
entropy

Article

PT -Symmetric Potentials from the Confluent Heun Equation

Géza Lévai

����������
�������

Citation: Lévai, G. PT -Symmetric

Potentials from the Confluent Heun

Equation. Entropy 2021, 23, 68.

https://doi.org/10.3390/e23010068

Received: 14 December 2020

Accepted: 30 December 2020

Published: 3 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the author. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Institute for Nuclear Research (Atomki), P. O. Box 51, H-4001 Debrecen, Hungary; levai@atomki.hu

Abstract: We derive exactly solvable potentials from the formal solutions of the confluent Heun
equation and determine conditions under which the potentials possess PT symmetry. We point out
that for the implementation of PT symmetry, the symmetrical canonical form of the Heun equation is
more suitable than its non-symmetrical canonical form. The potentials identified in this construction
depend on twelve parameters, of which three contribute to scaling and shifting the energy and the
coordinate. Five parameters control the z(x) function that detemines the variable transformation
taking the Heun equation into the one-dimensional Schrödinger equation, while four parameters play
the role of the coupling coefficients of four independently tunable potential terms. The potentials
obtained this way contain Natanzon-class potentials as special cases. Comparison with the results
of an earlier study based on potentials obtained from the non-symmetrical canonical form of the
confluent Heun equation is also presented. While the explicit general solutions of the confluent
Heun equation are not available, the results are instructive in identifying which potentials can be
obtained from this equation and under which conditions they exhibit PT symmetry, either unbroken
or broken.

Keywords: confluent Heun differential equation; solvable potentials; PT symmetry

PACS: 03.65.Ge; 02.30.Gp; 11.30.Er

1. Introduction

The efforts of extending and perfecting the mathematical formulation of quantum
mechanics are as old as quantum mechanics itself. A remarkable new direction of these
studies was started in 1998 with the introduction of PT -symmetric quantum mechanics [1].
In this construction the traditional hermiticity requirement of the Hamiltonian is replaced
by a symmetry property prescribing invariance with respect to the simultaneous space
(P) and time (T ) inversion. In the case of one-dimensional non-relativistic quantum
mechanical potential problems this requirement leads to the Schrödinger equation with
potentials satisfying V∗(−x) = V(x). Surprisingly, these complex potentials were found to
exhibit properties similar to those of conventional (real) potentials.

It turned out that the discrete energy spectrum of many PT -symmetric potentials
contains fully or partly real energy eigenvalues. Furthermore, it was also found that
by tuning the potential parameters (typically by increasing non-hermiticity), real energy
eigenvalues merged pairwise and re-emerged as complex conjugate pairs. Since in this
process the PT symmetry of the Hamiltonian remained intact, while the wave functions
ceased to be the eigenfunctions of the PT operator, this phenomenon was interpreted
as the breakdown of PT symmetry. It also turned out that the energy spectrum of some
potentials always remains real, irrespective of the choice of the potential parameters.

These first results naturally triggered studies to clarify under which conditions the
complexification of the energy eigenvalues can occur. Besides their energy spectrum, PT -
symmetric potentials exhibited further unusual properties. The conventional hermitian
inner product had to be replaced with a PT inner product, which, however, led to indef-
inite norm [2]. Studies were started to investigate the mapping between PT -symmetric
quantum systems and their hermitian correspondents. It also turned out that non-hermitian
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constructions have already been applied before in various branches of quantum physics,
and PT -symmetric quantum mechanics offered a theoretical scheme to discuss them in a
unified framework. PT -symmetric quantum mechanics was identified as a special case of
pseudo-hermiticity [3–5]. The results and ideas of the new theory found applications in
various branches of physics to discuss as diverse topics as e.g., neutrino oscillations [6] and
conformal gravity [7]. In optics, the existence of PT -symmetric systems in nature, as well
as the breakdown of PT symmetry was verified experimentally [8]. See reference [9] for a
recent comprehensive review of PT -symmetric quantum mechanics and [10] for a more
mathematically oriented discussion of the subject. PT -symmetric quantum mechanics can
also be related to theories developed before its introduction, e.g., optical potentials [11] and
open quantum systems [12].

In exploring the main features and the capabilities of any new theory, exactly solv-
able models serve as invaluable tools. While the first examples for PT -symmetric quan-
tum mechanics were numerical models, exactly solvable examples were soon presented
too. It turned out that techniques developed for the exact solution of conventional quan-
tum mechanical potential problems can be adapted to PT -symmetric setting too. The
first analytically solvable examples belonged to the shape-invariant potential class [13],
which contains the most well-known textbook examples for solvable potentials (harmonic
oscillator, Coulomb, Pöschl–Teller, etc.). Exact results have been obtained for bound states
with real [14] and complex [15] energy eigenvalues, the mechanism of the breakdown PT
symmetry [16], the pseudo-norm of wavefunctions [17–20], the C operator [21], spectral sin-
gularities [22], supersymmetric [23,24], higher dimensional [25–27] and algebraic [28–30]
aspects, etc. See Chapter 7 of reference [9] for a review of exactly solvable potentials and
their adaptation to PT symmetry.

Later some potentials from the more general six-parameter Natanzon [31] class have
also been discussed in the PT -symmetric setting. The general solutions of these poten-
tials are written in terms of the hypergeometric function, which typically reduces to a
Jacobi polynomial for bound states. (Shape-invariant potentials are special cases of the
Natanzon class with 2 or 3 parameters.) The PT -symmetric versions of Natanzon-class
potentials exhibited various character from the point of view of their energy spectrum:
some had purely real energy eigenvalues [32], in some other the complexification of the
energy eigenvalues occurred at the same parameter value for all the levels [33], similarly to
some shape-invariant potentials, while there were also examples for which the complexifi-
cation of the energy eigenvalues occurred gradually as the key potential parameter was
tuned [34]. These results called for a systematic exploration of the PT -symmetrization of
Natanzon-class potentials. This project was presented in reference [35], where all known
Natanzon-class potentials have been classified and discussed in the PT -symmetric set-
ting. An important finding of this study was that in the adaptation of PT symmetry to
these potentials it is more favorable to set out from the differential equation of the Jacobi
polynomials than starting from the hypergeometric differential equation.

There are, however, even wider potential classes with higher number of potential
parameters. The solutions of these potential problems are written in terms of functions
satisfying second-order differential equations with more general structure than the hy-
pergeometric differential equation. Examples for this are various variants of the Heun
differential equation [36]: Heun’s equation, the confluent, double confluent, biconfluent
and triconfluent Heun equation. These equations differ from each other in the number
and character of their singular points. Heun’s equation can also be reduced to the hyper-
geometric differential equation. However, a major difference is that in contrast with the
hypergeometric differential equation, the solutions of which, the hypergeometric functions
can be written in closed form, the solutions of the Heun (and related) equation are much
less known. There are various methods to expand them in terms of known functions or
power series. See e.g., references [37–46], for a sample of studies in which the solutions of
the various Heun equations were expanded in terms of (confluent) hypergeometric and
other functions.
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Here we discuss the confluent Heun equation, which has regular singularities at two
finite points (conventionally z = 0 and 1), and an irregular singularity at z→ ∞. It can also
be considered a generalization of the hypergeometric and the confluent hypergeometric
differential equation, and this can open the way to the generalization of known Natanzon-
class potentials. A comprehensive survey of potentials that can be discussed in terms
of the confluent Heun differential equation has been presented in reference [47]. (See
also the much earlier reference [48], where potentials derivable from the Heun, confluent,
biconfluent and double confluent Heun equation are discussed in some detail.) The general
structure of the potentials has been outlined, together with the solutions written formally
in terms of confluent Heun functions. However, since these functions are not known in
closed form in general, the complete solutions (with energy eigenvalues) could not be
presented. Here we revisit this problem with the intention of implementing PT symmetry
to potentials that can be derived from the confluent Heun differential equation. It turns
out that a number of non-trivial conditions can be formulated for the construction of
PT -symmetric potentials even without knowing the explicit form of the solutions.

The structure of the paper is as follows. In Section 2 a standard method of constructing
solvable potentials is outlined. It is then applied to various forms of the confluent Heun
equation in Section 3, and it is shown that its symmetrical canonical form is more suitable for
the construction of PT -symmetric potentials. The actual implementation of PT symmetry
is carried out in Section 4, where a survey of prospective PT -symmetric potentials and
their solutions is presented. Finally, the results are summarised in Section 5.

2. Exactly Solvable Potentials from Special Functions of Mathematical Physics

Since the one-dimensional Schrödinger equation is a second-order differential equa-
tion, it is a natural choice to search for its solutions in terms of those special functions of
mathematical physics that satisfy a second-order differential equation. In this case a simple
variable transformation can be used to map the two differential equations into each other.

