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Abstract: Uncertainty is at the heart of decision-making processes in most real-world applications.
Uncertainty can be broadly categorized into two types: aleatory and epistemic. Aleatory uncertainty
describes the variability in the physical system where sensors provide information (hard) of a proba-
bilistic type. Epistemic uncertainty appears when the information is incomplete or vague such as
judgments or human expert appreciations in linguistic form. Linguistic information (soft) typically
introduces a possibilistic type of uncertainty. This paper is concerned with the problem of classifi-
cation where the available information, concerning the observed features, may be of a probabilistic
nature for some features, and of a possibilistic nature for some others. In this configuration, most
encountered studies transform one of the two information types into the other form, and then apply
either classical Bayesian-based or possibilistic-based decision-making criteria. In this paper, a new
hybrid decision-making scheme is proposed for classification when hard and soft information sources
are present. A new Possibilistic Maximum Likelihood (PML) criterion is introduced to improve
classification rates compared to a classical approach using only information from hard sources. The
proposed PML allows to jointly exploit both probabilistic and possibilistic sources within the same
probabilistic decision-making framework, without imposing to convert the possibilistic sources into
probabilistic ones, and vice versa.

Keywords: possibility theory; possibilistic decision rule; possibilistic maximum likelihood; pattern
classification; uncertainty; Bayesian decision; maximum a posteriori; image processing

1. Introduction

Uncertainty can be categorized into two main kinds [1]: aleatory or randomness
uncertainty, aka statistical uncertainty, due to the variability or the natural randomness
in a process and epistemic uncertainty, aka systematic uncertainty, which is the scientific
uncertainty in the model of the process. It is due to limited data and knowledge. Epistemic
uncertainty calls for alternative methods of representation, propagation, and interpretation
of uncertainty than just probability. Since the beginning of the 60 s, following fruitful
cross-fertilization, a convergence is emerging between physics, engineering, mathematics,
and the cognitive sciences to provide new techniques and models that shows a trend of
inspiration from human brain mechanism towards a unified theory to represent knowledge,
belief and uncertainty [2–9].

Uncertainty is a natural and unavoidable part in real-world applications. When
observing a “real-world situation”, decision making is the process of selecting among
several alternatives or decisions.

The problem here is to assign a label or a class to measurements or other types of
observations (data) from sensors or other sources to which the observations are assumed
to belong. This is a typical classification process.

As shown in Figure 1, the general classification process can be formulated as follows.
An input set of observations o (o ∈ Ψ) is “observed” using a sensor (or a set of sensors)
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delivering a feature vector x ∈ Θ (Θ is called the features set). This feature vector x
is then injected into the decision-making system or labelling system in order to recog-
nize the most likely decision (hypothesis, alternative, class) from a given exhaustive set
Ω = {Cm. m = 1, . . . , M} of M exclusive decisions [10].
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The development of both classification algorithms and decision-making criteria are
governed by several factors mainly depending on the nature of the feature vector, the nature
of the imperfection attached to the observed features as well as the available knowledge
characterizing each decision. Several global constraints also drive the conception of the
global classification process: the “physical” nature and quality of the measures delivered by
the sensors, the categories discrimination capacity of the computed features, the nature and
the quality of the available knowledge used for the development of the decision-making
system.

However, in much of the literature, the decision-making system is performed by the
application of two successive functionalities: the soft labeling and the hard decision (selection)
functionalities. The labeling functionality [12] uses the available a priori knowledge in order
to perform a mapping ` between the features set Θ and the decisions set Ω (` : Θ −→ Ω).
For each feature vector x ∈ Θ, a soft decision label vector `(x) =

[
`C1(x), . . . , `Cm(x), . . . , `M(x)

]
∈

[0, 1]M is determined in the light of the available knowledge where `CM (x) measures the
degree of belief or support, that we have in the occurrence of the decision Cm. For instance,
if the available knowledge allows probabilistic computations, the soft decision label vector
is given through `CM (x) = Pr{CM|x} [13] where Pr{CM|x} represents the a posteriori
probability of the decision CM given the observed feature vector x ∈ Θ [14]. When the
available knowledge is expressed in terms of ambiguous information, the possibility theory
formalism (developed by L. Zadeh [7] and D. Dubois et al. [15–17]) can be used. The soft
decision label vector `(x) is then expressed with an a posteriori possibility distribution πx
defined on the decisions set Ω. In this case, `Cm(x) = πx(Cm) where πx(Cm) represents the
possibility degree for the decision Cm to occur, given the observed feature vector x ∈ Θ.

The second functionality performed by the decision-making process is called the hard
decision or the selection functionality. As the ultimate goal of most classification applications
is to select one and only one class (associated with the observations “o” for which the
feature vector x ∈ Θ is extracted) out of the classes set Ω, then a mapping has to be applied
in order to transform the soft decision label vector `(x) into a hard decision label vector for
which one and only one decision is selected. The goal is then to make a choice according to
an optimality criterion.

In this paper, we propose a new criterion for decision-making process in classification
systems called possibilistic maximum likelihood (PML). This criterion is framed within
the possibility theory, but it uses corresponding notions from Bayesian decision-making.
The main motivation being the development of PML is for multisource information fusion
where an object or a pattern may be observed through several channels and where the
available information, concerning the observed features, may be of a probabilistic nature
for some features, and of an epistemic nature for some others.

In the presence of both types of information sources, most encountered studies trans-
form one of the two information types into the other form, and then apply either the
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classical Bayesian or possibilistic decision-making criteria. With the PML decision-making
approach, the Bayesian decision-making framework is adopted. The epistemic knowledge
is integrated into the decision-making process by defining possibilistic loss values instead
of the usually used zero-one loss values. A set of possibilistic loss values is proposed and
evaluated in the context of pixel-based image classification where a synthetic scene, com-
posed of several thematic classes, is randomly generated using two types of probabilistic
sensors: a Gaussian and a Rayleigh sensor, complemented by an expert type of information
source. Results obtained with the proposed PML criterion show that the classification
recognition rates approach the optimal case, being, when all the available information is
expressed in terms of probabilistic knowledge.

When the sources of information can be modelled by probability theory, the Baysesian
approach has sufficient decision-making tools to fuse that information and performs clas-
sification. However, in the case where the knowledge available for the decision-making
process is ill-defined in the sense that it is totally or partially expressed in terms of ambigu-
ous information representing limitations in feature values, or, encoding linguistic expert’s
knowledge about the relationship between the feature values and different potential de-
cisions, new mathematical tools (i.e., PML) need to be developed. This type of available
knowledge can be represented as a conditional possibilistic soft decision label vector `(x)
defined on the decisions set Ω such that, `Cm(x) = πx(Cm) = π(Cm|x) where π(Cm|x)
represents the possibility degree for the decision Cm to occur, given the observed feature
vector x ∈ Θ and the underlying observations o.

