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Abstract: In this paper, we study the phase transition property of an Ising model defined on a special
random graph—the stochastic block model (SBM). Based on the Ising model, we propose a stochastic
estimator to achieve the exact recovery for the SBM. The stochastic algorithm can be transformed
into an optimization problem, which includes the special case of maximum likelihood and maximum
modularity. Additionally, we give an unbiased convergent estimator for the model parameters of the
SBM, which can be computed in constant time. Finally, we use metropolis sampling to realize the
stochastic estimator and verify the phase transition phenomenon thfough experiments.

Keywords: stochastic block model; exact recovery; Ising model; maximum likelihood; metropolis
sampling

1. Introduction

In network analysis, community detection consists in inferring the group of vertices
that are more densely connected in a graph [1]. It has been used in many domains,
such as recommendation systems [2], task allocation in distributed computing [3], gene
expressions [4], and so on. The stochastic block model (SBM) is one of the most commonly
used statistical models for community detection problems [5,6]. It provides a benchmark
artificial dataset to evaluate different community detection algorithms and inspires the
design of many algorithms for community detection tasks. These algorithms, such as semi-
definite relaxation, spectral clustering, and label propagation, not only have theoretical
guarantees when applied to the SBM, but also perform well on datasets without the SBM
assumption. The study of the theoretical guarantee of the SBM model can be divided
between the problem of exact recovery and that of partial recovery. Exact recovery requires
that the estimated community should be exactly the same as the underlining community
structure of the SBM whereas partial recovery expects the ratio of misclassified nodes to
be as small as possible. For both cases, the asymptotic behavior of the detection error is
analyzed when the scale of the graph tends to infinity. There are already some well-known
results for the exact recovery problem on the SBM. To name but a few, Abbe and Mossel
established the exact recovery region for a special sparse SBM with two communities [7,8].
Later on, the result was extended to a general SBM with multiple communities [9].

Parameter inference in the SBM is often considered alongside the exact recovery prob-
lem. Previous inference methods require the joint estimation of node labels and model
parameters [10], which have high complexity since the recovery and inference tasks are
done simultaneously. In this article, we will decouple the inference and recovery problems,
and propose an unbiased convergent estimator for SBM parameters when the number
of communities is known. Once the estimator is obtained, the recovery condition can be
checked to determine whether it is possible to recover the labels exactly. Additionally,
the estimated parameter will guide the choice of parameters for our proposed stochastic al-
gorithm.

In this article, the exact recovery of the SBM is analyzed by considering the Ising
model, which is a probability distribution of node states [11]. We use the terms node
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states and node labels interchangeably throughout this paper, both of which refer to the
membership of the underlining community. The Ising model was originally proposed in
statistical mechanics to model the ferromagnetism phenomenon but has wide applications
in neuroscience, information theory, and social networks. Among different variants of
Ising models, the phase transition property is shared. Phase transition can be generally
formulated when some information quantity changes sharply in a small neighborhood
of parameters. Based on the random graph generated by an SBM with two underlining
communities, the connection of the SBM and the Ising model was first studied by [12]. Our
work will extend the existing result to the multiple community case, establish the phase
transition property, and give the recovery error an upper bound. The error bounds decay in
a polynomially fast rate in different phases. Then we will propose an alternative approach
to estimate the labels by finding the Ising state with maximal probability. Compared with
sampling from the Ising model directly, we will show that the optimization approach has
a sharper error upper bound. Solving the optimization problem is a generalization of
maximum likelihood and also has a connection with maximum modularity. Additionally,
searching the state with maximal probability could also be done within all balanced
partitions. We will show that this constrained search is equivalent to the graph minimum
cut problem, and the detection error upper bound for the constrained maximization will
also be given.

The exact solution to maximize the probability function or exact sampling from
the Ising model is NP-hard. Many polynomial time algorithms have been proposed for
approximation purposes. Among these algorithms, simulated annealing performs well and
produces a solution that is very close to the true maximal value [13]. On the other hand,
in the original Ising model, metropolis sequential sampling is used to generate samples for
the Ising model [14]. Simulated annealing can be regarded as metropolis sampling with
decreasing temperature. In this article, we will use the metropolis sampling technique to
sample from the Ising model defined on the SBM. This approximation enables us to verify
the phase transition property of our Ising model numerically.

This paper is organized as follows. Firstly, in Section 3 we introduce the SBM and
give an estimator for the parameters of the SBM. Then, in Section 4, our specific Ising
model is given and its phase transition property is obtained. Derived from the Ising model,
in Section 5, the energy minimization method is introduced, and we establish its connec-
tion with maximum likelihood and modularity maximization algorithm. Furthermore,
in Section 6, we realize the Ising model using the metropolis algorithm to generate samples.
Numerical experiments and conclusion are given lastly to finish this paper.