Let us consider the second-order differential equation of a special function F(z),

d2F
dz2 + Q(z)

dF
dz

+ R(z)F(z) = 0 , (1)

which we map into the Schrödinger equation

d2ψ

dx2 + (E−V(x))ψ(x) = 0 , (2)

by applying the variable transformation z(x). (For the sake of simplicity the units 2m = 1
and h̄ = 1 are used.) For this we substitute

ψ(x) = f (x)F(z(x)) , (3)

into Equation (2). Comparing the appropriate terms, elementary calculation leads to
the equation

E−V(x) =
z′′′(x)
2z′(x)

− 3
4

(
z′′(x)
z′(x)

)2

+(z′(x))2
(

R(z(x))− 1
2

dQ
dz
− 1

4
Q2(z(x))

)
. (4)

Furthermore, one also finds that the solutions of the Schrödinger equation can be expressed
in terms of the special function F(z) as

ψ(x) ∼ (z′(x))−
1
2 exp

(
1
2

∫ z(x)
Q(z)dz

)
F(z(x)) . (5)
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Now the potential and the wave functions are given in terms of the functions Q(z)
and R(z) that define the special function F(z), and the z(x) function that defines the
variable transformation. Selecting the special function, the only remaining task is to
find an appropriate z(x) function. Generally, any reasonable function (e.g., sigle-valued
monotonous) would do, however, one cannot guarantee that the solutions would belong
to the same potential V(x) and different E energy eigenvalues. A possible choice was
proposed by Bhattacharjie and Sudarshan [49], who noticed that in order to reproduce a
constant (E) on the left handside of Equation (4), there must be a constant on the right
handside too, and this prescription defines a differential equation for z(x). Furthermore,
it is reasonable to consider terms from those depending on Q(z) and R(z), because these
terms contain the parameters that appear in the special function F(z). The first two terms of
Equation (4) with higher derivatives of z(x) are called Schwartzian derivative, and contain
only those parameters that define the variable transformation.

Considering the differential equation(
dz
dx

)2
Φ(z) = C , (6)

its integration immediately leads to∫
Φ1/2(z)dz = C1/2x + x0 (7)

defining the inverse x(z) function, which is not necessarily invertible. In the case of non-
invertible x(z) the potential is called implicit, nevertheless, the procedure can be used
to generate the solutions (5) and the potential V(x) even then. Here x0 is a constant of
integration that represents a coordinate shift that has no effect on the energy spectrum.
It is usually unimponrtant and can be chosen such that z(0) = 0. However, in the case of
PT -symmetric quantum mechanics it can play an important role, as discussed later.

Combining Equations (4) and (6), z′(x) can be replaced in the former expression,
leaving V(x) and E as the function of Q(z), R(z), Φ(z), z(x) and C:

E−V(x) =
z′′′(x)
2z′(x)

− 3
4

(
z′′(x)
z′(x)

)2

+
C

Φ(z(x))

(
R(z(x))− 1

2
dQ
dz
− 1

4
Q2(z(x))

)
. (8)

When F(z) is chosen to be the hypergeometric function 2F1(a, b; c; z), one obtains the
Natanzon-class potentials [31], which depend on six parameters. Three of these appear
in the z(x) function, while the remaining three arise from a, b and c and play the role of
coupling coefficients in the potential V(x). It was found that for specific choices of the first
three parameters one obtains the shape-invariant potentials [13], which are the most well-
known textbook examples for exactly solvable potentials (Pöschl-Teller, Scarf, Rosen-Morse,
Eckart). Three further shape-invariant potentials, the Morse, radial harmonic oscillator
and Coulomb can be derived in a similar way as special cases of confluent Natanzon
potentials [50], setting out from the confluent hypergeometric differential equation.

For a = −n or b = −n the hypergeometric function reduces to the Jacobi polynomial
P(α,β)

n (y), where y = (1− z)/2 [51]. Applying the procedure directly to the Jacobi polyno-
mials one finds that the shape-invariant potentials mentioned above are 1+2 parameter
members of the Natanzon potential class in the sense that one parameter controls the
variable transformation, while two others appear in the coupling coefficients of two inde-
pendently tunable potential terms. In principle, the same potentials can be obtained setting
out either from the hypergeometric function or the Jacobi polynomial. The equivalence of
the two precedures has been demonstrated in reference [35]. However, in certain circum-
stances one of the procedures has advantages over the other one. As it was mentioned in
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the Introduction, the discussion of PT -symmetric potentials is more straightforward if one
applies Jacobi polynomials. This is because when the function defining the variable trans-
formation is PT -even or PT -odd, i.e., PT y(x) = ±y(x) holds, then the construction of a
PT -symmetric potential is much more straightforward. Note that z(x) = 1− 2y(x), which
appears in the argument of the hypergeometric function, has no definite PT symmetry if
y(x) is PT -odd.

3. Application to the Confluent Heun Equation

The non-symmetrical canonical form of the confluent Heun equation corresponds to
Equation (1) with

Q(z) = 4p +
γ

z
+

δ

z− 1
, (9)

R(z) =
4pαz− σ

z(z− 1)
, (10)

and F(z) = Hc(p, α, γ, δ, σ; z) is its solution [36]. Note that the hypergeometric differential
equation is obtained for p = 0, γ = c, δ = a + b + 1− c and σ = −ab.

The potentials generated from this equation have been determined by Iskhanyan [47]
using a method that is closely related to that outlined in Section 2. It was found that

V(x) = − z′′′(x)
2z′(x)

+
3
4

(
z′′(x)
z′(x)

)2

+
v0 + v1z + v2z2 + v3z3 + v4z4

r0 + r1z + r2z2 + r3z3 + r4z4 (11)

and
dz
dx

= ±z(z− 1)(r0 + r1z + r2z2 + r3z3 + r4z4)−1/2 . (12)

The same results can be reached using the procedure outlined in Section 2.
In reference [47] a different method was followed to generate solvable potentials. It

was assumed that z′(x) is expressed in terms of the integer or half-integer powers of z and
z− 1, i.e.,

dz
dx

= ±σ−1zm1(z− 1)m2 , (13)

where m1 ≤ 1, m2 ≤ 1 and m1 + m2 ≥ 0. This corresponds to taking C = σ2 and
Φ(z) = z2−2m1(z− 1)2−2m2 in Equation (6). With this choice the terms originating from
the Schwartzian derivative turn out to be a limited set of powers of 1/z and/or 1/(z− 1),
which allows their combination with the potential terms derived from Q(z) and R(z).
Neglecting this specific choice, more general Φ(z) functions can be considered at the price
that potential terms containing fixed coupling coefficients and powers (Φ(z))−k, k = 1, 2 3
appear in V(x).

Following the analysis presented in reference [35] concerning the parity properties
of z(x) and its derivatives, one finds that the parity of z(x), Φ(z(x)) and V(x) cannot be
controlled in a simple way. For example, if z(x) is even or odd function of x, then z(x)− 1
will be even in the first case, but will have indefinite parity in the latter. Determining the
parity of Φ(z(x)), the potential and the wave functions will be even more complicated.
Since the parity (P) property of these quantities plays an essential role in PT -symmetric
quantum mechanics too, one finds that this approach is not ideal when it comes to con-
structing PT -symmetric potentials. As it was mentioned in the Introduction, the situation
is analogous to that desribed in reference [35], where the Natanzon-class potentials were
discussed from the point of view of PT symmetry. The general solutions of these potentials
are given in terms of the hypergeometric function, which reduce to Jacobi polynomials
for bound states. Instead of z and z− 1 appearing in the expressions for hypergeometric
functions, one can use 1− z and 1 + z in the case of Jacobi polynomials. If z(x) has definite
parity, then so will (1− z)(1 + z) = 1− z2, while this is not the case for z(z− 1).
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These considerations indicate that implementing PT symmetry the symmetrical
canonical form of the confluent Heun equation [36] will be more favorable. This choice
corresponds to the following forms of Q(z) and R(z) in Equation (1):

Q(z) = −2p− m + s + 1
1− z

+
m− s + 1

1 + z
(14)

and

R(z) =
−2p(B−m− 1)z− 2ps−m(m + 1) + λ

(1− z)(1 + z)
. (15)

Note that the differential equation reduces to that of the Jacobi polynomials for

p = 0 , m = (α+ β)/2 , s = (α− β)/2 , λ = (n+ (α+ β)/2)(n+ 1+ (α+ β)/2) . (16)

With the choices (14) and (15) the current form of Equation (4) becomes

E−V(x) =
z′′′(x)
2z′(x)

− 3
4

(
z′′(x)
z′(x)

)2

+
(z′(x))2

(1− z2(x))2

[
λ(1− z2(x))− 2msz(x)

+(1−m2 − s2)− 2pBz(x)(1− z2(x))− p2(1− z2(x))2
]
, (17)

while Equation (6) turns into(
dz
dx

)2
Φ(z(x)) ≡

(
dz
dx

)2 φ(z(x))
(1− z2(x))2 = C , (18)

i.e.,
dz
dx

= ±C1/2(1− z2(x))[φ(z(x))]−1/2 , (19)

where

φ(z(x)) = pI(1− z2(x)) + pII + pIIIz(x) + pIVz(x)(1− z2(x)) + pV(1− z2(x))2 . (20)

Since the solutions of the symmetrical canonical form of the Heun equation can be
expressed in terms of the solutions of the non-symmetrical case by taking the substitu-
tions [36]

