equivalent to Claim (iii) Theorem 3 has also been proved in 5), Remark
V.5.3, [10].

Proof. Note that by Theorem 2, one may focus only on the existence of infinite cluster.
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Claim (i) is an immediate result of the monotonicity of FIu,T
d with respect to u. For

Claim (iii) and (iv), the key idea is to bound FIu,T
d from below by a supercritical Bernoulli

percolation. Without loss of generality, one may first consider vertex 0, edge e1, and the
collection of fibers with length ≥ 1 that start from 0 and traverse e1 in their first jump. We
denote the number of such paths by Ne1,+. Recalling the definition of FIu,T

d , there are
Pois(2du/(T + 1)) fibers starting from 0. While for each of them, the probability it has
length at least 1 is T/(T + 1), and the probability it takes e1 in the first step is (2d)−1. Thus,
by the thinning property of Poisson distribution, we have

Ne1,+
d
= Pois(uT/(T + 1)2).

Similarly, one can define Ne1,− to be the number of fibers that start from x1 and traverse
e1 in their first jump. By independent increment property of PPP, Ne1,− is independent and
identically distributed as Ne1,+. Define the event as

{e1 is good} ∆
= {Ne1,+ + Ne1,− > 0}.

Moreover, for any edge e = {x, y} ∈ Zd, one can also define Ne,+, Ne,− in the exact
same way. Thus, {Ne,±, e ∈ Zd} form a i.i.d. sequence of Poisson(uT/(T + 1)2). Once
again, define

{e is good} ∆
= {Ne,+ + Ne,− > 0}.

Thus, the collection of good edges by definition forms a Bernoulli bond percolation
with single edge density

p = 1− P(Ne1,+ = 0) · P(Ne1,− = 0) = 1− exp
(
−2uT/(T + 1)2

)
, (25)

which percolates when
uT

(T + 1)2 ≥ − log
(
1− pc

d
)
/2.

Therefore, for any u > −2 log
(

1− pc
d

)
, we take

δ(u, d) = C(u, d)− 2 +
√

C(u, d)2 − 2C(u, d), where C(u, d) = u
− log(1−pc

d)
> 2. Note that

a good edge is by definition always traversed by the FRI. Claim (iii) is now a direct re-
sult of (25), the fact that T/(T + 1)2 reaches its maximum of 1/4 at T = 1, and that
T/(T + 1)2 � T−1 as T → ∞.

Now, for (iv), note that for a fixed u, say u = 1, by Theorem 1 [5], there is a T1 such that
for all T > T1, FI1,T

d has an infinite cluster almost surely. With Claim (i), we now know
this also holds for all u ≥ 1. In (iii), we showed that δ(u, d) � u. Thus, there is always a Ud
such that δ(u, d) ≥ T1 for all u ≥ Ud. Thus, we have an infinite cluster almost surely for all
T from (1 + δ(u, d))−1 all the way to infinity.

The proof of (v) is based on some more careful controls of exponents in constructing
the infinite cluster in [5]. As it is redundant to repeat the shared part of our construction
in full details, we just point out modifications and estimates necessary to our proof here.
Note that it is sufficient to prove for 0 < δ < 0.5.

To be specific, let ε be any sufficiently small positive constant and R = bT0.5+εc,
r = bT0.5−εc. By [5], we know that it is sufficient to prove the following three events
happen with sufficiently high probability (i.e., larger than 1− p0(d) for some given p0(d)),
corresponding to the conditions 1–3 introduced in Definition 3 of [5]:

1. Assume that FIu,T
d is the union of two independent FRI copies FI0.5u,T

d,1 and FI0.5u,T
d,2

(by the property of Poisson point processes). For any box B(z, r) ⊂ B(R), there
exists a connected cluster A ⊂ B(z, r + T0.5+0.5ε) in FI0.5u,T

d,1 traversing B(z, r) and

cap(A) > CT
(d−2)(1−ε)

2 . We denote this event by E.
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2. For any x, y ∈ B(R) such that |x − y| ≤ 3r and two connected clusters Cx and Cy

(containing x and y, respectively) in FI0.5u,T
d,1 , if cap(Cx) > CT

(d−2)(1−ε)
2 , cap(Cy) >

CT
(d−2)(1−ε)

2 , and Cx ∪ Cy ⊂ B(2T0.5+0.5ε), then Cx and Cy are connected by FI0.5u,T
d,2

within B(1.4R). We denote this event by F.
3. There is no path starting from Zd \ B(2R) and intersecting B(1.5R). In addition,

for 1 ≤ j ≤ d, there is no path starting from {x ∈ B(2R) : −2R ≤ x(j) ≤ −R}
and intersecting {x ∈ B(2R) : −0.5R ≤ x(j) ≤ 1.5R}, and no path starting from
{x ∈ B(2R) : R ≤ x(j) ≤ 2R} and intersecting {x ∈ B(2R) : −1.5R ≤ x(j) ≤ 0.5R}.
We denote this event by G.