Throughout this paper, the community number is denoted by k; the random undi-
rected graph G is written as G(V, E) with vertex set V and edge set E; V = {1, . . . , n} =: [n];
the label of each node is Xi, which is chosen from W = {1, ω, . . . , ωk−1}, and we further
require W to be a cyclic group with order k; Wn is the n-ary Cartesian power of W; f
is a permutation function on W and is extended to Wn in an element-wise manner; Uc

is the complement set of U and |U| is the cardinality of U; the set Sk is used to rep-
resent all permutation functions on W and Sk(σ) := { f (σ)| f ∈ Sk} for σ ∈ Wn; the
indicator function δ(x, y) is defined as δ(x, y) = 1 when x = y, and δ(x, y) = 0 when
x 6= y; f (n) = O(g(n)) if there exists a constant c > 0 such that f (n) ≤ cg(n) for large
n; f (n) = o(g(n)) holds if limn→∞

f (n)
g(n) = 0; we define the distance of two vectors as:

dist(σ, σ′) = |{i ∈ [n] : σi 6= σ′i }| for σ, σ′ ∈ Wn and the distance of a vector to a space
S ⊆ Wn as dist(σ, S) := min{dist(σ, σ′)|σ′ ∈ S}. For example, when n = 2 and k = 2,
σ = (1, ω) ∈ W2; ω0 = 1; ω · ω = ω2 = 1; let f be a mapping such that f (1) = ω and
f (ω) = 1, then f ∈ S2 and f (σ) = (ω, 1); dist(σ, f (σ)) = 2; Sk(σ) = {σ, f (σ)}; and
Sc

k(σ) = {(1, 1), (ω, ω)}.

2. Related Works

The classical Ising model is defined on a lattice and confined to two states {±1}.
This definition can be extended to a general graph and multiple-state case [15]. In [16],
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Liu considered the Ising model as defined on a graph generated by sparse SBM and his
focus was to compute the log partition function, which was averaged over all random
graphs. In [17], an Ising model with a repelling interaction was considered on a fixed graph
structure, and the phase transition condition was established, which involves both the
attracting and repelling parameters. Our Ising model derives from the work of [12], but we
extend their results by considering the error upper bound and multiple-community case.

The exact recovery condition for the SBM can be derived as a special case of many gen-
eralized models, such as pairwise measurements [18], minimax rates [19], and side informa-
tion [20]. The Ising model in this paper provides another way to extend the SBM model and
derives the recovery condition. Additionally, the error upper bound for exact recovery of
the two-community SBM by constrained maximum likelihood has been obtained in [7].
Compared with previous results, we establish a sharper upper bound for the multiple-
community case in this paper.

The connection between maximum modularity and maximal likelihood was investi-
gated in [21]. To get an optimal value of maximum modularity approximately, simulated
annealing was exploited [22], which proceeds by using the partition approach, while the
Metropolis sampling used in this paper is applied to estimate the node membership directly.

3. Stochastic Block Model and Parameter Estimation

In this paper, we consider a special symmetric stochastic block model (SSBM), which
is defined as follows:

Definition 1 (SSBM with k communities). Let 0 ≤ q < p ≤ 1, V = [n] and
X = (X1, . . . , Xn) ∈ Wn. X satisfies the constraint that |{v ∈ [n] : Xv = u}| = n

k for
u ∈W. The random graph G is generated under SSBM(n, k, p, q) if the following two conditions
are satisfied.

1. There is an edge of G between the vertices i and j with probability p if Xi = Xj and with
probability q if Xi 6= Xj.

2. The existences of each edge are mutually independent.

To explain SSBM in more detail, we define the random variable Zij := 1[{i, j} ∈ E(G)],
which is the indicator function of the existence of an edge between nodes i and j. Given the
node labels X, Zij follows Bernoulli distribution, whose expectation is given by:

E[Zij] =

{
p if Xi = Xj

q if Xi 6= Xj
(1)

Then the random graph G with n nodes is completely specified by
Z := {Zij, 1 ≤ i < j ≤ n} in which all Zij are jointly independent. The probability
distribution for SSBM can be written as:

PG(G) := PG(Z = z|X) = p∑Xi=Xj
zij q∑Xi 6=Xj

zij

· (1− p)∑Xi=Xj
(1−zij)(1− q)∑Xi 6=Xj

(1−zij) (2)

We will use the notation Gn to represent the set containing all graphs with n nodes.
By the normalization property, PG(Gn) = ∑G∈Gn PG(G) = 1.

In Definition 1, we have supposed that the node label X is fixed instead of a uniformly
distributed random variable. Since the maximum posterior estimator is equivalent to
the maximum likelihood when the prior is uniform, these two definitions are equivalent.
Although the random variable definition is more commonly used in previous literature [6],
fixing X makes our formal analysis more concise.