γ = m + s + 1, δ = m− s + 1, α = −B + m + 1,

σ = λ−m(m + 1)− 2p(B−m− s− 1) (21)

and z→ 1− 2z, the unnormalized solutions of the potentials obtained from the symmetrical
canonical form of the Heun equation will, according to Equation (5) take the form

ψ(x) ' φ
1
4 (z(x)) exp(−pz(x))(1 + z(x))

1
2 (m−s)(1− z(x))

1
2 (m+s)

×Hc(p,−B + m + 1, m + s + 1, m− s + 1, λ−m(m + 1)− 2p(B−m− s− 1);
1
2
(1− z(x)) . (22)

The x(z) function, and whenever possible, z(x) is then determined from the integra-
tion of Equation (19). The domain of definition of z(x) depends on the actual situation:
it can be the full real x axis, a finite section of it, or the positive real axis. In the case of
PT -symmetric problems the potentials may be defined on trajectories in the complex x
plane too. In this case the coordinate shift x0 can be chosen imaginary, in order to avoid sin-
gularities at x = 0, for example. This mechanism is useful in constructing PT -symmetric
problems from hermitian ones by extending them to negative real x values too [14].
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From the structure of (17) one can conclude that the most general form of the derived
potential is

V(x) = − z′′′(x)
2z′(x)

+
3
4

(
z′′(x)
z′(x)

)2

+
C

φ(z(x))

[
sI(1− z2(x)) + sII

+sIIIz(x) + sIVz(x)(1− z2(x)) + sV(1− z2(x))2
]
. (23)

Here, and in what follows we extend the notation used in reference [35] such that
the results obtained for the special parameters (16) recover the formulas relevant to the
Natanzon-class potentials with Jacobi polynomials in their bound-state solutions.

The functional form of V(x) can be made more explicit by substituting Equation (19)
and its derivatives into the terms of the Schwartzian derivative. One finds that

− z′′′(x)
2z′(x)

+
3
4

(
z′′(x)
z′(x)

)2

=
C

φ(z(x))
− 5

16
C

φ3(z(x))
(1− z2(x))2

(
dφ

dz

)2

+
C

φ2(z(x))

[
−1

2
z(x)(1− z2(x))

dφ

dz
+

1
4
(1− z2(x))2 d2φ

dz2

]
(24)

irrespective of the signs appearing in Equation (19).
Substituting (23) and (z′(x))2 from (20) into Equation (17) and comparing the corre-

sponding terms one finds that the following five equations have to be satisfied simultane-
ously:

λ + sI − pI
E
C

= 0 , (25)

1−m2 − s2 + sII − pII
E
C

= 0 , (26)

−2ms + sIII − pIII
E
C

= 0 , (27)

−2pB + sIV − pIV
E
C

= 0 , (28)

−p2 + sV − pV
E
C

= 0 . (29)

This set of equations point out the intimate and subtle relation that connects the
parameters pi appearing in the z(x) function, the coupling coefficients (si) of the poten-
tial (23), the energy eigenvalue E and the parameters of the symmetrical canonical form
of the confluent Heun equation (see Equation (1) with Equations (14) and (15).) Note that
the first three equations above are the same as those obtained in reference [35] from the
analogous treatment of the Jacobi polynomials, provided that the parameters are chosen as
in Equation (16). This also means that the z(x) functions applied there can be used here too,
and this will lead to a generalization of the Natanzon-class potentials obtained previously.

The simplest choice is letting only one of the pi parameters, say pK to non-zero value:
in that case E follows directly from the corresponding equation. At the same time the
term with sK in the potential (23) will turn into the constant CsK. We can see that this
constant will also appear in the expression for E, so it represents a simple shift of the
energy scale. The remaining four equations with si, i 6= K relate the remaining four si
coupling coefficients to the parameters appearing in the Heun equation. Selecting pK also
means selecting φ(z) and Φ(z) in Equations (18) and (20), and eventually, defining the x(z)
function via Equation (7). Actually, the choices K = I and I I recover the z(x) functions
applied in the PI and PII class shape-invariant potentials [52], while the K = I I I choice
leads to the uninvertible inverse x(z) function found for the implicit type PIII potential [53].
Obviously, applying these z(x) functions in the present procedure will result in potentials
that are the extensions of the named Natanzon-class potentials in the sense that they contain
two more potential terms (i.e., those with sIV and sV). Selecting pIV or pV to be the only
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non-zero parameter leads to new z(x) functions and potentials. It is notable that while
the PV case in Equation (19) leads to an explicit (and rather simple) z(x) function, in the
PIV case it results in a complicated implicit x(z) function that can be expressed in terms of
elliptic integrals. Tables 1 and 2 list the potentials and the corresponding expressions for E
in the cases discussed here.

It has to be added that in order to obtain proper state-independent quantum me-
chanical potentials, the reparametrization of the coupling coefficients is necessary such
that they remain independent of the n quantum number. This n arises naturally in the
case of Natanzon-class potentials as the degree of the Jacobi polynomial contained in the
bound-state wavefunctions. In this case n appears in the R(z) function in Equation (1) in
an expression that eventually contributes to the term proportional to sI. In the PI case this
term plays the role of E, so all the remaining coordinate-dependent (potential) terms will
be free from n. In the present context this means that the n-dependence appears through
the λ parameter.

In the PII shape-invariant class E arises from terms with m2 and s2. Furthermore,
there is a potential term with coupling coefficient ms, so it is natural to reparametrize the
problem such that ms = const. It is found that in this case λ can be made n-independent if
m depends on n in a linear form, so E will have terms which have quadratic and inverse
quadratic dependence on n.

In the case of the PIII (non-shape-invariant) Natanzon-class potential E depends on
ms. Here the reparametrization was carried out by prescribing the same linear dependence
of m on n, and in addition eliminating the n-dependence from m2 + s2, which led to an s
that is the root of a second-order algebraic equation in n [53]. This scenario can work in the
case of the PIII type potential derived from the confluent Heun equation too.

Similar reparametrizations may be necessary in the present context if n appears
through p or B. In the PV case E depends on p2, while a potential term has pB in its
coupling coefficient. It is reasonable to cancel the p-dependence of this term by prescribing
that B ∼ 1/p. In the PIV case if n appears through B, then all the potential terms can
remain independent of n.

Table 1. Ingredients of potentals generated by chosing a single pi parameter as non-zero, pK = 1.

(z′(x))2 C φ(z) z(x) x ∈ E

PI C(1− z2) (1− z2)

−a2 cosh2(ax) i sinh(ax) (−∞, ∞) −a2(λ + sI)

−a2 − sinh2(ax) cosh(ax) [0, ∞) −a2(λ + sI)
a2 sin2(ax) cos(ax) [− π

2a , π
2a ] a2(λ + sI)

PII C(1− z2)2 1
a2 1 tanh(ax) (−∞, ∞) a2(1−m2 − s2 + sII)
a2 1 coth(ax) [0, ∞) a2(1−m2 − s2 + sII)
−a2 1 i tan(ax) [− π

2a , π
2a ] −a2(1−m2 − s2 + sII)

PIII C (1−z2)2

z
C z impl. [53] [0, ∞) −2msC + CsIII

PIV C (1−z2)
z

C z(1− z2) impl. −2pBC + CsIV

PV C (1− z2)2

a2 1− a2x2 ax [− 1
a , 1

a ] −a2(p2 − sV)
−a2 1 + a2x2 iax (−∞, ∞) a2(p2 − sV)
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Table 2. Potentals corresponding to the choices made in Table 1. The potential terms are indicated individually, including
those (in square brackets) obtained from the Schwartzian derivative.[

− z′′′
2z′ +

3
4

(
z′′
z′

)2
]
+ CsI(1−z2)

φ(z) + CsII
φ(z) +

CsIIIz
φ(z) + CsIVz(1−z2)

φ(z) + CsV(1−z2)2

φ(z)

PI [
a2

4 −
3a2

4 cosh2(ax)

]
− sIa2 − a2 m2+s2−1

cosh2(ax)
− 2msa2i sinh(ax)

cosh2(ax)
− 2pBa2i sinh(ax)− p2a2 cosh2(ax)[

a2

4 + 3a2

4 sinh2(ax)

]
− sIa2 + a2 m2+s2−1

sinh2(ax)
+ 2msa2 cosh(ax)

sinh2(ax)
− 2pBa2 cosh(ax) + p2a2 sinh2(ax)[

− a2

4 + 3a2

4 sin2(ax)

]
+ sIa2 + a2 m2+s2−1

sin2(ax)
+ 2msa2 cos(ax)

sin2(ax)
+ 2pBa2 cos(ax) + p2a2 sin2 a(x)