Possibility theory constitutes the natural framework allowing to tackle this type
of information imperfection (called the epistemic uncertainty type) when one and only
one decision (hard decision) must be selected from the exhaustive decisions set Ω, with
incomplete, ill-defined or ambiguous available knowledge thus encoded as a possibility
distribution over Ω. This paper proposes a joint decision-making criterion which allows
to integrate such extra possibilistic knowledge within a probabilistic decision-making
framework taking into account both types of information: possibilistic and probabilistic. In
spite of the fact that possibility theory deals with uncertainty, which means that a unique
but unknown elementary decision is to occur, and the ultimate goal is to determine this
decision, there are relatively few studies that tackle that decision-making issue [18–25].
We must however mention the considerable contributions of Dubois and Prade [26] on
possibility theory as well as on clarification on the various semantics of fuzzy sets [27–30].
Denoeux et al. [31–33] contributed as well significantly on that topic but they consider
epistemic uncertainty as a higher order uncertainty upon probabilistic models such as in
imprecise probabilities of Walley [34,35] and fuzzy sets type-2 [36–38] which is not being
the case in this current paper.

The paper is organized this way. A brief recall of the Bayesian decision-making criteria,
and of possibility theory is given in Sections 2 and 3. Three major possibilistic decision
making criteria, i.e., maximum possibility, maximum necessity measure and confidence
index maximization, are being detailed in Section 4. The PML criterion is presented in
Section 5 followed by its evaluation in Section 6. Paper closes with conclusion in Section 7.

2. Hard Decision in the Bayesian Framework

In the Bayesian classification framework, the most widely used hard decision is based
on minimizing an overall decision risk function [14]. Assuming o ∈ Ψ is the pattern for
which the feature vector x ∈ Θ is observed, let λm,n denotes a “predefined” conditional loss
or penalty, incurred for deciding that the observed pattern o is associated with the decision
Cn, whereas the true decision (class or category) for o is Cm(n, m ε{1, · · · , M}). Therefore,
the probabilistic expected loss R(Cn|x) , also called the Conditional risk, associated with the
decision Cn given the observed feature vector x ∈ Θ, is given by:

R(Cn|x) = E{λm,n} =
M

∑
m=1

λm,nPr{Cm|x} (1)
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where E{·} stands for the mathematical expectation. Bayes decision criterion consists in
minimizing the overall risk R, also called Bayes risk, as defined in (2), by computing the
conditional risk for all decisions and then, selecting the decision Cn for which R(Cn|x)
is minimum:

R(Cn|x) = Ex{R(Cn|x) } =
∫

R(Cn|x)Pr{x}dx (2)

Therefore, the minimum-risk Bayes decision criterion is based on the selection of the
decision Cn which gives the smallest risk R(Cn|x) . This rule can thus be formulated
as follows:

Decision[x(p)] = arg min
n=1,··· ,M

(
M

∑
m=1

λm,nPr{Cm|x}
)

(3)

If Pr{Cm} denotes the a priori probability of the decision Cm and Pr{x|Cm}, the
likelihood function of the measured feature vector x, given the decision Cm, then using
Bayes’ rule, the minimum-risk Bayes decision criterion (3) can be rewritten as:

Decision[x(p)] = arg min
n=1,··· ,M

(
M

∑
m=1

Pr{Cm}Pr{x|Cm}
)

(4)

In the two-category decision case, i.e., Ω = {C1, C2}, it can be easily shown that the
minimum-risk Bayes decision criterion, simply called Bayes criterion, can be expressed as
in (5):

LR =
Pr{x|C1}
Pr{x|C2}

Decision[x(p)]=C1{

>
<

}

Decision[x(p)]=C2

λ2,2−λ2,1
λ1,1−λ1,2

· Pr{C2}
Pr{C1}︸ ︷︷ ︸

η

(5)

In other words, this decision criterion consists of comparing the likelihood ratio (LR)
Pr{x|C1}/Pr{x|C2} to a threshold η independent of the observed feature vector x. The
binary cost, or zero-one loss, assignment is commonly used in classification problems.
This rule, expressed in (6), gives λm,n no cost for a correct decision (when the true pattern
class/decision Cm is identical to the decided class/decision Cn ) and a unit cost for a wrong
decision (when the true class/decision Cm is different from the decided class/decision Cn ).

λm,n =

{
0 if Cm = Cn
1 if Cm 6= Cn

(6)

It should be noticed that this binary cost assignment considers all errors as equally
costly. It also leads to express the conditional risk as:

R(Cn|x) =
M

∑
m=1

λm,nPr{Cm|x} = 1− Pr{Cn|x} (7)

A decision minimizing the conditional risk R(Cn|x) becomes a decision maximizing
the a posteriori probability Pr{Cn|x}. As shown in (8), this version of the Bayes criterion is
called the maximum a posteriori criterion (MAP) since it seeks to determine the decision
maximizing the a posteriori probability value. It is also obvious that this decision process
corresponds to the minimum-error decision rule which leads to the best recognition rate
that a decision criterion can achieve:

DecisionMAP[x(p)] = arg max
n=1,···M

Pr{Cn|x} (8)

When the decisions a priori probabilities Pr{Cm} and the likelihood functions Pr{x|Cm}
are not available, or simply difficult to obtain, the Minmax Probabilistic Criterion (MPC)
can be an interesting alternative to the minimum-risk Bayes decision criterion [39]. As
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expressed in (9), this hard decision criterion consists in selecting the decision that minimizes
the maximum decision cost:

DecisionMPC[x(p)] = arg min
n=1,··· ,M

[
max

m=1,··· ,M
{λm,nPr{Cm|x}}

]
(9)

3. Brief Review of Possibility Theory

Possibility theory is a relatively new theory devoted to handle uncertainty in the
context where the available knowledge is only expressed in an ambiguous form. This
theory was first introduced by Zadeh in 1978 as an extension of fuzzy sets and fuzzy
logic theory, to express the intrinsic fuzziness of natural languages as well as uncertain
information [7]. It is well established that probabilistic reasoning, based on the use of
a probability measure, constitutes the optimal approach dealing with uncertainty. In
the case where the available knowledge is ambiguous and encoded by a membership
function, i.e., a fuzzy set, defined over the decisions set, the possibility theory transforms
the membership function into a possibility distribution π. Then the realization of each
event (subset of the decisions set) is bounded by a possibilistic interval defined though a
possibility, Π, and a necessity, N, measures [16]. The use of these two dual measures in
possibility theory makes the main difference compared with the probability theory. Besides,
possibility theory is not additive in terms of beliefs combination, and makes sense on
ordinal structures [17]. In the following subsections, the basic concepts of a possibility
distribution and the dual possibilistic measures (possibility and necessity measures) will
be presented. The possibilistic decision rules will be detailed in Section 4. Full details can
be found in [11].