Given the SBM, the exact recovery problem can be formally defined as follows:
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Definition 2 (Exact recovery in SBM). Given X, the random graph G is drawn under
SSBM(n, k, p, q). We say that the exact recovery is solvable for SSBM(n, k, p, q) if there exists an
algorithm that takes G as input and outputs X̂ such that:

Pa(X̂) := P(X̂ ∈ Sk(X))→ 1 as n→ ∞

In the above definition, the notation Pa(X̂) is called the probability of accuracy for
estimator X̂. Let Pe(X̂) = 1− Pa(X̂) represent the probability of error. Definition 2 can
also be formulated as Pe(X̂) → 0 as n → ∞. The notation X̂ ∈ Sk(X) means that we
can only expect a recovery up to a global permutation of the ground truth label vector X.
This is common in unsupervised learning as no anchor exists to assign labels to different
communities. Additionally, given a graph G, the algorithm can be either deterministic
or stochastic. Generally speaking, the probability of X̂ ∈ Sk(X) should be understood as
∑G∈Gn PG(G)PX̂|G(X̂ ∈ Sk(X)), which reduced to PG(X̂ ∈ Sk(X)) for the deterministic al-
gorithm.

For constants p, q, which are irrelevant with the graph size n, we can always find
algorithms to recover X such that the detection error decreases exponentially fast as n
increases; that is to say, the task with a dense graph is relatively easy to handle. Within this
paper, we consider a sparse case when p =

a log n
n , q =

b log n
n . This case corresponds to

the sparsest graph when exact recovery of the SBM is possible. And under this condition,
a well known result [9] states that exact recovery is possible if and only if:

√
a−
√

b >
√

k (3)

Before diving into the exact recovery problem, we first consider the inference problem
for SBM. Suppose k is known, and we want to estimate a, b from the graph G. We offer a
simple method by counting the number of edges T1 and the number of triangles T2 of G,
and the estimators â, b̂ are obtained by solving the following equation systems:

x + (k− 1)y
2k

=
T1

n log n
(4)

1
k2

(
x3

6
+

k− 1
2

xy2 + (k− 1)(k− 2)
y3

6

)
=

T2

log3 n
(5)

The theoretical guarantee for the solution is given by the following theorem:

Theorem 1. When n is large enough, the equation system of Equations (4) and (5) has the unique
solution (â, b̂), which are unbiased consistent estimators of (a, b). That is, E[â] = a,E[b̂] = b, and
â and b̂ converge to a, b in probability, respectively.

Given a graph generated by the SBM, we can use Theorem 1 to obtain the estimated a, b
and determine whether exact recovery of label X is possible by Equation (3). Additionally,
Theorem 1 provides good estimation of a, b to initialize their parameters of some recovery
algorithm like maximum likelihood or our proposed Metropolis sampling in Section 6.

4. Ising Model for Community Detection

In the previous section, we have defined SBM and its exact recovery problem. While
SBM is regarded as obtaining the graph observation G from node label X, the Ising model
provides a way to generate estimators of X from G by a stochastic procedure. The definition
of such an Ising model is given as follows:
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Definition 3 (Ising model with k states). Given a graph G sampled from
SSBM(n, k, a log n

n , b log n
n ), the Ising model with parameters γ, β > 0 is a probability distribu-

tion of the state vector σ ∈Wn whose probability mass function is

Pσ|G(σ = σ̄) =
exp(−βH(σ̄))

ZG(α, β)
(6)

where
H(σ̄) = γ

log n
n ∑

{i,j}6∈E(G)

δ(σ̄i, σ̄j)− ∑
{i,j}∈E(G)

δ(σ̄i, σ̄j) (7)

The subscript in Pσ|G indicates that the distribution depends on G, and ZG(α, β) is the
normalizing constant for this distribution.

In physics, β refers to the inverse temperature and ZG(γ, β) is called the partition
function. The Hamiltonian energy H(σ̄) consists of two terms: the repelling interaction
between nodes without edge connection and the attracting interaction between nodes
with edge connection. The parameter γ indicates the ratio of the strength of these two
interactions. The term log n

n is added to balance the two interactions because there are
only O(

log n
n ) connecting edges for each node. The probability of each state is proportional

to exp(−βH(σ̄)), and the state with the largest probability corresponds to that with the
lowest energy.

The classical definition of the Ising model is specified by H(σ) = −∑(i,j)∈E(G) σi · σj
for σi = ±1. There are two main differences between Definition 3 and the classical one.
Firstly, we add a repelling term between nodes without an edge connection. This makes
these nodes have a larger probability to take different labels. Secondly, we allow the state
at each node to take k values from W instead of the two values ±1. When γ = 0 and k = 2,
Definition 3 is reduced to the classical definition of the Ising model up to a scaling factor.