PII [
a2]− λa2

cosh2(ax)
+ sIIa2 + 2msa2 tanh(ax) + 2pBa2 sinh(ax)

cosh3(ax)
+ p2a2

cosh4(ax)[
a2]+ λa2

sinh2(ax)
+ sIIa2 + 2msa2 coth(ax)− 2pBa2 cosh(ax)

sinh3(ax)
+ p2a2

sinh4(ax)[
−a2]+ λa2

cos2(ax) − sIIa2 − 2msa2i tan(ax)− 2pBa2i sin(ax)
cos3(ax) −

p2a2

cos4(ax)
PIII [

3Cz
16 + 9C

8z −
5C

16z3

]
− C

z λ(1− z2) + C (m2+s2−1)
z + CsIII − 2pBC(1− z2) + C p2(1−z2)2

z
PIV [

− 3C
16z +

3C
4z(1−z2)

− 5C
z3(1−z2)

]
− Cλ

z + C (m2+s2−1)
z(1−z2)

− 2msC
1−z2 + CsIV + C p2(1−z2)

z
PV

[0]− λa2
1−a2x2 + a2 (m2+s2−1)

(1−a2x2)2 + 2msa3 x
(1−a2x2)2 + 2pBa3 x

1−a2x2 + sVa2

[0] + λa2

1+a2x2 − a2 (m2+s2−1)
(1+a2x2)2 − 2msa3i x

(1+a2x2)2 − 2pBa3i x
1+a2x2 − sVa2

As a more general approach, further combinations of the pi parameters can also be
made: in that case the φ(z) function will also be more general. There are several Natanzon-
class potentials obtained in this way [32,34,54–58]. Most of them are of the implicit type, i.e.,
there is closed expression only for the inverse x(z) function. The generalizations of these
Natanzon-class potentials (i.e., their extension with two extra terms) is straightforward.

It is seen that altogether there are twelve parameters: pi, si, C and x0, but some of
these are not independent and some represent a shift of the coordinate or the energy. The
pi parameters appear in the z(x) (or (x(z)) function, and as such they influence all the
potential terms, including those arising from the Schwartzian derivative term. From (20) it
is seen that only the relative magnitude of the pi parameters is important: their absolute
magnitude is set by C, which also appears in the scaling of x (as in Equation (7)) or the
energy (as in (23) and (25) to (29)). In addition, x0 also appears through z(x) only. The si
parameters play the role of coupling coefficients (as in (23)) and they are related to the five
parameters of the symmetric form of the Heun equation. However, they represent only
four independent potential terms, as one of the potential terms reduces to a constant (as
seen above), and plays the role of an energy shift.

It is worthwhile to compare the potentials to those obtained in reference [47] from the
non-symmetrical canonical form of the confluent Heun equation. The link between the two
approaches can be established by comparing the differential equations defining the z(x)
function, i.e., (20) and (13). It also has to be noted that z, as the argument of the solutions
of the respective equations denotes different functions in the two cases, as discussed in
relation with Equation (22). Taking all these into account, (13) can be rewritten in the form
of (20). One finds that the C constant and the φ(z) function of the present treatment are
related to the notation of reference [47] as

C = (−1)2m222−2m1−2m2 σ−2 (30)
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and
φ(z) = (1− z)2−2m1(1 + z)2−2m2 . (31)

The pi parameter settings corresponding to the potentials described in reference [47]
are listed in Table 3. It is seen that direct correspondence between the potentials with the
simplest choice of the parameters exists for the situations in which φ(z) is expressed as the
power of (1− z2), i.e., when m1 = m2 = 0, 1/2 and 1. In the present treatment these cases
correspond to the z(x) functions of the PI and PII class shape-invatiant potentials [52] and
to the new PV case with only pV chosen non-zero.

Table 3. Parameter settings pi corresponding to the potentials listed in reference [47]. The latter are
labelled by (m1, m2).

(m1, m2) pI pII pIII pIV pV C

(0, 0) 0 0 0 0 1 4/σ2

(1/2, 1/2) 1 0 0 0 0 −1/σ2

(1/2, 0) 1 0 0 1 0 2/σ2

(1/2,−1/2) 2 0 0 2 -1 −4/σ2

(1, 1) 0 1 0 0 0 1/(4σ2)
(1, 1/2) 0 1 1 0 0 −1/(2σ2)
(1, 0) −1 2 2 0 0 1/σ2

(1,−1/2) −3 4 4 −1 0 −2/σ2

(1,−1) −8 8 8 −4 1 4/σ2

To conclude this Section, we can establish that the potentials generated from the
symmetrical canonical form of the Heun equation represent an extension of the Natanzon-
class potentials in two respects. First, there are two more parameters (pIV and pV) that
appear in the z(x) function, so there are more choices for generating appropriate coordinate
transformations. Second, there are also two more parameters (sIV and sV) playing the role of
coupling coefficients, so the potentials can be extended with two more independent terms.
One also has to add that the present scheme is not complete without the explicit construction
of the solutions in terms of the Hc(p, α, γ, δ, σ; z) fuctions. Normally, the bound-state
solutions are obtained by prescribing physical boundary conditions on the mathematical
solutions of the Schrödinger equation. In the case of Natanzon-class potentials this meant
that the hypergeometric function was reduced to a Jacobi polynomial as the consequence of
the a = −n or b = −n choice, introducing the n quantum number. This quantum number
is expected to appear only in the E = En energy eigenvalues, which usually requires the
reparametrization of the potential. The structure of the solutions of the Heun equation is
much less known, so at the moment the physical solutions cannot be expressed explicitly.
Neverthleless, the construction presented here simplifies finding bound-state solutions
once the explicit form of the Hc(z) functions is available. The present results also serve as
a firm platform for the discussion of the PT -symmetric version of these potentials in their
abstract form. This is the subject of the ensuing Section.

4. Implementing PT Symmetry to the Potentials

The PT symmetry requirement V∗(−x) = V(x) introduces strong constraints on the
potential and the parameters appearing in them. In practice, this requirement implies that
the even and odd potential components have to be real and imaginary, respectively. In order
to construct a PT -symmertic potential, it can be useful to have definite PT -symmetry
property of its ingredients. If z(x) and φ(z(x)) are of this type, i.e., if they are PT -even
or PT -odd, then the construction procedure is simplified significantly. This observation
was the motivation behind considering the symmetrical canonical form of the confluent
Heun equation instead of the non-symmetrical form. In this Section we investigate the
transformation properties of the potentials generated from Section 3 with respect to the
parity (P) and PT operations. The formulas derived there also imply strong correlations
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between the PT property of z(x), φ(z(x)) and V(x). In the discussion we make use of
some of the results obtained in reference [35] for the similar treatment of Natanzon-class
potentials.

In order to implement PT symmetry to a potential, first it is necessary to check
whether its domain of definition is suitable for the application of the P operation. This op-
erator interchanges X0 + x with X0 − x, where X0 is the center of reflection. Since a
coordinate shift has no influence on the physical properties of a system, X0 can be chosen
to be X0 = 0 in general. If x is defined on the whole real axis (as it is the case for the
potentials PI(z(x) = i sinh(ax)), PII(z(x) = tanh(ax)) or PV(z(x) = iax) in Table 2), then no
further change is necessary for implementing PT symmetry. The situaton is similar if V(x)
is defined on a finite domain (as is the case for PI(z(x) = cos(ax)), PII(z(x) = i tan(ax))
or PV(z(x) = ax) in Table 2). In this case perhaps X0 6= 0 has to be chosen in order
to position V(x) properly. (z(x) = sin(ax) would correspond to such a situation with
X0 = π/2 in the PI case, but it would not lead to an essentially new potential.) The
situation is rather different for potentials defined on x ∈ [0, ∞) (e.g., PI(z(x) = cosh(ax),
PII(z(x) = coth(ax) or PIII in Table 2). These potentials typically have a singularity at
x = 0 which prevents their extension to x < 0. However, in the case of PT symmetry,
the singularity can be circumvented by applying an imaginary coordinate shift x0 = iε,
which arise from Equation (7) as a constant of integration. Changing x to x + iε breaks
P symmetry, but respects PT symmetry, as PT (x + iε) = −(x + iε). The z(x) functions
defined this way lose (P) parity, but exhibit definite PT parity. z(x) = cosh(x + iε) will
be PT -even, while z(x) = coth(x + iε) will be PT -odd. The potentials will be finite at
x = 0, so they can be extended to x < 0. There are potentials that have to be defined
on PT -symmetric trajectories in the complex x plane in order to generate solutions with
appropriate boundary conditions, however, we are not going to discuss them here.

4.1. Parity Considerations

Assuming z(x) has definite parity, i.e., Pz(x) ≡ z(−x) = ±z(x) one finds that the
potential terms originating from the Schwartzian derivative will be even function of x.
According to Equation (20) the parity of the φ(z(x)) function depends on the pi parameters
and on the parity of z(x):

φ(z(x)) is


even if z(x) is even
even if z(x) is odd and pIII = 0 , pIV = 0
odd if z(x) is odd and pI = pII = pV = 0
indefinite if z(x) has no definite parity

(32)

The parities of z(x) and that of φ(z(x)), are also linked by the relation (19). This
relation implies that z′(x) and [φ(z(x))]1/2 have the same or opposite parity, depending on
the sign in Equation (19). This means that the parity of z(x) and [φ(z(x))]1/2 have to be the
opposite or the same. When z(x) is even, then z′(x) has to be odd, i.e., it has to vanish at
x = 0. In this case opposite signs have to be chosen in (19) for x > 0 and x < 0. This also
implies z(0) = 1, what is confirmed by the cases listed in Table 1. If z(x) is odd, then z′(x)
is even, so the same signs have to be taken for x > 0 and x < 0.