3.1. Possibility Distribution

Let Ω = {C1, C2, · · · , CM} be a finite and exhaustive set of M mutually exclusive
elementary decisions (e.g., decisions, thematic classes, hypothesis, etc.). Exclusiveness
means that one and only one decision may occur at one time, whereas exhaustiveness
states that the occurring decision certainly belongs to Ω. Possibility theory is based on the
notion of possibility distribution denoted by π, which maps elementary decisions from
Ω to the interval [0, 1], thus encoding “our” state of knowledge or belief, on the possible
occurrence of each class Cm ∈ Ω. The value π(Cm) represents to what extent it is possible
for Cm to be the unique occurring decision. In this context, two extreme cases of knowledge
are given:

� Complete knowledge: ∃!Cm ∈ Ω, π(Cm) = 1 and π(Cn) = 0, ∀Cn ∈ Ω, Cn 6= Cm.
� Complete ignorance: ∀Cm ∈ Ω, π(Cm) = 1 (all elements from Ω are considered as

totally possible). π(·) is called a normal possibility distribution if it exists at least one
element Cm0 from Ω such that π(Cm0) = 1.

3.2. Possibility and Necessity Measures

Based on the possibility distribution concept, two dual set measures, possibility, Π,
and a necessity, N, measures are derived. For every subset (or event) A ⊆ Ω, these
measures are defined by:

Π(A) = max
Cm∈A

[π(Cm)] (10a)

N(A) = 1−Π(Ac) = min
Cm /∈Ac

[1− π(Cm)] (10b)

where Ac denotes the complement of the event A (i.e., A ∪ Ac = Ω with A ∩ Ac = ∅).
The possibility measure Π(A) estimates the level of consistency about event A oc-

currence, given the available knowledge encoded by the possibility distribution π. Thus,
Π(A) = 0 means that A is an impossible event while Π(A) = 1 means that the event
A is totally possible. The necessity measure N(A) evaluates the level of certainty about
event A occurrence, involved by possibility distribution π. N(A) = 0 means that the
certainty about the occurrence of A is null. On the contrary, N(A) = 1 means that the
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occurrence of A is totally certain. In a classification problem, where each decision Cm refers
to a given class or category, the case where all events A are composed of a single decision
(Am = {Cm}, m = 1, . . . , M), is of particular interest. In this case, the possibility Π(·),
and the necessity N(·), measures are reduced to:

Π(Am) = Π({Cm}) = π(Cm) (11a)

N(Am) = N({Cm}) = 1−Π
(
{Cm}c) = 1−max

n 6=m
π(Cn) (11b)

4. Decision-Making in the Possibility Theory Framework

In this section, we will investigate existing possibilistic decision-making rules. Two
families of rules can be distinguished: rules based on the direct use of the information
encapsulated in the possibility distribution, and rules based on the use of uncertainty
measures associated with this possibility distribution. Let Ω = {C1, C2, · · · , CM} be a
finite and exhaustive set of M mutually exclusive elementary decisions. Given an observed
pattern o ∈ Ψ for which the feature vector x ∈ Θ is observed, let πx(Cm) denotes the
a posteriori possibility distribution π(Cm|x) defined on Ω. The possibility, Πx({Cm}),
and necessity, Nx({Cm}), measures are obtained as expressed in Equation (11), using the
possibility distribution πx(Cm).

4.1. Decision Rule Based on the Maximum of Possibility

The decision rule based on the maximum of possibility is certainly the most widely
used in possibilistic classification—decision-making applications. Indeed, as shown in (12),
this rule is based on the selection of the elementary decision Cm0 ∈ Ω having the highest
possibility degree of occurrence Πx({Cm0}):

Decision [x(p)] = Cm0 if and only if m0 = arg max
n=1,···M

Πx({Cm}) (12)

A “first” mathematical justification of this “intuitive” possibilistic decision-making
rule can be derived from the Minmax Probabilistic Criterion (MPC), Equation (9), using a
binary cost assignment rule. Indeed, ‘converting’ the a posteriori possibility distributions
πx(·) into a posteriori probability distributions Pr{·|x} is assumed to respect the three
following constraints [30]: (a) the consistency principle, (b) the preference ordering preser-
vation, and (c) the least commitment principle. The preference ordering preservation, on
which we focus the attention here, means that if decision Cm1 is preferred to decision Cm2 ,
i.e., πx(Cm1) > πx(Cm2), then the a posteriori probability distribution Pr{·|x} obtained
from πx(·) should satisfy Pr{Cm1 |x} > Pr{Cm2 |x}. Equation (13) sums up this preference
ordering preservation constraint:

πx(Cm1) > πx(Cm2)⇐⇒ Pr{Cm1 |x} > Pr{Cm2 |x} (13)

Therefore, selecting the decision maximizing the a posteriori probability or selecting
the decision maximizing the a posteriori possibility decision is identical: using the MPC
associated with the binary cost assignment rule or using the maximum possibility decision
rule led to an identical result as expressed in (14).

Decision [x(p)] = Cm0 iff m0 = arg max
m=1,···M

Pr{Cm|x} = max
m=1,···M

πx(Cm) (14)

This decision-making criterion is called the Naive Bayes style possibilistic criterion
Refs. [40–42] and most ongoing efforts are oriented into the computation of the a posteriori
possibility values using numerical data [43]. An extensive study of properties and equiva-
lence between possibilistic and probability approaches is presented in [20]. Notice that this
decision rule, strongly inspired from probabilistic decision reasoning, does not provide a
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hard decision mechanism when several elementary decisions have the same maximum
possibility measure.