First, for event E, we need an estimate for the capacity of trajectories of several simple
random walks.

Lemma 4 (Lemma 5, [11]). Let {Xi}N
i=1 be a sequence of independent simple random walks on

Zd and Φ(X̄N , T) =
N⋃

i=1
{Xi(t) : 0 ≤ t ≤ T}. Then,

P
[
cap
(
Φ(X̄N , T)

)
≥ c ∗min{N ∗ F(d, T), T

d−2
2 }
]
≥ c

(log(T))2 ,

where

F(d, T) :=


T0.5, d = 3;

T
log(T)

, d = 4;

T, d ≥ 5.

By Lemma 4 and the same approach mentioned in the proof of Lemma 6 [11], we can
get a stronger version of Lemma 6 [11]:

P
(

cap(Φ(X̄N , T)) ≥ C min{NF(d, T1−ε), T
(d−2)(1−ε)

2 }
)
≤ 1− exp

(
−CT0.5ε

)
. (26)

When d = 3, note that the number of paths traversing B(z, r) with length at least T is
a Poisson random variable with parameter cu ∗ rd−2 = c ∗ ur. By the large deviation bound
for Poisson distribution, the probability of the event that there exists one path traversing
B(z, r) with length at least T is larger than 1− exp{−C ∗ ur}. Take N = 1 in (26), then, we
have

P
(
∃a path η in FI0.5u,T

d,1 traversing B(z, r) and cap(η) > CT
(d−2)(1−ε)

2

)
≥1− exp{−C ∗ ur} − exp

(
−CT0.5ε

)
.

(27)

When d ≥ 4, we do the same construction in Section 4.3 of [5] by using the paths in
FI0.5u,T

d,1 with length at least T (note that we will use (26) for n0 + 1 times but not only

d− 2 times, where n0 = d
2(0.5δ−ε)

). Similarly, by (26) and large deviation bound for Poisson
distribution, we have

P
(
∃a connected cluster A in FI0.5u,T

d,1 traversing B(z, r) and cap(A) > CT
(d−2)(1−ε)

2

)
≥1− exp

{
−C ∗ u ∗ rd−2

}
−

n0

∑
k=1

exp
(
−C ∗min{uk ∗ (F(d, T1−ε))k+1, T

(d−2)(1−ε)
2 }

)
− (n0 + 1) exp

(
−CT0.5ε

)
.

(28)
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Meanwhile, by Lemma 8 of [11], we can ensure that the connected cluster mentioned
above is contained by B(z, r + T0.5+0.5ε) with a probability of at least 1− C′ exp(−CTγ) for
some γ > 0. In conclusion, for d = 3,

P(E) ≥ 1− exp(−C ∗ ur)− exp
(
−CT0.5ε

)
− C′ exp

(
−CTγ

)
, (29)

and for d ≥ 4,

P(E) ≥1− exp
{
−C ∗ u ∗ rd−2

}
−

n0

∑
k=1

exp
(
−C ∗min{uk ∗ (F(d, T1−ε))k+1, T

(d−2)(1−ε)
2 }

)
− (n0 + 1) exp

(
−CT0.5ε

)
− C′ exp

(
−CTγ

)
.

(30)

For F, by Lemma 3.4 of [12], we have that there exists constants C, γ′ > 0 such that

P0(max{|Xi| : 0 ≤ i ≤ T} ≥ T0.5+0.5ε) ≤ C exp
{
−Tγ′

}
. (31)

Then, by (31), Lemma 3.1 of [6], and the approach in Lemma 12 of [11], we have

P(F) ≥ 1− C′R2d ∗ exp
(
−C ∗ u ∗ R2−d ∗ T(d−2)(1−ε)

)
. (32)

For event G, for any x ∈ Zd \ B(2R), since P(T)
x (traversing B(1.5R)) ≤ (1− 1

T+1 )
|x|−1.5R,

we have

Pu,T
(
∃path starting f rom Zd \ B(2R) and intersecting B(1.5R)

)
≤ ∑
|x|>2R

1− exp
(
− 2du

T + 1
∗ (1− 1

T + 1
)|x|−1.5R

)
≤ ∑
|x|>2R

2d ∗m0

T + 1
∗ (1− 1

T + 1
)|x|−1.5R ≤ C′ ∗ exp

(
−CTε

)
.