Definition 3 gives a stochastic estimator X̂∗ for X: X̂∗ is one sample generated from the
Ising model, which is denoted as X̂∗ ∼ Ising(γ, β). The exact recovery error probability for
X̂∗ can be written as Pe(X̂∗) := ∑G∈Gn PG(G)Pσ|G(Sc

k(X)). From this expression we can see
that the error probability is determined by two parameters (γ, β). When these parameters
take proper values, Pe(X̂∗)→ 0, and the exact recovery of the SBM is achievable. On the
contrary, Pe(X̂∗)→ 1 if (γ, β) takes other values. These two cases are summarized in the
following theorem:

Theorem 2. Define the function g(β), g̃(β) as follows:

g(β) =
beβ + ae−β

k
− a + b

k
+ 1 (8)

and:

g̃(β) =

{
g(β) β ≤ β̄ = 1

2 log a
b

g(β̄) = 1− (
√

a−
√

b)2

k β > β̄
(9)

where β̄ = arg minβ>0 g(β). Let β∗ be defined as:

β∗ = log

(
a + b− k−

√
(a + b− k)2 − 4ab)

2b

)
(10)

which is the solution to the equation g(β) = 0 and β∗ < β̄. Then depending on how (γ, β) take
values, for any given ε > 0 and X̂∗ ∼ Ising(γ, β), when n is sufficiently large, we have:

1. If γ > b and β > β∗, Pe(X̂∗) ≤ ng̃(β)/2+ε;
2. If γ > b and β < β∗, Pa(X̂∗) ≤ (1 + o(1))max{ng(β̄), n−g(β)+ε};
3. If γ < b, Pa(X̂∗) ≤ exp(−Cn) for any C > 0.
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By simple calculus, g̃(β) < 0 for β > β∗ and g(β) > 0 for β < β∗. g(β̄) < 0
follows from Equation (3). The illustration of g(β), g̃(β) is shown in Figure 1a. Therefore,
for sufficiently small ε and as n → ∞, the upper bounds in Theorem 2 all converge to 0
at least in polynomial speed. Therefore, Theorem 2 establishes the sharp phase transition
property of the Ising model, which is illustrated in Figure 1b.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
β

−1.0

−0.5

0.0

0.5

1.0

β *

g(β)
̃g(β)

β̃ ̄β

(a) g(β), g̃(β) when a = 16, b = 4, k = 2.
(b) Phase transition region in (β, γ) plane. The exact recovery of
the SSBM is solvable only in Region I.

Figure 1. Illustration of Theorem 2.

Theorem 2 can also be understood from the marginal distribution for
σ : Pσ(σ = σ̄) = ∑G∈Gn PG(G)Pσ|G(σ = σ̄). Let D(σ, σ′) be the event when σ is clos-
est to σ′ among all its permutations. That is,

D(σ, σ′) := {σ = arg min
f∈Sk

dist( f (σ), σ′)} (11)

Then Theorem 2 can be stated with respect to the marginal distribution Pσ:

Corollary 1. Suppose γ > b, depending on how β takes values:

1. When β > β∗, Pσ(σ = X|D(σ, X)) = 1− o(1);
2. When β < β∗, Pσ(σ = X|D(σ, X)) = o(1).

Below we outline the proof ideas of Theorem 2. The insight is obtained from the
analysis of the one-flip energy difference. This useful result is summarized in the follow-
ing lemma:

Lemma 1. Suppose σ̄′ differs from σ̄ only at position r by σ̄′r = ωs · σ̄r. Then the change of
energy is:

H(σ̄′)− H(σ̄) = (1 + γ
log n

n
) ∑

i∈Nr(G)

Js(σ̄r, σ̄i)

+ γ
log n

n
(m(ωs · σ̄r)−m(σ̄r) + 1) (12)

where m(ω j) := |{i ∈ [n]|σ̄i = ω j|}, Nr(G) := {j|(r, j) ∈ E(G)} and Js(x, y) = δ(x, y)−
δ(ωs · x, y).

Lemma 1 gives an explicit way to compare the probability of two neighboring states
by the following equality:

Pσ|G(σ = σ̄′)

Pσ|G(σ = σ̄)
= exp(−β(H(σ̄′)− H(σ̄))) (13)
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Additionally, since the graph is sparse and every node has O(log n) neighbors, from
Equation (12) the computational cost (time complexity) for the energy difference is also
O(log n).