4.2. Decision Rule Based on Maximizing the Necessity Measure

It is worthwhile to notice that the a posteriori measures of possibility Πx and necessity
Nx coming from a normal a posteriori possibility distribution πx(·), constitute a bracketing
for the a posteriori probability distribution Pr{·|x} [17]:

Nx({Cm}) = 1− max
n 6= m

n = 1. · · · , M

πx(Cn) ≤ Pr{Cm|x} ≤ Πx({Cm}) = πx(Cm) (15)

Therefore, the maximum possibility decision criterion can be considered as an opti-
mistic decision criterion as it maximizes the upper bound of the a posteriori probability
distribution. On the contrary, a pessimistic decision criterion based on maximizing the a
posteriori necessity measure can be considered as a maximization of the lower bound of
the a posteriori probability distribution. Equation (16) expresses this pessimistic decision
criterion:

Decision [x(p)] = Cm0 iff m0 = arg max
n=1,···M

[Nx({Cm})] (16)

The question that we must raise concerns the “links” between the optimistic and the
pessimistic decision criteria. Let us consider the a posteriori possibility distribution πx(·) for
which Cm1(resp. Cm2) is the “winning decision” obtained using the maximum possibility
(resp. necessity measure) decision criteria as given in (17):

πx(Cm1) = max
m

πx(Cm)and Nx({Cm2}) = max
m

Nx({Cm}) (17)

The following important question can be formulated as follows: “Is the winning
decision Cm1 (according to the maximum possibility criterion) is the same as the winning
decision Cm2 according to maximum necessity measure criterion?”

First, notice that if several elementary decisions share the same maximum possibility
value υ = πx(Cm1), then, the necessity measure becomes a useless decision criterion since:

Nx({Cm}) = 1−max
k 6=m

πx(Ck) = 1− υ for all the elementary decisions.

Now, suppose that only one decision Cm1 assumes the maximum possibility value
υ = πx(Cm1), it is important to raise the question whether the decision Cm1 will (or will
not) be the decision assuming the maximum necessity measure value. Let us note v’, the
possibility value for the “second best” decision according to the possibility value criterion.
As Cm1 is the unique decision having the maximum possibility value υ, we have υ′ < υ.
Therefore, as shown in (18), the necessity measure value Nx({Cm}) only gets maximum
for the decision Cm1 since 1− υ′ > 1− υ.

Nx({Cm}) = 1−max
k 6=m

πx(Ck) =

{
1− υ′ if m = m1
1− υ if m 6= m1

(18)

As a conclusion, when the maximum necessity measure criterion is useful for appli-
cation (i.e., only one elementary decision assumes the maximum possibility value), then,
both decision criteria (maximum possibility and maximum necessity) produce the same
winning decision. In order to illustrate the difference between the maximum possibility
and the maximum necessity measure criteria, Figure 2 presents an illustrative example.

In Figure 2 example, four different a posteriori possibility distributions π1, π2, π3, π4,
all defined on a five elementary decisions set Ω = {C1, C2, C3, C4, C5} are considered. The
necessity measures Nk({Cm}) have been computed from the corresponding possibility
distribution πk. The underlined values indicate which decisions result from the maximum
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possibility decision criterion as well as the maximum necessity measure decision criterion,
for the four possibility distributions πk. Note that the necessity measure assumes at
most two values whatever the considered possibility distribution. When the a posteriori
possibility distribution has one and only one decision having the highest possibility degree,
then both decision rules produce the same winning decision. This is the case of the normal
possibility distribution π1 as well as the subnormal possibility distribution π3, indicated as
cases (a) and (c) in Figure 2.
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When several elementary decisions share the same highest possibility degree, then the
maximum possibility decision criterion can randomly select one of these potential winning
decisions. In this case, the maximum necessity measure decision criterion will affect a
single necessity measure degree to all elementary decisions from Ω, and thus, it will be
impossible to select any of the potential winning decisions. This behavior can be observed
with a normal possibility distribution π2 as well as with a subnormal possibility distribution
(like π4), cases (b) and (d) in Figure 2. This example clearly shows the weakness of the
decisional capacity of the maximum necessity measure decision criterion when compared
to the maximum possibility decision criterion.

4.3. Decision Rule Based on Maximizing the Confidence Index

Other possibilistic decision rules based on the use of uncertainty measures are also en-
countered in literature. The most frequently used criterion (proposed by Kikuchi et al. [44])
is based on the maximization of the confidence index Ind defined as a combination of
the possibility and the necessity measures for each event A ⊆ Ω, given a possibility
distribution π(·):

Ind : 2Ω −→ [−1, +1]

A −→ Ind(A) = Π(A) + N(A)− 1, ∀A ⊆ Ω (19)

where 2Ω denotes the power set of Ω, i.e., the set of all subsets from Ω.
For an event A, this index ranges from −1 to +1:

- Ind(A) = −1, iff Π(A) = N(A) = 0 (the occurrence of A is totally impossible and
uncertain);

- Ind(A) = +1, iff Π(A) = N(A) = 1 (the occurrence of A is totally possible and certain).

Restricting the application of this measure to events Am having only one decision
Am = {Cm} shows that Ind(Am) measures the difference between the possibility measure
of the event Am (which is identical to the possibility degree of the decision Cm) and the
highest possibility degree of all decisions contained in (Am)

c (the complement of Am in Ω):

Ind(Am) = Π(Am) + N(Am)− 1 = π(Cm)−max
m 6=n

π(Cn) (20)
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Therefore, if Am0 = {Cm0} is the only event having the highest possibility measure
value π(Cm0), then, Am0 will be the unique event having a positive confidence index value,
whereas all other events will have negative values, as illustrated in Figure 3 where we
assume π(Cm0) > π(Cm), ∀m 6= m0, and, Cm1 refers to the decision having the second
highest possibility degree.

Figure 3. Confidence indices associated with different decisions (Am0 : event having the highest
possibility degree, Am1 : event with the second highest possibility degree). (Source: [11]).

In a classification decision-making problem, the decision criterion associated with this
index can be formulated as follows:

DecisionInd [x(p)] = Am0 iff Ind(Am0) = max
m=1,···M

[Ind(Am)] (21)

The main difference between the maximum possibility and the maximum confidence
index decision criteria lies in the fact that the maximum possibility decision criterion is
only based on the maximum possibility degree whereas the maximum confidence index
decision criterion is based on the difference between the two highest possibility degrees
associated with the elementary decisions. As already mentioned, it is important to notice
that the event Am0 = {Cm0} having the highest possibilistic value, will be the unique
event producing a positive confidence index measuring the difference with the second
highest possibility degree. All other events Am = {Cm}, ∀m 6= m0, will produce negative
confidence indices.

When several decisions share the same highest possibility degree, their confidence
index (the highest one) will be null. This shows the real capacity of this uncertainty measure
for the decision-making process. However, this criterion brings the same resulting decisions
as the two former ones.