(33)

For the remaining subevents of G, the estimates are similar. In conclusion,

P(Gc) ≤ C′′ ∗ exp
(
−CTε

)
. (34)

Finally, by (29), (30), (32), and (34), it is elementary to check that when M(d, δ, m0) is
large enough, events E, F, and G all happen with sufficiently high probability.

At the same time, we also have the following result on the subcritical phase when u is
large. This, together with Claim (iv) of Theorem 3, characterize the asymptotic order of the
phase diagram.

Proposition 2. For d ≥ 3, there exists c0(d) > 0 and u0(d) > 0 such that for any u > u0(d)
and 0 < T < c0(d)

u , FIu,T
d does not have an infinite cluster almost surely.

Proof. This proposition is a direct corollary of the proof of Theorem 2 [5]. By Section 7
of [5], it has been proved that for any 0 < T ≤ T0, FIu,T

d does not have an infinite cluster
a.s. if T0 satisfies the following two conditions:

1. 6dT0 < 1;

2.
(

1−T0
1−6dT0

)d2de∗u+log(3d)e
≤ 2.

For condition 2, it is sufficient to have

log
(

1− T0

1− 6dT0

)
≤ log(2)

2de ∗ u + log(3d) + 1
.
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Note that log
(

1−T0
1−6dT0

)
= log

(
1 + (6d−1)T0

1−6dT0

)
≤ (6d−1)T0

1−6dT0
. In order to have (6d−1)T0

1−6dT0
≤

log(2)
2de∗u+log(3d)+1 , we only need

2de(6d− 1) ∗ uT0 +
[
6d log(2) + (log(3d) + 1)(6d− 1)

]
T0 ≤ log(2). (35)

In conclusion, if we take c0(d) =
log(2)

4de(6d−1) and u0(d) = c0 ∗max{6d + 1,
2[6d log(2)+(log(3d)+1)(6d−1)]

log(2) }, then condition 1, 2 hold for any u > u0 and T0 = c0(d)
u .

5. Numerical Exploration on Phase Transition

The previous section provides (partial) characterizations on the super and subcritical
phases of FRI, while it remains unknown whether there is a unique critical value Tc such
that FRI almost surely percolates when T > Tc and has no infinite cluster when T < Tc.
In this section, we make numerical explorations towards this direction. The general
guidelines behind criteria of numerical tests in this section are mostly inspired by [13,14].

In order to investigate the existence and uniqueness of Tc, we develop the following
parallel computing algorithm in order to efficiently sample the configuration within a large
box in Zd of size N, with data transferred within up to 80 cores via the Message Passing
Interface (MPI). In Section 4.1 of [5], it has been shown that we can sample the configuration
of FRI restricted within an infinite set K by Algorithm 1:

Algorithm 1 Finitary Random Interlacement.

1. Divide the vertices x ∈ V into Np mutually independent batches (B1(N), . . . , BNp(N))
and distribute one batch to one processor.

2. For s-th batch, for any x ∈ Bs(N), sample an independent random variable Nx ∼
Pois( 2du

T+1 ). Then, sample a sequence of i.i.d. random walks {ηi}Nx
i=1 independent to

Nx, with distribution P(T)
x .

3. For each trajectory ηi, i ≤ Nx of the random walk mentioned above, if η escapes from
K (i.e., for any n ≥ 1, η(n) /∈ K), then start a new independent random walk with
distribution P(T)

x and collect its trajectory η̂i; if not, jump to the next trajectory ηi+1.
4. Collect all the trajectories

⋃
s,i

η̂i ∩ K from all processors.

Since
⋃
s,i

η̂i ∩ K is identically distributed as the collections of all fibers in FIu,T
d which

traverse K, we have that
⋃
s,i

η̂i ∩ K d
= FIu,T

d ∩ K. Using the aforementioned algorithm, one

can naturally look at the size (in either cardinality or diameter) of the largest connected
component within a large box in Zd of size N, say [0, N]d ∩Zd. In the supercritical phase,
there should be a macroscopic largest connected component within [0, N]d ∩ Zd, since
it should, with high probability, be the largest cluster in the intersection(s) between the
infinite cluster and our box. Meanwhile, in the subcritical phase, the largest connected
component should be microscopic with respect to N. See Figure 1a for illustration. In
Figure 4, we present stochastic simulation results on the cardinality and maximal diameter
of the FRI’s largest connected components within [0, N]3 ∩Z3, for N = 150, u = 0.1, 0.2, 0.5,
and various T’s, under only one realization. In order to manifest the phase transition
more clearly, we choose different ranges of T under different u. Although the curves are
not smooth due to some random fluctuations and size effects, numerical evidences seem
to strongly support the existence and uniqueness of Tc, which seems to be smaller as u
becomes larger.
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(a) u = 0.1
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(b) u = 0.2
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(c) u = 0.5