When H(σ̄′) > H(σ̄), we can expect Pσ|G(σ = σ̄′) is far less than Pσ|G(σ = σ̄). Roughly
speaking, if ∑dist(σ′ ,X)=1 exp(−β(H(σ̄′)− H(X))) converges to zero, we can expect the
probability of all other states differing from Sk(X) converges to zero. On the contrary,
if ∑dist(σ′ ,X)=1 exp(−β(H(σ̄′)− H(X))) tends to infinity, then Pσ(Sk(X)) converges to zero.
This illustrates the idea behind the proof of Theorem 2. The rigorous proof can be found in
Section 8.

5. Community Detection via Energy Minimization

Since β∗ is irrelevant with n, when γ > b, we can choose a sufficiently large β such that
β > β∗, then by Theorem 2, σ ∈ Sk(X) almost surely, which implies that Pσ|G(σ = X) has
the largest probability for almost all graphs G sampled from the SBM. Therefore, instead of
sampling from the Ising model, we can directly maximize the conditional probability to
find the state with the largest probability. Equivalently, we can proceed by minimizing the
energy term in Equation (7):

X̂′ := arg min
σ̄∈Wn

H(σ̄) (14)

In (14), we allow σ̄ to take values from Wn. Since we know X has equal size
|{v ∈ [n] : Xv = u}| = n

k for each label u, another formulation is to restrict the search space
to W∗ := {σ ∈Wn

∣∣|{v ∈ [n] : σv = ωs}| = n
k , s = 0, . . . , k− 1}. When σ ∈W∗, minimizing

H(σ) is equivalent to:
X̂′′ := arg min

σ∈W∗
∑

{i,j}6∈E(G)

δ(σi, σj) (15)

where the minimal value is the minimum cut between different detected communities.
When X̂′′ 6= X, we must have dist(X̂′′, X) ≥ 2 to satisfy the constraint X̂′′ ∈ W∗.

Additionally, the estimator of X̂′′ is parameter-free whereas X̂′ depends on γ. The extra
parameter γ in the expression of X̂′ can be regarded as a kind of Lagrange multiplier for
this integer programming problem. Thus, the optimization problem for X̂′ is the relaxation
of that for X̂′′ by introducing a penalized term and enlarging the searched space from W∗

to Wn.
When β > β̄, g̃(β) becomes a constant value. Therefore, we can get ng(β̄)/2 as the

tightest error upper bound for the Ising estimator X̂∗ from Theorem 2. For the estimator X̂′

and X̂′′, we can obtain a sharper error upper bound, which is summarized in the following
theorem:

Theorem 3. When
√

a−
√

b >
√

k, for sufficiently large n,

1. If γ > b, PG(X̂′ 6∈ Sk(X)) ≤ (k− 1 + o(1))ng(β̄);
2. PG(X̂′′ 6∈ Sk(X)) ≤ ((k− 1)2 + o(1))n2g(β̄).

As g(β̄) < 0, n2g(β̄) < ng(β̄) < ng(β̄)/2, Theorem 3 implies that Pe(X̂′′) has the sharpest
upper bound among the three estimators. This can be intuitively understood as the result
of smaller search space. The proof technique of Theorem 3 is to consider the probability of
events H(X) > H(σ̄) for dist(σ, X) ≥ 1. Then by union bound, these error probabilities
can be summed up. We note that a loose bound ng(β̄)/4 was obtained in [7] for the estimator

X̂′′ when k = 2. For a general case, since g̃(β) = 1− (
√

a−
√

b)2

k , Theorem 3 implies that
exact recovery is possible using X̂′ as long as

√
a−
√

b >
√

k is satisfied.
Estimator X̂′ has one parameter, γ. When γ takes different values, X̂′ is equivalent

with maximum likelihood or maximum modularity in the asymptotic case. The following
analysis shows their relationship intuitively.
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The maximum likelihood estimator is obtained by maximizing the log-likelihood
function. From (2), this function can be written as:

log PG(Z|X = σ) = − log
a
b
· H(σ) + C

where the parameter γ in H(σ) satisfies γ
log n

n = 1
log(a/b) (log(1− a log n

n )− log(1− b log n
n ))

and C is a constant irrelevant with σ. When n is sufficiently large, we have γ→ γML := a−b
log(a/b) .

That is, the maximum likelihood estimator is equivalent to X̂′ when γ = γML asymptoti-
cally.

The maximum modularity estimator is obtained by maximizing the modularity of a
graph [23], which is defined by:

Q =
1

2|E|∑ij
(Aij −

didj

2|E| )δ(Ci, Cj) (16)

For the i-th node, di is its degree and Ci is its community belonging. A is the adjacency
matrix. Up to a scaling factor, the modularity Q can be re-written using the label vector
σ as:

Q(σ) =− ∑
{i,j}6∈E(G)

didj

2|E| δ(σi, σj)

+ ∑
{i,j}∈E(G)

(1−
didj

2|E| )δ(σi, σj) (17)

From (17), we can see that Q(σ) → −H(σ) with γ = γMQ = a+b
2 as n → ∞. Indeed,

we have di ∼
(a+b) log n

2 , |E| ∼ 1
2 ndi. Therefore, we have

didj
2|E| → γMQ

log n
n . That is, the

maximum modularity estimator is equivalent with X̂′ when γ = γMQ asymptotically.
Using a > b and the inequality x − 1 > log x > 2 x−1

x+1 for x > 1 we can verify that
γMQ > γML > b. That is, both the maximum likelihood and the maximum modularity
estimator satisfy the exact recovery conditions γ > b in Theorem 3.