5. Possibilistic Maximum Likelihood (PML) Decision Criterion

In the formulation of the Bayesian classification approach, all information sources are
assumed to have probabilistic uncertainty where the available knowledge describing this
uncertainty is expressed, estimated or evaluated in terms of probability distributions. In
the possibilistic classification framework, the information sources are assumed to suffer
from possibilistic (or epistemic) uncertainty where the available knowledge describing this
uncertainty is expressed in terms of possibility distributions. In this section, the Bayesian
pattern recognition framework is generalized in order to integrate both probabilistic and
epistemic sources of knowledge. A joint probabilistic—possibilistic decision criterion called
Possibilistic Maximum Likelihood (PML) is proposed to handle both types of uncertainties.

5.1. Sources with Probabilistic and Possibilistic Types of Uncertainties

In some situations, an object from the observation space is observed through several
feature sets. This is the case, for instance, in multi-sensor environment for classification
applications. In such situations, the information available for the description of the feature
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vectors may be of different natures: probabilistic, epistemic, etc. Yager [24,45,46] addresses
the same sort of problems: multi-source uncertain information fusion in the case when the
information can be both from hard sensors of a probabilistic type and from soft knowledge-
expert linguistic source of a possibilistic type. He uses t-norms (‘and’ operations) to
combine possibility and probability measures. As will be explained below, Yager’s product
of possibilities and probabilities coincides with our ‘decision variables’ optimized through
the proposed PML approach.

Let us consider the example illustrated in Figure 4, where each pattern o (from the
patterns set Ψ) is “observed” through two channels. Source 1 (resp. source 2) measures
a sub-feature vector x1 ∈ Θ1(resp.x2 ∈ Θ2). Therefore, the resulting feature vector x(o)
is obtained as the concatenation of the two sub-feature vectors: x(o) = [x1 x2]. In this
configuration, the available information in the sub-feature vector x1 (resp. x2) undergoes
probabilistic (resp. epistemic) uncertainties and is encoded as an a posteriori probability soft
decision label vector `1

Cn
= Pr{Cn|x1}, n = 1, 2, . . . , M (resp. a posteriori possibility soft

decision label vector `2
Cn

= πx2(Cn), n = 1, 2, . . . , M).
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As an example, in a remote sensing system, Source 1 may be considered as a multi-
spectral imaging system, where all potential a posteriori probability distributions, Pr{Cn|x1},
n = 1,2, . . . , M, are assumed to be known and well established. The second sensor, Source 2,
could be a radar imaging system where the available information concerning the differ-
ent thematic classes is expressed by an expert using ambiguous linguistic variables like:
“the thematic class Cn is observed as “Bright”, “Slightly Dark”, etc. in the sub-feature set
Θ2”. Each linguistic variable can be used to generate an a posteriori possibility distribution
associated with each thematic class πx2(Cn), n = 1, 2, . . . , M.

5.2. Possibilistic Maximum Likelihood (PML) Decision Criterion: A New Hybrid Criterion

In the Bayesian decision framework, detailed in previous sections, the binary cost
assignment approach suffers from two constraints. On one hand, all errors are considered
as equally costly: the penalty (or cost) of misclassifying an observed pattern o as being
associated with a decision Cn whereas the true decision for “o” is Cm is the same (unit loss).
This situation does not reflect real applications constraints. For instance, deciding that an
examined patient is healthy whereas he suffers a cancer is much more serious than the
other way around. On the other hand, the loss function values λm,n, ∀m, n ∈ {1, 2, . . . , M}
are static (or, predefined) and do not depend on the feature vectors of the observed patterns.
The possibilistic maximum likelihood (PML) criterion, proposed in this paper, is based
on the use of the epistemic source of information (the a posteriori possibility distribution,
defined on the sub-feature space Θ2) in order to define possibilistic loss values and to inject,
afterwards, these values into the Bayesian decision criterion.
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Assume that, for each object o ∈ Ψ, the observed feature vector is given by
x(o) = [x1 x2] ∈ Θ1 × Θ2, and denote Pr{·|x1 } (resp.πx2(·)) as encoding the a posteri-
ori probability (resp. possibility) soft decision label vectors defined over the sub-feature set
Θ1 (resp. Θ2). The proposed PML criterion relies on the use of loss values λm,n ranging
from −1 (i.e., no loss) to +1 (i.e., maximum loss), and λm,n refers to the risk of choosing Cn
whereas the real decision for the considered pattern is Cm. Depending on the epistemic
information available through Source 2, the proposed loss values are given by:

λm,n =


max
k 6=m

πx2(Ck) = Πx2

(
{Cm}c)

∀m 6= n

max
k 6=m

πx2(Ck)− πx2(Cm) = −Indx2({Cm}) if m = n
(22)

In the case of a wrong decision, the decision penalty values, i.e., λm,n where 6= m, are
considered as positive loss values ranging in the interval: 0 ≤ λm,n = max

k 6=m
πx2(Ck) ≤ 1. Thus,

the wrong decision unit cost in the framework of binary-cost assignment, is “softened”, in
this possibilistic approach, and assumes its maximum value, i.e., unit cost, only when the
wrong decision Cn has a total possibility degree of occurrence.

When a correct decision Cm is selected, the zero-loss value (used by the binary cost
assignment approach) is substituted by λm,n = max

k 6=m
πx2(Ck)− πx2(Cm) = −Indx2({Cm}).

If the occurrence possibility degree πx2(Cm) of the true decision Cm, is the highest degree
πx2(Cm) > max

k
πx2(Ck), then the resulting loss value λm,n becomes negative. The smallest

penalty value is reached, i.e., λm,n = −1, when πx2(Cm) = 1 (i.e., true decision Cm has a
total possibility degree of occurrence), with a null possibility degree of occurrence for all
the remaining decisions (leading to max

m 6=k
πx2(Ck) = 0). Two special cases are present:

(1) If the true decision Cm shares the same maximum possibility value with, at least one
different wrong decision Cm, then, the correct decision Cm loss value becomes null
λm,n = max

k 6=m
πx2(Ck)− πx2(Cm) = 0;

(2) If the true decision Cm does not produce the maximum occurrence possibility degree,
i.e., πx2(Cm) < max

k 6=m
πx2(Ck), then the loss value λm,n is positive and will increase the

conditional risk, associated with the true decision Cm.