Figure 4. Stochastic simulations on the sizes (left, in logarithm scale) and maximal diameters (right) of FRI largest connected
components. Phase transitions are clearly observed for different u. (a) u = 0.1; (b) u = 0.2; (c) u = 0.5.

Figure 4 strongly supports the existence of a unique critical fiber length, at least for the
u’s we chose. This encourages us to extend the test for all combinations of (u, T)’s within
an appropriate grid [0, 3]× [0, 6] with ∆u = 0.1, ∆T = 0.1. Noting that the computational
cost grows as O(N6), we need to work on a smaller N = 50. In order to avoid the extra
randomness due to the smaller box size, we run 100 i.i.d. FRI copies for each combination
of (u, T) and approximate the expected size of the largest cluster. Results shown in Figure 5
indicate that the existence and uniqueness of critical fiber length seem to hold for all u’s.
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(b) Maximal diameter

Figure 5. Illustration for the existence of phase diagram of FRI largest connected components. Each
point is obtained by the averaging of 100 i.i.d FRIs. (a) Cardinality of connected components (in log10
scale); (b) maximal diameter.

Based on the aforementioned numerical evidences, we propose the following conjecture:

Conjecture 1. For all d ≥ 3 and u > 0, there is a Tc = Tc(u) ∈ (0, ∞) such that for FIu,T
d

• There is a.s. no infinite cluster for all T < Tc.
• There is a.s. a unique infinite cluster for all T > Tc.

Remark 8. Part of Conjecture 1 is also briefly mentioned in a revised version of [5] without further
study on (non)monotonicity or numerical evidences.

If we for now accept the existence of critical value in the conjecture above, we then
explore the shape and asymptotic of the curve of Tc. With the help of monotonicity
over u (Claim (i) Theorem 3), we use the following hill climbing algorithm (Algorithm 2)
and record the ascending path (u0, T0), . . . , (un, Tn), . . . , with small spacing ∆T = 0.01,
∆u = 0.01, u0 = 3, T0 = 0.01. This algorithm significantly reduces the numerical costs in
finding the boundary of phase transitions (as shown in Figure 6).

A linear regression on (log u, log
(
Tc(u)

)
) (marked by circle), with N = 50, ε = 0.2 is

shown in Figure 7a. In addition, linear regression on (u, T−1
c (u)) in Figure 7b seems to

indicate that the exponent in the upper bound of Tc in Claim (v) Theorem 3 is close to 1.
This observation together with the theoretical findings in Theorem 3 and Proposition 2
motivates us to propose the following conjecture:

Conjecture 2. For all d ≥ 3,
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Algorithm 2 Hill climbing algorithm.

Input: The box size N, A sufficiently small initial T0, a sufficiently large initial u0, spacings
∆T and ∆u and a threshold ε.

1. Start from n = 0 and (u0, T0).
2. Run one realization of FRI under the parameters (un, Tn) and calculate the maximal

diameter dn of the largest cluster of such FRI.
3. If dn <

√
3εN, (un+1, Tn+1) = (un, Tn + ∆T), go to Step 5.

4. If dn ≥
√

3εN, (un+1, Tn+1) = (un − ∆u, Tn) and mark it by circle, go to Step 5.
5. Terminate when un+1 < 0, otherwise go back to Step 2 with parameters (un+1, Tn+1).

Output: The path (u0, T0), . . . , (un, Tn), . . .

• there is a constant cd such that limu→0+ uTc(u) = cd;
• Since it is very unlikely for a fiber to run more than one step when T is small, we conjecture

that the upper bound of Tc in Claim (iv) Theorem 3 is sharp, i.e.,

lim
u→∞

uTc(u) =
− log

(
1− pc

d

)
2

.