6. Community Detection Based on Metropolis Sampling

From Theorem 2, if we could sample from the Ising model, then with large proba-
bility, the sample is aligned with X. However, exact sampling is difficult when n is very
large since the cardinality of the state space increases in the rate of kn. Therefore, some
approximation is necessary, and the most common way to generate an Ising sample is
using Metropolis sampling [14]. Empirically speaking, starting from a random state, the
Metropolis algorithm updates the state by randomly selecting one position to flip its state
at each iteration step. Then after some initial burning time, the generated samples can be
regarded as sampling from the Ising model.

The theoretical guarantee of Metropolis sampling is based on the Markov chain.
Under some general conditions, Metropolis samples converge to the steady state of the
Markov chain, and the steady state follows the probability distribution to be approximated.
For the Ising model, there are many previous works which have shown the convergence of
Metropolis sampling [24].

For our specific Ising model and energy term in Equation (7), the pseudo code of our
algorithm is summarized in Algorithm 1. This algorithm requires that the number of the
communities k is known and the strength ratio parameter γ is given. We should choose
γ > b where b is estimated by b̂ in Theorem 1. The iteration time N should also be specified
in advance.
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Algorithm 1 Metropolis sampling algorithm for SBM.
Inputs: the graph G, inverse temperature β, the strength ratio parameter γ
Output: X̂ = σ̄

1: random initialize σ̄ ∈Wn

2: for i = 1, 2, . . . , N do
3: propose a new state σ̄′ according to Lemma 1 where s, r are randomly chosen

4: compute ∆H(r, s) = H(σ̄′)− H(σ̄) using (12)

5: if ∆H(r, s) < 0 then
6: σr ← ws · σr

7: else
8: with probability exp(−β∆H(r, s)) such that σr ← ws · σr

9: end if

10: end for

The computation of ∆H(r, s) needs O(log n) time from Lemma 1. For some special
Ising model, it needs to take N = O(n log n) to generate the sample for good approxima-
tion [25]. For our model, it is unknown whether O(n log n) is sufficient, and we empirically
chose N = O(n2) in numerical experiments. Then the time complexity of Algorithm 1 is
O(n2 log n).

In the remaining part of this section, we present experiments conducted to verify
our theoretical results. Firstly, we considered several combinations of (a, b, k) and ob-
tained the estimator (â, b̂) by Theorem 1. Using the empirical mean squared error (MSE)
1
m ∑m

i=1(â− a)2 + (b̂− b)2 as the criterion and choosing m = 1000, the result is shown in
Figure 2a. As we can see, as n increases, the MSE decreases polynomially fast. Therefore,
the convergence of â→ a and b̂→ b was verified.

Secondly, using Metropolis sampling, we conducted a moderate simulation to verify
Theorem 2 for the case γ > b. We chose n = 9000, k = 2, and the empirical accuracy
was computed by Pe = 1

m1m2
∑m1

i=1 ∑m2
j=1 1[X̂

∗ = ±X]. In this formula, m1 is the number
of times the random graph was generated by the SBM, whereas m2 is the number of
times consecutive samples were generated by Algorithm 1 for a given graph. We chose
m1 = 2100, m2 = 6000, which is fairly large and can achieve a good approximation of
Pe(X̂∗) by the law of large numbers. The result is shown in Figure 2b.
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(a) Estimation error of â, b̂ with respect to n.
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(b) The accuracy of exact recovery by X̂∗.
Figure 2. Experimental results.
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The vertical red line (β = β∗ = 0.198), computed from (10), represents the phase
transition threshold. The point (0.199, 1

2 ) in the figure can be regarded as the empirical
phase transition threshold, whose first coordinate is close to β∗. The green line (β, ng(β)/2)
is the theoretical lower bound of accuracy for β > β∗, and the purple line (β, n−g(β)) is the
theoretical upper bound of accuracy for β < β∗. It can be expected that as n becomes larger,
the empirical accuracy curve (blue line in the figure) will approach the step function, which
jumps from 0 to 1 at β = β∗.