Using the proposed possibilistic loss values, the conditional risk R(Ck|x1) of choosing
decision Ck can thus be computed as follows:

R(Ck|x) = −Indx2({Ck})·Pr{Ck|x1}+
M

∑
i = 1
i 6= k

Π
(
{Cm}c)· Pr{Ci|x1} (23)

As already mentioned, Bayes decision criterion computes the conditional risk for
all decisions, then, selects the decision Cn for which R(Cn|x) is minimum. Based on
Equation (23), and to select the minimum conditional risk decision, the comparison of
conditional risks related to two decisions Ck and Cp, can be straightforward performed
leading to:

R(Ck|x1) ≤ R
(
Cp
∣∣x1
)
⇔ πx2(Ck)·Pr{Ck|x1} ≥ πx2(Ck)· Pr

{
Cp
∣∣x1
}

(24)

Therefore, the application of the PML criterion, for the selection of the minimum con-
ditional risk decision (out of M potential elementary decisions) can be simply formulated
by the following decision rule:

Decision [x(p)] = arg max
n=1,···M

πx2(Cn)·Pr{Cn|x1} (25)
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This “intuitive” decision criterion allows the joint use both probabilistic and epistemic
sources of information in the very same Bayesian minimum risk framework. As an example,
the application of the proposed possibilistic loss values in the two-class decision case, where
Ω = {C1, C2}, leads to the following loss matrix [λ]:

[λ] =

[
λ1,1 λ1,2
λ2,1 λ2,2

]
=

[
πx2(C2)− πx2(C1) πx2(C2)

πx2(C1) πx2(C1)− πx2(C2)

]
(26)

The use of this loss matrix [λ] into the minimum-risk Bayes decision approach (as
defined in (5)), leads to express the PML decision as follows:

Pr{x1|C1}
Pr{x1|C2}

Decision[x(p)]=C1{
>
<

}

Decision[x(p)]=C2

πx2 (C2)

πx2 (C1)
· Pr{C2}

Pr{C1}
(27)

Notice that when the proposed possibilistic loss values are considered, then the PML
induces a “weighting adjustment” of the a priori probabilities where the weighting factors
are simply the a posteriori possibility degrees issued from the possibilistic Source 2. In
the case of equal a priori probabilities, Pr{C2} = Pr{C1}, this decision criterion turns to
an intuitive form using jointly probabilistic and epistemic sources of information, in the
Bayesian minimum risk framework as shown by:

πx2(C1)·Pr{x1|C1}

Decision[x(p)]=C1{

>
<

}

Decision[x(p)]=C2

πx2(C2)·Pr{x1|C2} (28)

It is worthwhile to notice that when the two following conditions prevail:

• when the available probabilistic information (issued from source 1) is non-informative;
and,

• when the only meaningful and available information is reduced to the epistemic
expert information on the sub-feature vector issued from source 2; then, the proposed
PML criterion is simply reduced to the maximum possibility decision criterion:

πx2(C1)

Decision[x(p)]=C1{

>
<

}

Decision[x(p)]=C2

πx2(C2) (29)

This raises a fundamental interpretation of the maximum possibility decision criterion
as being a very special case of the possibilistic Bayesian decision making process under the
total ignorance assumption of the probabilistic source of information.

5.3. PML Decision Criterion Behavior

Let S1 denotes a probabilistic source of information measuring a sub-feature vector
x1 ∈ Θ1 and attributing to each elementary decision Cm, m = 1, 2, . . . , M, an a poste-
riori probability soft decision label Pr{Cm|x1}. Under the assumption of equal a priori
probabilities and using the binary-cost assignment, the application of the maximum a
posteriori criterion (MAP), Equation (8), turns to be the “optimal” criterion ensuring the
minimum-error decision rate.

Assume that an additional possibilistic source of information, S2, (measuring a sub-
feature vector x2 ∈ Θ2) is available, see Figure 4. Based on the use of the sub-feature
vector x2 ∈ Θ2, S2 attributes to each elementary decision, Cm, an a posteriori possibility soft
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decision label πx2(Cm), m = 1, 2, . . . , M. To obtain a hard decision, the application of the
maximum of possibility decision criterion, Equation (12), is considered.

In the previous section, we have proposed the possibilistic maximum likelihood, PML,
decision criterion, Equation (25), as a hybrid decision criterion allowing the coupled use
of both sources of information, S1 and S2, by considering the possibilistic information
issued from S2, i.e., πx2(Cm), m = 1, 2, . . . , M, for the definition of the loss values in the
framework of the minimum-risk Bayes decision criterion (instead of the use of the binary-
cost assignment approach). In this section, we will briefly discuss, from a descriptive point
of view through an illustrative example, the “decisional behavior” of the PML criterion
when compared to the decisions obtained with the “individual” application of the MAP
and the maximum of possibility decision criteria.

First, it is worthwhile to notice that the “decision variable” to be maximized by the
PML criterion is simply the direct product υ(Cm) = πx2(Cm)·Pr{Cm|x1}, m = 1, 2, . . . , M,
which is a T-norm fusion operator (considering both probabilistic and possibilistic infor-
mation as two “similar” measures of the degree of truthfulness related to the occurrence
of different elementary decisions, see also p.101 of Yager [24]). This also means that both
sources of information, S1 and S2, are considered as having the same informative level. It
is also important to notice that the PML criterion, as a decision fusion operator merging
decisional information from both sources, S1 and S2, constitutes a coherent decision fusion
criterion in the sense that:

- when both sources S1 and S2 are in full agreement (i.e., leading to the same decision
Cm0), then, the decision obtained by the application of the PML criterion will be the
same as Cm0 ;

- when one of the two sources S1 and S2 suffers from total ignorance (i.e., producing
equal a posteriori probabilities, for S1 and equal a posteriori possibilities, for S2), then
the PML criterion will “duplicate” the same elementary decision as the one proposed
by the remaining reliable source of information;

- when the two sources S1 and S2 lack decisional agreement, then, the decision obtained
by the application of the PML criterion will be the most “plausible” elementary
decision that may be different from individual decisions resulting from the MAP
(resp. maximum possibility) criterion using the sub-feature vector x1 ∈ Θ1 (resp.
sub-feature vector x2 ∈ Θ2).

This decision fusion coherence is illustrated through the examples given in Table 1.
The decisions set is formed by five elementary decisions, i.e., Ω = {C1, C2, C3, C4, C5}, and
we assume that, given the observed feature x1 ∈ Θ1, the probabilistic source S1 produces
the following a posteriori probability distribution: Pr{·|x1 } = [0.1 0.4 0.1 0.3 0.1]. Each
example fits in one sub-array which presents S1 and S2 specific configuration (Pr{·|x1 },
πx2(·) and υ = Pr{·|x1 }·πx2(·)) with the resulting decision for each decision parameter.
The cases presented in Table 1 are explained as the following:

Case 1: when both sources S1 and S2 agree, with a winning decision C2, the PML criterion
maintains this agreement and obtains the same decision, C2.
Cases 2 and 3: it shows that when one of the two sources presents a total ignorance, then
the PML criterion “duplicates” the same elementary decision as the one offered by the
remaining reliable source of information.
Cases 4, 5 and 6: when sources S1 and S2 lack agreement (i.e., dissonant sources), then,
the resulting decision obtained through the application of the PML criterion is the most
reasonable decision. That may not necessarily be one of the winning decisions offered by
the two sources (this is specifically shown in case 6).