There are choices of φ(z) that lead to a contradiction when substituted into (19). As
discussed in reference [35], φ(z) = z2 leads to a situation in which the parity of z′(x) has to
be the same as the parity of ±z(x). This occurs when the only non-zero pi are pI = −1 and
pII = 1, corresponding to the DKV (Dutt-Khare-Varshni) potential [32,56,59]. In this case
the contradiction is resolved by the fact that z(x) = [1 + D exp(−2ax)]1/2 has indefinite
parity, so the initial assumption that z(x) has definite parity is invalid.

Equation (24) also leads to a prescription concerning the parity conditions of z(x) and
φ(z(x)). If we assume that z(x) has definite parity, then the left side of this equation has
to be an even function of x. The parity of the right side, however, depends on that of z(x)
and φ(z(x)). If the latter is even, then there is no contradiction. However, assuming that
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φ(z(x)) is odd, which also implies that z(x) has to be odd (see (32)), one finds that the left
side of (24) is odd. This can occur when only pIII and/or pIV are non-zero.

4.2. PT -Parity Considerations

As it was discussed at the introduction of this Section, the implementation of PT
symmetry requires extending the domain of definition of the potentials to x < 0 by
appropriate real or imaginary coordinate shifts. It is also important to establish that since
C1/2 plays the role of a scaling factor of the coordinate, a general complex C would be
incompatible with PT symmetry. The scaling factor is real or imaginary, depending on
whether C is positive or negative.

In what follows we assume that the z(x) function has definite PT -parity PT z(x) ≡
z∗(−x) = ±z(x). Under these conditions the PT transformation properties of φ(z(x)) will
be determined by

PT φ(z(x)) = p∗I (1− z2(x)) + p∗II ± p∗IIIz(x)± p∗IVz(x)(1− z2(x)) + p∗V(1− z2(x))2 . (33)

This leads to the following conditions:

φ(z(x)) is


PT -even if z(x) is PT -even, all pi real
PT -even if z(x) is PT -odd, pI, pII, pV real, pIII, pIV imaginary
PT -odd if z(x) is PT -odd, pI = pII = pV = 0, pIII, pIV real
indefinite if z(x) has no definite PT -parity

(34)

Again, Equation (24) represents a constraint on the PT parity of z(x) and φ(z(x)). If
z(x) has definite PT parity, then the left side of this equation is PT -even, so all terms on
the right side also have to have this property. One finds that this is possible only if φ(z(x))
is PT -even. Whenever φ(z(x)) is PT -odd, the z(x) function arising from the integration
of (19) will have indefinite PT parity. We conclude that PT -odd z(x) functions cannot
lead to PT -symmetric potentials if φ(z(x)) is PT -odd.

This finding simplifies identifying the conditions for the PT symmetry (PT -evenness)
of V(x). These are:

V∗(−x) = V(x) if
{

z(x) is PT -even, all si real
z(x) is PT -odd, sI, sII, sV real, sIII, sIV imaginary

(35)

These conditions have to be combined with those for the pi parameters guaranteeing
the PT -evenness of φ(z(x)), i.e., the first two lines of Equation (34).

The considerations presented are illustrated by the examples listed in Tables 1 and 2.
It is also worthwhile to inspect Equations (25) to (29) in light of the restrictions imposed
on the pi and si parameters by PT symmetry, because they are indicative with respect
to the question whether E is real or complex, i.e., whether PT symmetry can be broken
or not. In what follows we consider those pi combinations, which led to exactly solvable
PT -symmetric potentials.

If z(x) is PT -even, then, according to Equations (33) and (35) all the pi and si param-
eters have to be real. This means that E can be complex only in case one or more of the
parameters λ, m, s, B and p are complex.

All the PI-type potentials appearing in Tables 1 and 2 are derived from PT -even z(x)
functions: i sinh(ax), cosh(ax + iε), cos(ax). (In the second case the imaginary coordinate
shift is needed to avoid the singularity of V(x) at x = 0.) Furthermore, in these cases all
the pi parameters besides pI are zero, which reduce further the possible parameter settings.
Condition (29), for example, prescribes that p is either real or imaginary, depending on the
sign of sV . Condition (28) forces B also to real or imaginary valuse, depending on whether
p is real or imaginary. Conditions (26) and (27) imply that both (m + s)2 = sI I + sI I I + 1
and (m− s)2 = sI I − sI I I + 1 have to be real, i.e., m + s and m− s have to be either real
or imaginary, depending on the relative magnitude of sI I and sI I I . From condition (25) it
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is seen that E can be complex only when λ is complex. In the case of the shape-invariant
Natanzon-class Scarf II, Scarf I and generalized Pöschl–Teller potentials λ depends on m,
as seen from (16), so E is complex here if m is complex. Such a relation between λ and the
other parameters is not known for the general potentials discussed here. It is expected that
further analysis of normalizability or the explicit form of the solutions may introduce such
a relation.

The PII-type potentials are examples for both PT -even (z(x) = i tan(ax)) and PT -
odd z(x) (z(x) = tanh(ax), z(x) = coth(ax + iε)) functions. In both cases condition (25)
precribes that λ is real. In the case of the shape-invariant Natanzon-class PII-type potentials
(Rosen–Morse II, II, Eckart) this also meant that m is real, so m2 is also real, as is s2, according
to condition (27). This simple analysis proved [35] that according to condition (26) these
potentials can have only pure real energy spectrum, so the breaking of PT symmetry
cannot occur for them. In the present situation the relation of λ and m is not known,
so one cannot reach a similar conclusion concerning the energy spectrum of PII-type
potentials. However, one can establish that for z(x) = tanh(ax) and coth(ax + iε) p and B
are simultanously real or imaginary, depending on the sign of sV , while for z(x) = i tan(ax)
they have opposite character. In the latter case ms is also imaginary.

The PT -symmetric version of the PIII potential [53] has not been discussed yet. It
is an implicit potential constructed from an implicit x(z) function defined for x ≤ 0 and
z ≤ 0 as

x + iε = C−1/2
[
tanh−1(z1/2)− tan−1(z1/2)

]
(36)

= C−1/2
∞

∑
k=0

z2k+3/2

2k + 3/2
, (37)

where (37) follows from the series expansion of (36). For a PT -symmetric extension
to x < 0 and for avoiding the singularity at x = 0, the introduction of an imaginary
coordinate shift x → x + iε could be used. However, the particular form of x(z), and
especially (37) does not seem suitable to define a z(x) function with definite PT -symmetric
transformation property that would be imaginary (iε) at x = 0. So we conclude that the
PT -symmetrization of the PIII potential, and thus that of its generalisation in the present
scheme, may not be possible.

Due to the non-trivial implicit form of the x(z) function, we do not discuss here thePT
symmetry of the PIV class potential either. The PV class is, however, rather straightforward:
it leads to a PT -even (iax) and a PT -odd (ax) z(x) function (see Tables 1 and 2). In the
former case λ, m2 + s2, ms and pB have to be real, while in the latter case ms and pB have
to be imaginary.

There are several PT -symmetric potentials derived from z(x) functions with more
than one non-zero pi parameter. In some cases the pi parameters are fixed, while in some
others at least one of them is tunable, introducing one more free model parameter.

The Dutt-Khare-Varshni (DKV) potential was introduced [32] as a conditionally solv-
able potential meaning that it contained potential terms that had fixed coupling coefficient.
This potential was later recognised [56] as a Natanzon-class potential, and the poten-
tial terms with fixed coupling coefficient were identified as those originating from the
Schwartzian derivative. It can be recovered from the the present approach by making the
choice pI = −1, pI I = 1, which leads to φ(z) = z2. Substituting this into Equation (19) and
integrating it one obtains z(x) = [1 + D exp(−2ax)]1/2 for C = a2 and with a particular
choice of the signs and the integration constant. This z(x) function has no definite parity,
as has been discussed previously. The PT -symmetric version of the DKV potential was
introduced in reference [59]. There the formalism was changed by selecting C = −a2

instead of C = a2, and this defined a z(x) function with definite, even PT -parity.
The same z(x) function can also be applied to construct the generalization of the

PT -symmetric DKV potential to the present scheme. With the choice pI = −1, pI I = 1 the
conditions (25) to (29) lead to the following prescriptions for the model parameters. Since
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all the si are real, one finds that λ−m2 − s2 and ms are real, so λ− (m± s)2 is also real,
furthermore, p and B are simultaneously real or imaginary, depending on the sign of sV . In
the Natanzon limit (p = 0) λ is real and is related to m by (16), so the PT -symmetric DKV
potential can have only real energy eigenvalues.