Remark 9. It is worth noting that, as a result of the finite size effect of box size N, the estimated
slope in linear regression under logarithm scale can be sensitive with respect to ε. We found in
simulation that slope equals to −1.48 when ε = 0.1, −0.98 when ε = 0.2, −0.82 when ε = 0.3,
−0.76 when ε = 0.4, and −0.73 when ε = 0.5. Recalling the theoretical upper bound of Tc in
Claim (iv) Theorem 3, and lower bound in Proposition 2, it is not hard to prove that slopes converge
to −1, as N → ∞ for all ε ∈ (0, 1/

√
3). So, for N = 50, it seems the phase diagram has best

precision when ε ≈ 0.2. Thus, we plot (u, T−1
c (u)) under this setting and find that the slope in

linear regression is 1.07, which is very close to theoretical value 1. Here, we only use 112 points
(u ≤ 4) for linear regression and the remaining 9 points (u > 4) seem to deviate from the line. The
possible reason is that Tc is very small for large u and thus might not be precisely captured.

0 1 2 3 4 5 6

0

0.5

1

1.5

2

2.5

3

Figure 6. A more precise estimation of the curve of Tc via the hill climbing algorithm, N = 50, ε = 0.2.
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(a) Linear regression (in log10 scale)
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(b) T−1
c (u)

Figure 7. Linear regression on (u, Tc(u)) (in logarithm scale) and (u, T−1
c (u)), ε = 0.2. (a) Linear

regression (in log10 scale); (b) T−1
c (u).

Author Contributions: Conceptualization, Z.C., Y.X., and Y.Z.; formal analysis, Z.C. and Y.Z.;
methodology, Z.C. and Y.Z.; software, Y.X. and Y.Z.; supervision, Y.Z.; visualization, Y.X.; writ-
ing — original draft, Z.C., Y.X., and Y.Z.; writing — review & editing, Z.C., Y.X., and Y.Z. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by Beijing Academy of Artificial Intelligence(BAAI), China
Postdoctoral Science Foundation: Nos. 2020TQ0011.

Acknowledgments: The authors would like to thank anonymous referee(s) for their valuable com-
ments and questions that definitely help improving this paper, especially in teaching us a nice and
easy proof of non-monotoncity for all d ≥ 3. The authors would like to thank Xinxin Chen, and Hui
He, Xinyi Li, Eviatar. B. Procaccia, and Hao Wu for fruitful discussions. This work has been partially
supported by Beijing Academy of Artificial Intelligence(BAAI). Y. Xiong is partially supported by the
Project funded by China Postdoctoral Science Foundation (No. 2020TQ0011). All the simulations
performed via our own Fortran implementations run on the computing platform: 2*Intel Xeon Gold
6148 CPU (2.40 GHz, 27.5 MB Cache, 40 Cores, 80 Threads) with 512 GB Memory. The authors would
like to sincerely thank Pingwen Zhang for allowing us accessing the computational resources of his
team. This greatly accelerates our numerical simulation.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Proof of Lemma 3

In the following arguments, we need a more precise construction of SRW on Zd:
For 1 ≤ i ≤ d, let {Xi

n}∞
n=1 be an i.i.d. sequence of random variables with distribution
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P(Xi
n = −1) = P(Xi

n = 1) = 1
2 . Then,

{
Sn = ∑n

k=1 Xi
k

}∞

n=0
forms d independent copies of

1-dimension SRW’s. We also define an i.i.d. sequence of random variables {Dn}∞
n=1 with

distribution P(Dn = j) = 1
d , 1 ≤ j ≤ d. Then, Sd

n =
n
∑

k=1
XDk

k eDk is an SRW on Zd.

Before we prove Lemma 3, there are some preparations.

Lemma A1. For any n0 > d1.5, consider a stopping time

Γ̄ := inf
{

n ≥ 0 : ∃1 ≤ i ≤ d, |Sd,i
τ
(i)
n
| ≥ n

1
8
0

}
, where Sd,i

m = ∑m
k=1 Xi

kei and

τ
(i)
n =

∣∣{1 ≤ k ≤ n : Dk = i}
∣∣ for 1 ≤ i ≤ d. Then, there exists δ > 0 such that for any

sufficiently large n0,

P0
(
Γ̄ > n0

)
≤ d ∗ exp

(
−δn

1
12
0

)
. (A1)

Proof. By the invariance principle, we have for any l ≥ 1,

lim
n0→∞

P0


∣∣∣∣∣∣Sd,1

ln
1
4
0

− Sd,1

(l−1)n
1
4
0

∣∣∣∣∣∣ ≤ 2n
1
8
0

 = P(B1 ≤ 2) < 1, (A2)

where {Bt}t≥0 is a Brownian Motion starting from 0. Therefore, there exists δ > 0 such that
for all sufficient large n0,