7. Conclusions

In this paper, we presented one convergent estimator (in Theorem 1) to infer the pa-
rameters of the SBM and analyzed three label estimators to detect communities of the SBM.
We gave the exact recovery error upper bound for all label estimators (in Theorems 2 and 3)
and studied their relationships. By introducing the Ising model, our work makes a new
path to study the exact recovery problem for the SBM. More theoretical and empirical work
will be done in the future, such as convergence analyses on modularity (in Equation (17)),
the necessary iteration time (in Algorithm 1) for Metropolis sampling, and so on.

8. Proof of Main Theorems
8.1. Proof of Theorem 1

Lemma 2. Consider an Erdős–Rényi random graph G with n nodes, in which edges are placed
independently with probability p [26]. Suppose p =

a log n
n , the number of edges is denoted by |E|

while the number of triangles is T. Then |E|
n log n →

a
2 and T

log3 n
→ a3

6 in probability.

Proof. Let Xij represent a Bernoulli random variable with parameter p. Then |E| = ∑i,j Xij,

Xij are i.i.d. E[T(G)] = n(n−1)
2 p =

(n−1) log n
2 a and Var[|E|] = n(n−1)

2 p(1− p) < a (n−1) log n
2 .

Then by Chebyshev’s inequality,

P(
∣∣∣ |E|
n log n

− a
2

n− 1
n

∣∣∣ > ε) ≤ Var[|E|/(n log n)]
ε2

<
a(n− 1)

2n2ε2 log n

For a given ε, when n is sufficiently large,

P(
∣∣∣ |E|
n log n

− a
2

∣∣∣ > ε) < P(
∣∣∣ |E|
n log n

− a
2

n− 1
n

∣∣∣ > 2ε)

≤ n− 1
8n2ε2 log n

Therefore, by the definition of convergence in probability, we have |E|
n log n →

a
2 as

n→ ∞.
Let Xijk represents a Bernoulli random variable with parameter p3. Then T = ∑i,j,k Xijk.

It is easy to compute that E[T] = (n
3)p3. Since Xijk are not independent, the variance of T

needs careful calculation. From [27] we know that:

Var[T] =
(

n
3

)
p3 + 12

(
n
4

)
p5 + 30

(
n
5

)
p6 + 20

(
n
6

)
p6

−
(

n
3

)2
p6 = O(log3 n)
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Therefore by Chebyshev’s inequality,

P(
∣∣∣ T
log3 n

− a3

6
(n− 1)(n− 2)

n2

∣∣∣ > ε) ≤ Var[T/ log3 n]
ε2

=
1
ε2 O(

1
log3 n

)

Hence, T
log3 n

→ a3

6 .

The convergence of |E| in the Erdős–Rényi graph can be extended directly to the SBM
since the existence of each edge is independent. However, for T, it is a little tricky since the
existences of each triangle are mutually dependent. The following two lemmas give the
formula for the variance of inter-community triangles in the SBM.

Lemma 3. Consider a two-community SBM (2n, p, q) and count the number of triangles T, which
has a node in S1 and an edge in S2. Then the variance of T is:

Var[T] =
n2(n− 1)

2
q2 p + n2(n− 1)(n− 2)p2q3

+
n2(n− 1)2

2
q4 p− n2(n− 1)(3n− 4)

2
q4 p2 (18)

Lemma 4. Consider a three-community SBM(3n, p, q) and count the number of triangles T, which
has a node in S1, one node in S2, and one node in S3. Then the variance of T is:

Var[T] = n3q3 + 3n3(n− 1)q4 + 3n3(n− 1)2q5 − n3(3n2 − 3n + 1)q6

The proof of the above two lemmas uses some counting techniques and is similar to
that in [27], and we omit it here.

Lemma 5. For a SBM(n, k, p, q) where p =
a log n

n , q =
b log n

n . The number of triangles is T.
Then T

(log n)3 converges to 1
k2 (

a3

6 + k−1
2 ab2 + (k− 1)(k− 2) b3

6 ) in probability as n→ ∞.

Proof. We split T into three parts: the first is the number of triangles within community i,
Ti. There are k terms of Ti. The second is the number of triangles that have one node in
community i and one edge in community j, Tij. There are k(k− 1) terms of Tij. The third is
the number of triangles that have one node in community i, one node in community j and
one node in community k.

We only need to show that:

Ti

log3 n
→ (a/k)3

6
(19)

Tij

log3 n
→ 1

2
(a/k)(b/k)2 (20)

Tijk

log3 n
→ (b/k)3 (21)

The convergence of Ti
log3 n

comes from Lemma 2. For Tij we use the conclusion

from Lemma 3. We replace n with n/k, p = a log n
n , and q = b log n

n in Equation (18).
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Var[Tij] ∼ ab2

2k3 log3 n. Since the expectation of
Tij

log3 n
is (n/k)(n/k

2 )pq2/(log3 n) = n−1
2n

ab2

k3 ,

by Chebyshev’s inequality we can show that:

P(
∣∣∣ Tij

log3 n
− n− 1

2n
ab2

k3

∣∣∣ > ε) ≤
Var[Tij/ log3 n]

ε2

=
1
ε2 O(

1
log3 n

)

Therefore,
Tij

log3 n
converges to 1

2 (a/k)(b/k)2.