Entropy 2021, 23, 67 14 of 19

Table 1. PML decision making behavior for several cases.

Case 1 Case 2 Case 3

Pr{·|x1 } πx2 (·) υ(·) Pr{·|x1 } πx2 (·) υ(·) Pr{·|x1 } πx2 (·) υ(·)
C1 0.1 0.2 0.02 0.1 1.0 0.1 0.2 0.8 0.16

C2 0.4 0.7 0.28 0.4 1.0 0.4 0.2 0.2 0.04

C3 0.1 0.3 0.03 0.1 1.0 0.1 0.2 0.1 0.02

C4 0.3 0.7 0.21 0.3 1.0 0.3 0.2 0.1 0.02

C5 0.1 0.1 0.10 0.1 1.0 0.1 0.2 0.2 0.04

Case 4 Case 5 Case 6

Pr{·|x1 } πx2 (·) υ(·) Pr{·|x1 } πx2 (·) υ(·) Pr{·|x1 } πx2 (·) υ(·)
C1 0.1 1.0 0.1 0.1 0.8 0.08 0.1 0.8 0.08

C2 0.4 0.2 0.08 0.4 0.2 0.08 0.4 0.3 0.12

C3 0.1 0.0 0.0 0.1 0.1 0.01 0.1 0.4 0.04

C4 0.3 0.0 0.0 0.3 0.3 0.03 0.35 0.5 0.16

C5 0.1 0.0 0.0 0.1 0.1 0.02 0.1 0.5 0.05

6. Experimental and Validation Results

In this section, the proposed PML decision-making criterion is evaluated in a pixel-
based image classification context. A synthetic scene composed of five thematic classes
Ω = {C1, C2, C3, C4, C5} is assumed to be observed through two independent imaging
sensors. Sensor S1 (resp. sensor S2) provides an image I1 (resp. I2) of the simulated scene.
The two considered sensors are assumed to be statistically independent. Without loss of
generalization, pixels from both images I1 and I2 are assumed to have the same spatial
resolution, thus, they represent the same observed spatial cell or object o. The value of the
pixel I1(i, j) (resp. I2(i, j)) provides the observed feature x1(resp.x2) delivered by the first
(resp. second) sensor. According to sensors characteristics, the measured feature x1(resp.x2)
follows a GaussianN

(
mC, σ2

C
)

(resp. RayleighR
(
σ2

C
)
) probability distribution with related

parameters mC, σ2
C depending on the thematic class “C” of the observed object.

Figure 5 depicts the experimental simulated images I1 (resp. I2) assumed to be deliv-
ered at the output of the two sensors. Figure 6 shows the possibility distributions encoding
expert’s information, for the five thematic classes. Parameter values considered for each
thematic class are given in the same figure. This configuration of classes’ parameters
is considered as a reasonable configuration that may be encountered when real data is
observed. Nevertheless, other configurations have been generated and the obtained results
are in full accordance with those obtained by the considered configuration.

In addition to the previously mentioned probabilistic information, we assume that
each thematic class is described, by an expert, using the “simplest” linguistic variable “Close
to vS,Ck ” where vS,Ck denotes the thematic class Ck feature mean value, observed through
sensor Ss. Therefore, the only information given by the expert is v1,Ck = mCK for sensor
S1 (underlying Gaussian distributions) and v2,Ck = σCK

√
π/2 for sensor S2 (underlying

Rayleigh distributions). For each sensor Ss and thematic class Ck, a standard triangular
possibility distribution is considered to encode this epistemic knowledge with the summit
positioned at the mean value vS,Ck and the support covering the whole range of the features
set. It is clearly seen that the possibility distributions (considered as encoding the expert’s
knowledge), represent a weak knowledge which is less informative than the initial, or even
estimated, probabilistic density functions.
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To evaluate the efficiency of the proposed possibilistic maximum likelihood decision
making criterion, the adopted procedure consists, first, on the random generation of
1000 statistical realizations of the two synthetic Gaussian and Rayleigh images (with the
five considered thematic classes) representing the analyzed scene. Second, the following
average pixel-based recognition rates are evaluated:

- τ
(

PrG
Cm

)
: Minimum-risk Bayes average pixel-based decision recognition rate,

Equation (8), using zero-one loss assignment, for each thematic class Cm,
m = 1, 2, . . . , 5, based on the use of sensor S1 Gaussian feature x1 only.

- τ
(

πG
Cm

)
: Maximum possibility average pixel-based decision recognition rate,

Equation (12), exploiting the epistemic expert knowledge for the description of each
considered thematic class Cm, m = 1, 2, . . . , 5, in the features set Θ1 only.

- τ
(

PrG
Cm
·πR

Cm

)
: Possibilistic maximum likelihood average pixel-based decision recog-

nition rate, Equation (24), jointly exploiting the epistemic expert knowledge for the
description of each considered thematic class Cm, m = 1, 2, . . . , 5, in the features set
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Θ2 (sensor S2), and the Gaussian probabilistic knowledge for the description of the
same thematic class in the features set Θ1 (sensor S1).

- τ
(

PrR
Cm

)
: Minimum-risk Bayes average pixel-based decision recognition rate,

Equation (8), using zero-one loss assignment, for each thematic class Cm,
m = 1, 2, . . . , 5, based on the use of sensor S2 Rayleigh feature x2 only.

- τ
(

πG
Cm

)
: Maximum possibility average pixel-based decision recognition rate,

Equation (12), exploiting the epistemic expert knowledge for the description of each
considered thematic class Cm, m = 1, 2, . . . , 5, in the features set Θ1 (sensor S1).

- τ
(

PrR
Cm
·πG

Cm

)
: Possibilistic maximum likelihood average pixel-based decision recog-

nition rate, Equation (24), jointly exploiting the epistemic expert knowledge for the
description of each thematic class Cm, m = 1, 2, . . . , 5, in sensor S1 features set Θ1,
and the Rayleigh probabilistic knowledge for the description of Cm, m = 1, 2, . . . , 5, in
sensor S2 features set Θ2.

- τ
(

PrG
Cm
·PrR

Cm

)
: Minimum-risk Bayes average pixel-based decision recognition rate,

Equation (8), using zero-one loss assignment, for each thematic class Cm,
m = 1, 2, . . . , 5, and based on the joint use of both sensors S1 (associated with Gaus-
sian probabilistic knowledge in the features set Θ1) and S2 (associated with Rayleigh
probabilistic knowledge in the features set Θ2. Sensors S1 and S2 are considered as
being statistically independent. This criterion as well as all the criteria above have
been calculated for the example in Table 2.