Another non-trivial PT -symmetric Natanzon-class potentials has been discussed in
reference [34]. The extension of this potential is also possible by introducing two new
terms, i.e., those with the parameters sIV and sV in Equation (23). For this the same z(x)
(rather, x(z)) function has to be used as in reference [34]. This is obtained by the choice
pI = 1 and pI I = δ, so the relevant φ(z) function will be φ(z) = δ + 1− z2. Obviously,
δ = 0 will recover the PI-type potentials (depending on whether C = a2 or C = −a2),
while the PII type potentials are obtained by taking the limit δ → ∞ while keeping C/δ
constant. Furthermore, for δ = −1 the DKV potential is obtained as a special limit. In
reference [34] the case C = −a2, δ ≥ 0 was considered in detail, which contained the Scarf
II and the Rosen–Morse I potentials as special PI-type and PII-type limits. It was found that
the implicit z(x) function was expressed in terms of the inverse tan and tanh functions, and
that z(x) is PT -even. This implies that all the si parameters have to be real. Substituting
these, pI , pI I and C in Equations (25) to (29) one finds that p and B are simultaneously
either real or imaginary, ms is real, while E and (m± s)2 real or complex depending on
whether λ is real or complex.

In reference [34] it was found that combining Equations (25) to (27) a quartic algebraic
equation is obtained for m, and solving it results in the En energy eigenvalues. It was also
found that by tuning a parameter corresponding to sI I I the pairs of real energy eigenvalues
turn into complex conjugate pairs such that the complexification starts from the ground
state as s2

I I I is increased from zero. This process was identified as the “gradual” breaking
of PT symmetry, which was distinct from the "sudden" mechanism characterising most
known exactly solvable Natanzon-class potentials, where the complexification of the energy
eigenvalues occurred at the same parameter value for each level. The sI I I = 0 case was
also identified as the Ginocchio potential [54].

In the present scheme the relation of λ to the other model parameters is not known, so
it is not possible to find out when E is real or complex. For this further conditions have to
be established by the inspection of the general solutions from the point of view of boundary
conditions.

The generalized Ginocchio potential [55] was also considered in the PT -symmetric
setting [33]. This potential was originally defined on the positive real x axis, as it exhibits
a singularity at x = 0, so in order to extend it to x < 0 an imaginary coordinate shift
had to be applied. It was found that the breakdown of PT symmetry occurs via the
“sudden” mechanism, i.e., the complexification of the energy eigevalues occurs at the
same parameter value for all the levels. In the present scheme this potential is obtained
from the parametrization pI = γ2 − 1, pI I = pI I I = 2 and C = 4γ2. The corresponding
z(x) function is obtained implicitly in terms of inverse tan and tanh functions and it is
PT -even. The energy eigenvalues of the generalized Ginocchio potential are obtained
from Equations (25) to (27). The energy eigenvalues are obtained by solving a quadratic
algebraic equation for m + s. The complexification of the energy eigenvalues is obtained
from shifting m− s form real to imaginary values.

The extension of this potential to the case obtained form the confluent Heun equa-
tion means using the same z(x) function and adding two terms (those with sIV and
sV in (23)). In this case p and B are simultaneously real or imaginary, according to
Equations (28) and (29).

One can inspect the potentials derived from the non-symmetrical canonical form of
the confluent Heun equation in reference [47]. For this the pi parameters listed in Table 3
have to be substituted into Equations (25) to (29), and the relevant z(x) (or x(z)) functions
have to be determined from Equation (19). It can be then determined whether the resulting
z(x), φ(z(x)) and V(x) functions are compatible with the requirements of PT symmetry.
This has to be established in each case separately.
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In addition to the PT transformation properties of the potential, it is also instructive
to inspect those of the solutions (22). Before specifying them to the PT -symmetric setting,
some general remarks are in order. The singular points of the confluent Heun equation
deserve special attention. In (22) they occur at z = ±1 and z→ ±∞. In the latter case the
exponential factor exp(−pz(x)) can lead to infinite expressions. In order to avoid these the
condition limx→±∞ Re(pz(x)) > 0 has to be satisfied whenever the z(x) function tends to
infinity asymptotically. This can exclude odd z(x) functions in certain situations.

Solutions that are eigenfunctions of the PT transformation belong to real energy
eigenvalues and unbroken PT symmetry, while the solutions belonging to complex con-
jugate energy eigenvalues and broken PT symmetry are connected by the PT operator.
The transformation property of the pre-factor of the solution can be established in a simple
way if that of the z(x) function is known. Remember also that the φ(z(x)) function (20)
appearing in this pre-factor has to be PT -even in order to allow for the construction of
PT -symmetric potentials. The structure of the confluent Heun function Hc is not known
a priori, however, assuming that it can be expressed in power series form or as the lin-
ear combination of (confluent) hypergeometric functions, its behaviour under complex
conjugation (the T operation) can also be established.

Considering all these circumstances, the PT transform of the unnormalized (22)
solution has the form

PT ψ(x) ' φ
1
4 (z(x)) exp(−p∗z(x))(1 + z(x))

1
2 (m

∗−s∗)(1− z(x))
1
2 (m

∗+s∗)

×Hc(p∗,−B∗ + m∗ + 1, m∗ + s∗ + 1, m∗ − s∗ + 1,

λ∗ −m∗(m∗ + 1)− 2p∗(B∗ −m∗ − s∗ − 1);
1
2
(1− z(x)) (38)

for PT -even z(x) functions, while

PT ψ(x) ' φ
1
4 (z(x)) exp(p∗z(x))(1− z(x))

1
2 (m

∗−s∗)(1 + z(x))
1
2 (m

∗+s∗)

×Hc(p∗,−B∗ + m∗ + 1, m∗ + s∗ + 1, m∗ − s∗ + 1,

λ∗ −m∗(m∗ + 1)− 2p∗(B∗ −m∗ − s∗ − 1);
1
2
(1 + z(x)) (39)

if z(x) is PT -odd. The next question is whether these solutions are identical (up to a
numerical factor) with (22) or not. Since the argument of the confluent Heun function
changed in (39), direct comparison is possible only for (38). It is straightforward to show
that (22) and (38) match if all the parameters p, m, s, B and λ are real. Remembering also that
for PT -even z(x) functions the PT symmetry of V(x) implies that all the pi parameters in
φ(z(x)) in (20) and all the si parameters in (23) have to be real (see Equations (34) and (35)).
Combining all this with the conditions (25) to (29) one can easily notice that in this case the
energy eigenvalues can take on only real value. This situation corresponds to unbroken
PT symmetry.

There are also further solutions of the confluent Heun equation [36] that can be
compared with the solutions (38). It is known that if Hc(p, α, γ, δ, σ; y) is the solution of
this differential equation, then so are the following functions:

y1−γHc(p,−α + γ− 1, 2− γ, δ, σ + (−4p + δ)(γ− 1); y) , (40)

(y− 1)1−δHc(p,−α + δ− 1, γ, 2− δ, σ− γ(1− δ); y) , (41)

exp(−4py)Hc(−p, α− γ− δ, γ, δ, σ− 4pγ; y) . (42)

The combination of these transformations can lead to further solutions of the confluent
Heun equation. The question whether they are linearly independent from each other and
Hc(p, α, γ, δ, σ; y) is non-trivial, and is the subject of investigations [36].

Substituting these functions into the general solution (22) of the Schrödinger equation
with the parameters (21) and y = (1− z(x))/2 one can ask whether the resulting solutions
can take the form of (38). If any of the functions (40) to (42) are identical with the original
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Hc(p, α, γ, δ, σ; y) function, then we again obtain the situation with unbrokenPT symmetry
and real energy eigenvalues E. On the contrary, if they are linearly independent, then the
two solutions will belong to two complex conjugate energy eigenvalues corresponding to
the breakdown of PT symmetry.

The comparison of (38) and the solution with (40) leads to the following reults: p and
m = −s are real, while B and λ can be complex with correlated imaginary components
λI = 2pBI and BR = m + 1. Combining these with the requirement that all the pi and si
parameters are real one finds that complex energy eigenvalues can be obtained only when
pI and pIV are non-zero, while all the other pi are zero. In this case λ and B are complex.
In all the other cases E is real, and so are λ and B. Essentially the same results are found
taking the solution with (41) with the difference that now m = s is valid. For the solutions
with (42) one obtains that p is imaginary, B, s and m = −1 are real, while λ can be complex
with λI = −2iBI p. Complex E can occur only when only pI is non-zero, and all the other
pi are zero, i.e., in the PI case indicated in Tables 1 and 2. In any other case E is real, and B
has to be zero.

There is also another solution of the confluent Heun equation the argument of which
is 1− y rather than y:

Hc(−p, α, δ, γ, σ + 4pα; 1− y) . (43)

Note the reverse order of γ and δ. Substituting this function into (22) with the parame-
ters (21) and y = (1− z(x))/2 the comparison with (39) becomes possible. It turns out
in this case that p and s are imaginary, m and B are real, while λ can be complex with
λI = −4ip(B− m− 1). Combining these with the requirement for the pi and si param-
eters for PT -odd z(x) functions (see Equations (34) and (35)) and analysing conditions
(25) to (29) one finds that the energy eigenvalue E is real, except when only pI is non-zero,
i.e., in the PI case. In the former case λ is also real, and B = m + 1 has to hold.