P0


∣∣∣∣∣∣Sd,1

ln
1
4
0

− Sd,1

(l−1)n
1
4
0

∣∣∣∣∣∣ ≤ 2n
1
8
0

 < e−δ. (A3)

Obviously, since n0 > d1.5, there must exist j0 ∈ {1, 2, . . . , d} such that

|
{

1 ≤ i ≤ n0 : Di = j0
}
| > n0

d > n
1
3
0 . By (A3) and symmetry, we have

P0
(
Γ̄ > n0

)
≤

d

∑
k=1

P0

|{1 ≤ i ≤ n0 : Di = j0
}
| > n

1
3
0 , max

j≤n
1
3
0

|{Sd,k
j }| ≤ n

1
8
0



≤d ∗ P0


n

1
12
0⋂

l=1


∣∣∣∣∣∣Sd,1

ln
1
4
0

− Sd,1

(l−1)n
1
4
0

∣∣∣∣∣∣ ≤ 2n
1
8
0




=d ∗
n

1
12
0

∏
l=1

P0


∣∣∣∣∣∣Sd,1

ln
1
4
0

− Sd,1

(l−1)n
1
4
0

∣∣∣∣∣∣ ≤ 2n
1
8
0

 ≤ d ∗ exp
(
−δn

1
12
0

)
.

(A4)

Lemma A2. There exists c > 0 (c is independent to d) such that for any d ≥ 20 and any x0 ∈ Zd

such that ∃1 ≤ i ≤ d, x(i)0 > n
1
8
0 ,

Px0

(
Hd,{0} < ∞

)
≤ cn−2

0 . (A5)

Proof. Without loss of generality, we assume that i ≤ d
2 . Then, we define Il = max{1, i− 9},

Ir = max{19, i + 9} and x̂0 =
(

x(Il)
0 , x(Il+1)

0 , .., x(Ir)
0

)
∈ Z19, where ||x̂0||2 ≥ n

1
8
0 .
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We define a stopping time Ĥd,{0} = inf
{

n ≥ 0 : Sd,i
τ
(i)
n

= 0, ∀i ∈ [Il , Ir]

}
. It is easy to

see that Ĥd,{0} ≤ Hd,{0}. By Proposition 6.5.1 of [9], we have

Px0

(
Hd,{0} < ∞

)
≤ Px0

(
Ĥd,{0} < ∞

)
= Px̂0

(
H19,{0} < ∞

)
≤ c
(

n
1
8
0

)−(19−2)
≤ cn−2

0 . (A6)

Now, we are able to prove Lemma 3.

Proof of Lemma 3. Since
{

n ≤ Hd,{0,x1} < ∞
}
⊂
{

n ≤ Hd,{0} < ∞
}
∪
{

n ≤ Hd,{x1} < ∞
}

for any integer n ≥ 1, we have

Rd ≤
∞

∑
n=1

[
P0

(
n ≤ Hd,{0} < ∞

)
+ P0

(
n ≤ Hd,{x1} < ∞

)]
. (A7)

By symmetry, we have for any n ≥ 1,

P0

(
n + 1 ≤ Hd,{0} < ∞

)
= 1

2d ∑x∈Zd ,||x||1=1 Px

(
n ≤ Hd,{0} < ∞

)
= P0

(
n ≤ Hd,{x1} < ∞

)
. (A8)

Combine (A7) and (A8),

Rd ≤2
∞

∑
n=1

P0

(
n ≤ Hd,{0} < ∞

)

=2

2P0

(
2 ≤ Hd,{0} < ∞

)
+

d1.5

∑
n=3

P0

(
n ≤ Hd,{0} < ∞

)
+

∞

∑
n=d1.5+1

P0

(
n ≤ Hd,{0} < ∞

).

(A9)

By the corollary of (1.14) in [15], there exists c > 0 such that for all sufficient large d,

P0

(
Hd,{0} < ∞

)
≤ 1

2d
+

c
d2 . (A10)

Note that P0

(
Hd,{0} = 1

)
= 0 and P0

(
Hd,{0} = 2

)
= 1

2d . By (A10), we have

P0

(
3 ≤ Hd,{0} < ∞

)
≤ c

d2 . (A11)

Therefore, for the first and second term on the RHS of (A9), we have

2P0

(
2 ≤ Hd,{0} < ∞

)
+

d1.5

∑
n=3

P0

(
n ≤ Hd,{0} < ∞

)
≤ 1

d
+

c
d0.5 . (A12)

For the last term on the RHS of (A9), by Lemma A1, Lemma A2, and the strong
Markov property, we have

∞

∑
n=d1.5+1

P0

(
n ≤ Hd,{0} < ∞

)
≤

∞

∑
n=d1.5+1

[
P0

(
Γ̄ ≤ n, n ≤ Hd,{0} < ∞

)
+ P0

(
Γ̄ > n

)]

≤
∞

∑
n=d1.5+1

[
cn−2 + d ∗ e−δn

1
12

]
≤ c′

(
d−1.5 + d ∗ e−δd

1
8

)
.