Table 2. PML decision average pixel-based recognition rates for the five thematic classes using various configurations of
knowledge sources.

Knowledge Sources

Source S1: Probabilistic (G: Gaussian)
Source S2: Epistemic (Expert)

Source S2: Probabilistic (R: Rayleigh)
Source S1: Epistemic (Expert)

Both Sources Are
Probabilistic

S1 S2 S1 ⊕

{

PML

S2 S2 S1 S1 ⊕
{

PML

S2 S1⊕S2

Criterion τ
(

PrG
Cm

)
τ
(

πG
Cm

)
τ
(

PrG
Cm
·πR

Cm

)
τ
(

PrR
Cm

)
τ
(

πG
Cm

)
τ
(

PrR
Cm
·πG

Cm

)
τ
(

PrG
Cm
·PrR

Cm

)
C1 0.96 0.33 0.96 0.34 0.96 0.64 0.96

C2 0.90 0.32 0.91 0.49 0.98 0.68 0.92

C3 0.78 0.91 0.81 0.89 0.67 0.90 0.91

C4 0.94 0.25 0.95 0.32 0.96 0.61 0.97

C5 0.83 0.72 0.86 0.58 0.75 0.71 0.94

Average
Recognition

Rate
0.88 0.51 0.90 0.52 0.86 0.71 0.94

The obtained average recognition rates are summarized in Table 2 (last row). As
expected, at the global scene level, the average recognition rates when a probabilistic
information source is used (for modelling the observed features) are higher than those
obtained by the use of epistemic knowledge (i.e., τ

(
PrG) ≥ τ

(
πG), and τ

(
PrR) ≥ τ

(
πR)).

Nevertheless, at the thematic classes’ level, this property does not hold for some classes.
This is mainly due to the fact that for “sharp classes” probability density functions, i.e.,
small variance, (for instance, thematic classes C2 and C4), the possibility distributions
shape used to encode the expert knowledge (i.e., a wide-based triangular possibility
shape) may bias each class influence, leading to a better recognition rate to the detriment
of other neighboring classes (for instance, class C3). In this case, this leads to obtain
τ
(

πG
C2

)
> τ

(
PrG

C2

)
and τ

(
πG

C4

)
> τ

(
PrG

C4

)
.

Poorer recognition performances of the maximum possibility decision criterion clearly
come from the “weak epistemic knowledge” produced by the expert (indicating just the
mean values) compared to the “strong probabilistic” knowledge involved by full probability
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density functions (resulting from either a priori information or the densities estimation
using some learning data). The most interesting and promising result can be witnessed
in terms of recognition rate improvement when the epistemic knowledge is jointly used
with the probabilistic one as proposed by the PML decision criterion. Indeed, Table 2
(columns 4 and 7, bold numbers) shows that for all classes Cm, m = 1, 2, . . . , 5, we have
τ
(

PrG
Cm
·πR

Cm

)
≥ τ

(
PrG

Cm

)
and τ

(
PrR

Cm
·πG

Cm

)
≥ τ

(
PrR

Cm

)
.

It is worthwhile to notice (columns 4 and 7, bold numbers) that the level of perfor-
mance improvement depends on the “informative” capacity of the “additional” knowledge
source. For instance, embedding the Gaussian source of knowledge (in terms of epis-
temic knowledge form) into the decisional process based on the probabilistic Rayleigh
source of knowledge, improves much more the performance level than the reverse (i.e.,
embedding epistemic Rayleigh source of knowledge into the decisional process based
on the probabilistic Gaussian source of knowledge): τ

(
PrG

Cm
·πR

Cm

)
≈τ
(

PrG
Cm

)
whereas

τ
(

PrR
Cm
·πG

Cm

)
> τ

(
PrR

Cm

)
.

Finally, it is important to notice that the PML decision performances are lower-upper
bounds delimited as follows:

τ
(

PrG
Cm

)
≤ τ

(
PrG

Cm
·πR

Cm

)
≤ τ

(
PrG

Cm
·PrR

Cm

)
τ
(

PrR
Cm

)
≤ τ

(
PrR

Cm
·πG

Cm

)
≤ τ

(
PrR

Cm
·PrG

Cm

) (30)

Given the fact that the two sources S1 and S2 are assumed to be statistically indepen-
dent, then the joint probability distribution of the augmented feature vector x = [x1 x2] is
the direct product of marginal ones. This simply means that the upper bounds given in
Equation (30) constitute the optimal recognition rate (obtained by considering both proba-
bilistic sources of knowledge). Therefore, the PML criterion improves the performances of
the use of a “single” probabilistic source of knowledge, and approaches for some thematic
classes the optimal recognition rate upper bound (last column of Table 2).

7. Conclusions

In this paper, a new criterion for decision-making process in classification systems is
proposed. After a brief recall of the Bayesian decision-making criteria, three major possi-
bilistic decision making criteria, i.e., maximum possibility, maximum necessity measure
and confidence index maximization, have been detailed. It was clearly shown that the three
considered decision criteria lead to, at best, the maximum possibility decision criterion.
However, the maximum possibility criterion has no physical justification. A new criterion
called, possibilistic maximum likelihood (PML) framed within the possibility theory, but
using notions from Bayesian decision-making, has been presented and its behavior eval-
uated. The main motivation being the development of such criterion is for multisource
information fusion where a pattern may be observed through several channels and where
the available knowledge, concerning the observed features, may be of a probabilistic nature
for some features, and of an epistemic nature for some others.

In this configuration, most encountered studies transform one of the two knowledge
types into the other form, and then apply either the classical Bayesian or possibilistic
decision-making criteria. In this paper, we have proposed a new approach called the
Possibilistic maximum likelihood (PML) decision-making approach, where the Bayesian
decision-making framework is adopted and where the epistemic knowledge is integrated
into the decision-making process by defining possibilistic loss values instead of the usually
used zero-one loss values.

A set of possibilistic loss values is proposed and evaluated in the context of pixel-based
image classification where a synthetic scene, composed of several thematic classes, was
randomly generated using two types of sensors: a Gaussian and a Rayleigh sensor. The
evaluation of the proposed PML criterion has clearly shown the interest of the application
of PML; where the obtained recognition rates approach the optimal rates (i.e., where all
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the available knowledge is expressed in terms of probabilistic knowledge). Moreover, the
proposed PML decision criterion offers a physical interpretation of the maximum possibility
decision criterion as a special case of the possibilistic Bayesian decision-making process
when all the available probabilistic information indicates equal decisions probabilities.
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