5. Summary

In the present study we discussed quantum mechanical potentials originating from the
confluent Heun equation and discussed conditions under which they can satisfy the PT
invariance requirement. This work was motivated by our earlier systematic study in which
we discussed the construction of the PT -symmetric version of general Natanzon-class
potentials. The solutions of these potentials are written in terms of the hypergeometric
function, which reduce to Jacobi polynomials for bound-state solutions. A main conclusion
of that study was that the formalism based on the differential equation of the Jacobi
polynomials is more suitable for implementing PT symmetry to the potentials. This is
because the z(x) function that controls the variable transformation and plays a central
role in deriving solvable potentials and their solutions can be cast in a PT -symmetric
form from the beginning, and this facilitates the implementation of the PT invariance
requirement. A similar conclusion was reached in the present study too, as it turned out
that setting out from the symmetrical canonical form of the confluent Heun differential
equation is more suitable for the reasons mentioned before.

The confluent Heun equation was a natural choice for generalizing the formalism
beyond the Natanzon potential class, because it can be reduced to the hypergeometric
equation in a natural way. A major difference with respect to the case of Natanzon-class po-
tentials and their solutions in terms of hypergeometric functions (Jacobi polynomials) is that
the explicit form of the solutions of the Heun differential equation and its confluent variants
is not known in general. For this reason the construction of the bound-state solutions with
proper boundary conditions and energy eigenvalues is not possible. Nevertheless, the
general properties of potentials derived from these equations can be established. A study
of this kind was already performed for the confluent Heun equation in reference [47]. There
the non-symmetrical canonical form of this differential equation was considered. (It is
notable that a less detailed analysis of this question was already presented fifty years ago,
together with potentials related to other types of the Heun equation too; see reference
[48].) Since the symmetrical and non-symmetrical canonical form of the confluent Heun
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equation are connected by a variable transformation, different z(x) functions are used to
derive solvable potentials from them. We also discussed how the potentials derived in
reference [47] can be related to those studied here.

We identified the general form of potentials derived from the symmetrical canonical
form of the confluent Heun equation, and found that they depend on twelwe parameters.
Five of these (pi) control the z(x) variable transformation, four (si) play the role of individ-
ually tunable coupling coefficients of potential terms, while three (C, x0 and one of the si)
contribute to scaling and shifting the coordinate and the energy. Further potential terms
with fixed coupling coefficients can also originate from the Schwartzian derivative that
depends on the z(x) variable transformation function and the parameters appearing in it.

A major result of this analysis is the set of Equations (25) to (29), which establish a link
between the parameters of the model with the energy eigenvalue E and the parameters
appearing in the confluent Heun equation. The analysis of these equations allows a deep
insight into the possible structure of the potential, its solutions and its allowed energy
eigenvalues. This applies also to the prescriptions under which the potential can be
cast in PT -symmetric form from, furthermore, also to the conditions under which the
complexification of the energy eigenvalues, i.e., the breakdown of PT symmetry can occur.
We applied these considerations also to the the solutions of the Schrödinger equation
and inspected whether they are the eigenfunctions of the PT operator. We extended this
analysis also to the transformed forms of the confluent Heun functions. All these analyses
were possible without the explicit knowledge of the confluent Heun functions.

These results may inspire further study of the solutions of the Heun type differential
equations. Any new finding, i.e., a closed solution for the confluent Heun function can
directly be combined with the results of the present study. These efforts can ultimately lead
to the explicit knowledge of new solvable potential families.

Funding: This work was supported by the National Research, Development and Innovation Fund of
Hungary, financed under the K18 funding scheme with project no. K 128729.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Bender, C.M.; Boettcher, B. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 1998, 80, 5243–5246.

[CrossRef]
2. Japaridze, G.S. Space of state vectors in PT -symmetric quantum mechanics. J. Phys. A Math. Gen. 2002, 35, 1709–1718. [CrossRef]
3. Mostafazadeh, A. Pseudo-Hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-

Hermitian Hamiltonian. J. Math. Phys. 2002, 43, 205–214. [CrossRef]
4. Mostafazadeh, A. Pseudo-Hermiticity versus PT symmetry. II. A complete characterization of non-Hermitian Hamiltonians with

a real spectrum. J. Math. Phys. 2002, 43, 2814–2816. [CrossRef]
5. Mostafazadeh, A. Pseudo-Hermiticity versus PT symmetry III: Equivalence of pseudo-Hermiticity and the presence of antilinear

symmetries. J. Math. Phys. 2002, 43, 3944–3951. [CrossRef]
6. Ohlsson, T. Non-Hermitian neutrino oscillations in matter with PT symmetric Hamiltonians. Eur. Phys. Lett 2016, 113, 61001.

[CrossRef]
7. Mannheim, P.D. Astrophysical evidence for the non-Hermitian but PT symmetric Hamiltonian of conformal gravity. Fortschr. Phys.

2013, 61, 140–154. [CrossRef]
8. Rüter, C.E.; Makris, K.G.; El-Ganainy, R.; Christodoulides, D.N.; Segev, M.; Kip, D. Observation of parity-time symmetry in optics.

Nature Physics 2010, 6, 192–195.
9. Bender, C.M.; Dorey, P.E.; Dunning, C.; Fring, A.; Hook, D.W.; Jones, H.F.; Kuzhel, S.; Lévai, G.; Tateo, R. PT Symmetry in Quantum

and Classical Physics; World Scientific Publishing Europe Ltd.: London, UK, 2019.
10. Bagarello, F.; Gazeau, J.-P.; Szafraniec, F.H.; Znojil, M. (Eds.) Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects;

Wiley: New York, NY, USA, 2015.
11. Feshbach, H. Unified theory of nuclear reactions. Ann. Phys. 1958, 5, 357–390. [CrossRef]
12. Breuer, H.-P.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press: Oxford, UK, 2002.

http://dx.doi.org/10.1103/PhysRevLett.80.5243
http://dx.doi.org/10.1088/0305-4470/35/7/315
http://dx.doi.org/10.1063/1.1418246
http://dx.doi.org/10.1063/1.1461427
http://dx.doi.org/10.1063/1.1489072
http://dx.doi.org/10.1209/0295-5075/113/61001
http://dx.doi.org/10.1002/prop.201200100
http://dx.doi.org/10.1016/0003-4916(58)90007-1


Entropy 2021, 23, 68 18 of 19

13. Gendenshtein, L.E. Derivation of exact spectra of the Schrödinger equation by means of supersymmetry. Zh. Eksp. Teor. Fiz. 1983,
38, 299, (Engl. transl. JETP Lett. 1983, 38, 356–359).

14. Lévai, G.; Znojil, M. Systematic search for PT-symmetric potentials with real energy spectra. J. Phys. A Math. Gen. 2000, 33,
7165–7180. [CrossRef]

15. Lévai, G.; Znojil, M. Conditions for complex spectra in a class of PT-symmetric potentials. Mod. Phys. Lett. A 2001, 16, 1973–1981.
[CrossRef]

16. Ahmed, Z. Real and complex discrete eigenvalues in an exactly solvable one-dimensional complex PT-invariant potential.
Phys. Lett. A 2001, 282, 343–348. [CrossRef]

17. Lévai, G.; Cannata, F.; Ventura, A. PT symmetry breaking and explicit expressions for the pseudo-norm in the Scarf II potential.
Phys. Lett. A 2002, 300, 271–281. [CrossRef]

18. Lévai, G. On the pseudo-norm and admissible solutions of the PT -symmetric Scarf I potential. J. Phys. A Math. Gen. 2006, 39,
10161–10169. [CrossRef]

19. Lévai, G. On the normalization constant of PT -symmetric and real Rosen–Morse I potentials. Phys. Lett. A 2008, 372, 6484–6489.
[CrossRef]

20. Lévai, G.; Magyari, E. The PT -symmetric Rosen–Morse II potential: Effects of the asymptotically non-vanishing imaginary
potential component. J. Phys. A Math. Theor. 2009, 42, 195302. [CrossRef]

21. Roychoudhury, R.; Roy, P. Construction of the C operator for a PT symmetric model. J. Phys. A 2007, 40, F617–F620. [CrossRef]
22. Ahmed, Z. Zero width resonance (spectral singularity) in a complex PT -symmetric potential. J. Phys. A Math. Theor. 2009,

42, 472005. [CrossRef]
23. Bagchi, B.; Mallik, S.; Quesne, C. PT -symmetric square well and the associated SUSY hierarchies. Int. J. Mod. Phys. A 2002, 17,

1651–1664. [CrossRef]
24. Lévai, G.; Znojil, M. The interplay of supersymmetry and PT symmetry in quantum mechanics: A case study for the Scarf II

potential. J. Phys. A Math. Gen. 2002, 35, 8793–8804. [CrossRef]
25. Lévai, G. Solvable PT -symmetric potentials in higher dimensions. J. Phys. A Math. Gen. 2007, 40, F273–F280. [CrossRef]
26. Lévai, G. PT -symmetry and its spontaneous breakdown in three dimensions. J. Phys. A Math. Theor. 2008, 41, 244015. [CrossRef]
27. Lévai, G. Solvable PT -symmetric potentials in 2 and 3 dimensions. J. Phys. Conf. Ser. 2008, 128, 12045. [CrossRef]
28. Bagchi, B.; Quesne, C. Non-Hermitian Hamiltonians with real and complex eigenvalues in a Lie-algebraic framework. Phys. Lett. A

2002, 300, 18–26. [CrossRef]
29. Lévai, G.; Cannata, F.; Ventura, A. Algebraic and scattering aspects of a PT -symmetric solvable potential. J. Phys. A Math. Gen.