(A13)

Combine (A9), (A12), and (A13),

Rd ≤ 2

1
d
+

c
d0.5 + c′

(
d−1.5 + d ∗ e−δd

1
8

). (A14)
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Since the RHS of (A14) converges to 0 as d→ ∞, we finally get lim
d→∞

Rd = 0.

Appendix B. Proof of Theorem 2

By Theorem 12.2 of [16] and the remark about ”finite energy“ in it, in order to prove
that ∀d ≥ 3, ∀u > 0, ∀T > 0, FIu,T

d (note that FIu,T
d is considered as a bond percola-

tion on Zd here) has one infinite cluster at most almost surely, it is sufficient to confirm
two conditions:

1. FIu,T
d is translation invariant;

2. FIu,T
d has insertion tolerance and deletion tolerance.

For FRI, translation invariance is an elementary property, so we just focus on insertion
tolerance and deletion tolerance. The precise definitions are stated here.

Definition A1 (Definition 3.2, [17]). 1. (insertion tolerance) Let Ld be the set of all edges
in Zd. For any event A ⊂ {0, 1}Ld

and any edge e ∈ Ld, define a mapping Π+
e : A →

Π+
e (A) :=

{
A ∪ {e} : A ∈ A

}
. Say a bond percolation (its law is denoted by P) has

insertion tolerance if ∀ event A ⊂ {0, 1}Ld
, ∀e ∈ Ld,

P(A) > 0 =⇒ P
(

Π+
e (A)

)
> 0.

2. (deletion tolerance) Let Π−e : A → Π−e (A) :=
{

A \ {e} : A ∈ A
}

. Then, say a bond
percolation with law P has deletion tolerance if ∀ event A ⊂ {0, 1}Ld

, ∀e ∈ Ld,

P(A) > 0 =⇒ P
(

Π−e (A)
)
> 0.

Appendix B.1. Insertion Tolerance

By translation invariance, it is sufficient to prove for e = e1 = {0, x1}, where x1 =
(1, 0, . . . , 0) ∈ Zd.

We have the canonical mapping π: ω = ∑∞
i=1 δηi → A ∈ {0, 1}Ld

, where A(e) =

1−∏∞
i=1 1e/∈ηi

for any e ∈ Ld. Then, we have P = Pu,T ◦ π−1. Without causing confusion,
for any collection I of paths in W [0,∞), I can be regarded as a point measure, so we also
define π(I) in the same way.

For any event A ⊂ {0, 1}Ld
such that P(A) > 0, then we have P

(
A∩ {e1 is open}

)
>

0 or P
(
A∩ {e1 is close}

)
> 0. If P

(
A∩ {e1 is open}

)
> 0, then P

(
Π+

e1

(
A∩ {e1 is open}

))
=

P
(
A∩ {e1 is open}

)
> 0. Note that Π+

e1

(
A∩ {e1 is open}

)
⊂ Π+

e1
(A), we have

P
(

Π+
e1
(A)

)
> 0.

Meanwhile, if P
(
A∩ {e1 is open}

)
= 0 and P

(
A∩ {e1 is close}

)
> 0, let B = A ∩

{e1 is close}. Denote by Se1 the collection of all paths with first step e1 and by Sc
e1

the
collection of paths starting from Zd \ {0, x1} and the paths starting from {0, x1} whose first
steps are not e1. By definition of FRI and property of Poisson distribution, we know that
Se1 and Sc

e1
are independent. Note that for any ω = ∑n

i=1 δηi ∈ π−1(B), we have ∀i ≥ 1,
ηi ∈ Sc

e1
. Therefore,

P(B) = Pu,T
(

π−1(B)
)
= Pu,T(Se1 = ∅

)
∗ Pu,T

ω : π

(
∞

∑
i=1

δηi · 1ηi∈Sc
e1

)
∈ B

. (A15)
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Let η∗ = (0, x1) ∈ W [0,∞)
d and then we have

{
ω + δη∗ : ω ∈ π−1(B)

}
⊂ Π+

e1
(B).

Thus,

Pu,T
({

ω + δη∗ : ω ∈ π−1(B)
})

=Pu,T(Se1 = {η∗}
)
∗ Pu,T

ω : π

(
∞

∑
i=1

δηi · 1ηi∈Sc
e1

)
∈ B


=Pu,T

(
π−1(B)

)
∗

Pu,T(Se1 = {η∗}
)

Pu,T
(
Se1 = ∅

) > 0.

(A16)

Therefore,

P
(

Π+
e1
(A)

)
≥ P

(
Π+

e1
(B)

)
≥ Pu,T

({
ω + δη∗ : ω ∈ π−1(B)

})
> 0. (A17)

In conclusion, P(A) > 0 =⇒ P
(
Π+

e (A)
)
> 0, which means FIu,T

d has insertion
tolerance.

Appendix B.2. Deletion Tolerance

Similarly, if P
(
A∩ {e1 is close}

)
> 0, then

P
(

Π−e1
(A)

)
≥ P

(
Π−e1

(
A∩ {e1 is close}

))
= P

(
A∩ {e1 is close}

)
> 0.

On the other hand, if P
(
A∩ {e1 is open}

)
> 0, let C = A∩ {e1 is open}. Denote the

collection of all paths traversing e1 by Ŝe1 and the number of paths in Ŝe1 by Ne1 . Then,
there exists N ∈ N+ such that

Pu,T
(

π−1(C), Ne1 = N
)
> 0. (A18)

Since W [0,∞) is countable, there exists ζ1, . . . , ζN ∈W [0,∞)
d such that

Pu,T
(

π−1(C), Ŝe1 = {ζ1, . . . , ζN}
)
> 0. (A19)

Let D = {ζ1(0), . . . , ζN(0)} ∪ {0, x1} ⊂ Zd. By (A19), there exists a fixed trajectory Ξ
of the set of all paths starting from D (note that ζ1, . . . , ζN ∈ Ξ) such that

Pu,T


ω =

∞

∑
i=1

δηi : Ŝe1 ⊂ SD(w) = Ξ, Π+
π(Ξ) ◦ π

(
∞

∑
i=1

δηi · 1ηi(0)/∈D

)
∈ C


 > 0, (A20)

where SD(w) is the collection of all paths starting from D in ω and for any E ∈ {0, 1}Ld

such that only finite edges are open (denote them by {ρ1, . . . , ρm}), Π+
E := Π+

ρm ◦ · · · ◦Π+
ρ1

.
Since the paths starting from D and Zd \ D are independent and the event {Ŝe1 ⊂

SD(w)} = {all the paths starting f rom Zd \ D don′t traverse e1}, we have

Pu,T(SD = Ξ) ∗ Pu,T


ω =

∞

∑
i=1

δηi : Ŝe1 ⊂ SD(w), Π+
π(Ξ) ◦ π

(
∞

∑
i=1

δηi · 1ηi(0)/∈D

)
∈ C


 > 0. (A21)

We define a mapping φ: for any η ∈ W [0,∞)
d , if e1 /∈ η, set φ(η) = {η}; if e1 ∈

η = (η(0), . . . , η(n)), assume that {η(m), η(m + 1)} = e1 if and only if m ∈ {n1, .., nl},
then φ(η) = {ζ0, . . . , ζl} ⊂ W [0,∞)

d , where ζ0 = (η(0), . . . , η(n1)) and for 1 ≤ j ≤ l − 1,
ζ j = (η(nj + 1), . . . , η(nj+1)), ζnl = (η(nl + 1), . . . , η(n)).
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Denote that Ξ̂ =
⋃

η∈Ξ
φ(η) = {σ1, . . . , σM}. Note that

ω +
M

∑
j=1

δσj : ∀ηi(0) /∈ D, ∀ηi ∩ e1 = ∅, Π+
π(Ξ) ◦ π

(
∞

∑
i=1

δηi · 1ηi(0)/∈D

)
∈ C

 ⊂ π−1(Π−e1
(C)).

Therefore,

P
(

Π−e1
(A)

)
≥P
(

Π−e1
(C)
)

≥Pu,T
(

SD = Ξ̂
)

Pu,T
ω =

∞

∑
i=1

δηi : Ŝe1 ⊂ SD(w), Π+
π(Ξ) ◦ π

(
∞

∑
i=1

δηi · 1ηi(0)/∈D

)
∈ C




>0.

(A22)

In conclusion, FIu,T
d has deletion tolerance. By all the arguments above, the proof of

Theorem 2 is completed.
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