2001, 34, 839–844. [CrossRef]
30. Lévai, G.; Cannata, F.; Ventura, A. PT -symmetric potentials and the SO(2, 2) algebra. J. Phys. A Math. Gen. 2002, 35, 5041–5057.
31. Natanzon, G.A. General properties of potentials for which the Schrödinger equation can be solved by means of hypergeometric

functions. Teor. Mat. Fiz. 1979, 38, 146–153. [CrossRef]
32. Dutt, R.; Khare, A.; Varshni, Y.P. New class of conditionally exactly solvable potentials in quantum mechanics. J. Phys. A

Math. Gen. 1995, 28, L107–L113. [CrossRef]
33. Lévai, G.; Sinha, A.; Roy, P. An exactly solvable PT symmetric potential from the Natanzon class. J. Phys. A Math. Gen. 2003, 36,

7611–7623. [CrossRef]
34. Lévai, G. Gradual spontaneous breakdown of PT symmetry in a solvable potential. J. Phys. A Math. Theor. 2012, 45, 444020.

[CrossRef]
35. Lévai, G. PT symmetry in Natanzon-class potentials. Int. J. Theor. Phys. 2015, 54, 2724–2736. [CrossRef]
36. Ronveaux, A. (Ed.) Heun’s Differential Equations; Oxford University Press: Oxford, UK, 1995.
37. Ishkhanyan, T.A.; Ishkhanyan, A.M. Solutions of the biconfluent Heun equation in terms of the Hermite functions. Ann. Phys.

2017, 383, 79–91. [CrossRef]
38. Erdélyi, A. Certain expansions of solutions of the Heun equation. Q. J. Math. 1944, 15, 62–69. [CrossRef]
39. Schmidt, D. Die Lösung der linearen Differentialgleichung 2. Ordnung um zwei einfache Singularitäten durch Reihen nach

hypergeometrischen Funktionen. J. Reine Angew. Math. 2009, 1979, 127.
40. El-Jaick, L.J.; Figueiredo, B.D.B. A limit of the confluent Heun equation and the Schrödinger equation for an inverted potential

and for an electric dipole. J. Math. Phys. 2009, 50, 123511. [CrossRef]
41. López-Ortega, A. New conditionally exactly solvable inverse power law potentials. Phys. Scr. 2016, 90, 085202. [CrossRef]
42. Ishkhanyan, A.M. Exact solution of the Schrödinger equation for the inverse square root potential v0/

√
x. Eur. Phys. Lett. 2015,

112, 10006. [CrossRef]
43. Ishkhanyan, A.M. A singular Lambert-W Schrödinger potential exactly solvable in terms of the confluent hypergeometric

functions. Mod. Phys. Lett. A 2016, 31, 1650177. [CrossRef]
44. Ishkhanyan, A.M. A conditionally exactly solvable generalization of the inverse square root potential. Phys. Lett. A 2016, 380,

3786–3790. [CrossRef]
45. López-Ortega, A. A conditionally exactly solvable generalization of the potential step. arXiv 2015, arXiv:1512.04196.
46. Ishkhanyan, M. The third exactly solvable hypergeometric quantum-mechanical potential. Eur. Phys. Lett. 2016, 115, 20002.

[CrossRef]

http://dx.doi.org/10.1088/0305-4470/33/40/313
http://dx.doi.org/10.1142/S0217732301005321
http://dx.doi.org/10.1016/S0375-9601(01)00218-3
http://dx.doi.org/10.1016/S0375-9601(02)00779-X
http://dx.doi.org/10.1088/0305-4470/39/32/S17
http://dx.doi.org/10.1016/j.physleta.2008.08.073
http://dx.doi.org/10.1088/1751-8113/42/19/195302
http://dx.doi.org/10.1088/1751-8113/40/27/F06
http://dx.doi.org/10.1088/1751-8113/42/47/472005
http://dx.doi.org/10.1142/S0217732302008009
http://dx.doi.org/10.1088/0305-4470/35/41/311
http://dx.doi.org/10.1088/1751-8113/40/15/F02
http://dx.doi.org/10.1088/1751-8113/41/24/244015
http://dx.doi.org/10.1088/1742-6596/128/1/012045
http://dx.doi.org/10.1016/S0375-9601(02)00689-8
http://dx.doi.org/10.1088/0305-4470/34/4/310
http://dx.doi.org/10.1007/BF01016836
http://dx.doi.org/10.1088/0305-4470/28/3/008
http://dx.doi.org/10.1088/0305-4470/36/27/313
http://dx.doi.org/10.1088/1751-8113/45/44/444020
http://dx.doi.org/10.1007/s10773-014-2507-9
http://dx.doi.org/10.1016/j.aop.2017.04.015
http://dx.doi.org/10.1093/qmath/os-15.1.62
http://dx.doi.org/10.1063/1.3268591
http://dx.doi.org/10.1088/0031-8949/90/8/085202
http://dx.doi.org/10.1209/0295-5075/112/10006
http://dx.doi.org/10.1142/S0217732316501777
http://dx.doi.org/10.1016/j.physleta.2016.09.035
http://dx.doi.org/10.1209/0295-5075/115/20002


Entropy 2021, 23, 68 19 of 19

47. Ishkhanyan, A.M. Schrödinger potentials solvable in terms of the confluent Heun functions. Theor. Math. Phys. 2016, 188, 980–993.
[CrossRef]

48. Lemieux, A.; Bose, A.K. Construction de potentiels pour lesquels l’equation de Schrödinger est soluble. Ann. Inst. Henri Poincaré
1969, 10, 259–269.

49. Bhattacharjie, A.; Sudarshan, E.C.G. A class of solvable potentials. Nuovo Cim. 1962, 25, 864–879. [CrossRef]
50. Cordero, P.; Salamó, S. Algebraic solution for the Natanzon confluent potentials. J. Phys. A Math. Gen. 1991, 24, 5299–5305.

[CrossRef]
51. Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions; Dover: New York, NY, USA, 1970.
52. Lévai, G. A search for shape-invariant solvable potentials. J. Phys. A Math. Gen. 1989, 22, 689–702. [CrossRef]
53. Lévai, G. A class of exactly solvable potentials related to the Jacobi polynomials. J. Phys. A Math. Gen. 1991, 24, 131–146.

[CrossRef]
54. Ginocchio, J.N. A class of exactly solvable potentials. I. One-dimensional Schrödinger equation. Ann. Phys. (N. Y.) 1984, 152,

203–219. [CrossRef]
55. Ginocchio, J.N. A class of exactly solvable potentials II. The three-dimensional Schrödinger equation. Ann. Phys. (N. Y.) 1985, 159,

467–480. [CrossRef]
56. Roychoudhury, R.; Roy, P.; Znojil, M.; Lévai, G. Comprehensive analysis of conditionally exactly solvable models. J. Math. Phys.

2001, 42, 1996–2007. [CrossRef]
57. Williams, B.W.; Rutherford, J.L.; Lévai, G. “Implicit” potentials associated with Jacobi polynomials: Some novel aspects. Phys.

Lett. A 1995, 199, 7–11. [CrossRef]
58. Williams, B.W.; Lévai, G. An asymmetric “implicit” potential on the real line. Mod. Phys. Lett. A 2003, 18, 1901–1909. [CrossRef]
59. Znojil, M.; Lévai, G.; Roy, P.; Roychoudhury, R. Anomalous doublets of states in a PT symmetric quantum model. Phys. Lett. A

2001, 290, 249–254. [CrossRef]

http://dx.doi.org/10.1134/S0040577916070023
http://dx.doi.org/10.1007/BF02733153
http://dx.doi.org/10.1088/0305-4470/24/22/014
http://dx.doi.org/10.1088/0305-4470/22/6/020
http://dx.doi.org/10.1088/0305-4470/24/1/022
http://dx.doi.org/10.1016/0003-4916(84)90084-8
http://dx.doi.org/10.1016/0003-4916(85)90120-4
http://dx.doi.org/10.1063/1.1362286
http://dx.doi.org/10.1016/0375-9601(95)00059-C
http://dx.doi.org/10.1142/S0217732303011617
http://dx.doi.org/10.1016/S0375-9601(01)00676-4

	Introduction
	Exactly Solvable Potentials from Special Functions of Mathematical Physics
	Application to the Confluent Heun Equation 
	Implementing  PT Symmetry to the Potentials
	Parity Considerations
	PT-Parity Considerations

	Summary
	References