To prove
Tijk

log3 n
→ (b/k)3, from Lemma 4 we can get Var[Tijk] = O(log5 n):

P(
∣∣∣ Tijk

log3 n
− b3

k3

∣∣∣ > ε) ≤
Var[Tijk/ log3 n]

ε2 =
1
ε2 O(

1
log n

)

Proof of Theorem 1. Let e∗1 = a+(k−1)b
2k , k2e∗2 = a3

6 + k−1
2 ab2 + (k − 1)(k − 2) b3

6 and
e1 = T1

n log n , e2 = T2
log3 n

. From Lemma 2, e1 → e∗1 . From Lemma 5, e2 → e∗2 as n → ∞.

Using x = 2ke1 − (k− 1)y, we can get:

g(y) := (k− 1)(y3 − 6e1y2 + 12e2
1y) + 6e2 − 8ke3

1 = 0 (22)

This equation has a unique real root since g(y) is increasing on
R: g′(y) = 3(k− 1)(y− 2e1)

2 ≥ 0. Next we show that the root lies within (0, 2e1).

lim
n→∞

g(0) = 6e∗2 − 8k(e∗1)
3 = − 3

k2 (k− 1)(k− 2)ab2

− 3(k− 1)
k2 a2b− k− 1

k2 ((k− 2)− (k− 1)2)b3 < 0

lim
n→∞

g(2e1) = 6e∗2 − 8(e∗1)
3 =

(k− 1)(a− b)3

k3 > 0

Therefore, we can get a unique solution y within (0, 2e1). Since (a, b) is a solution for
the equation array, the conclusion follows.

By taking expectation on both sizes of Equations (4) and (5) we can show E[â] =
a,E[b̂] = b. By the continuous property of g(y), b̂→ b and â→ a follows similarly.

8.2. Proof of Theorem 2

Proof of Lemma 1. First we rewrite the energy term in (7) as:

H(σ̄) = γ
log n

n ∑
i<j

δ(σ̄i, σ̄j)− (1 + γ
log n

n
) ∑
{i,j}∈E(G)

δ(σ̄i, σ̄j)
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Then calculating the energy difference term by:

H(σ̄′)− H(σ̄) = (1 + γ
log n

n
)

· ∑
i∈Nr(G)

(δ(σ̄r, σ̄i)− δ(ωs · σ̄r, σ̄i))

+ γ
log n

n ∑
i 6=r

(δ(ωs · σ̄r, σ̄i)− δ(σ̄r, σ̄i))

= (1 + γ
log n

n
) ∑

i∈Nr(G)

Js(σ̄r, σ̄i)

+ γ
log n

n

n

∑
i=1

(δ(ωs · σ̄r, σ̄i)− δ(σ̄r, σ̄i) + 1)

= (1 + γ
log n

n
) ∑

i∈Nr(G)

Js(σ̄r, σ̄i)

+ γ
log n

n
(m(ωs · σ̄r)−m(σ̄r) + 1)

Before diving into the technical proof of Theorem 2, we need to introduce some extra
notations. When σ̄ differs from X only at position r, taking σ̄ = X in Lemma 1, we have:

H(σ̄′)− H(σ̄) = (1 + γ
log n

n
)(A0

r − As
r) + γ

log n
n

(23)

where As
r is defined as As

r = |{j ∈ [n]\{r} : {j, r} ∈ E(G), Xj = ωs · Xr}|. Since the

existence of each edge in G is independent, As
r ∼ Bernoulli( n

k , b log n
n ) for s 6= 0 and

As
0 ∼ Bernoulli( n

k − 1, a log n
n ).

For the general case, we can write:

H(σ̄)− H(X) = (1 + γ
log n

n
)[Aσ̄ − Bσ̄] + γ

log n
n

Nσ̄ (24)

in which we use Aσ̄ or Bσ̄ to represent the binomial random variable with parameter
a log n

n or b log n
n , respectively, and Nσ̄ is a deterministic positive number depending on σ̄ but

irrelevant with the graph structure. The following lemma gives the expression of Aσ̄, Bσ̄

and Nσ̄:

Lemma 6. For SSBM(n, k, p, q), we assume σ̄ differs from the ground truth label vector X in the
|I| := dist(σ̄, X) coordinate. Let Iij = |{r ∈ [n]|Xr = wi, σr = wj} for i 6= j and Iii = 0. We
further denote the row sum as Ii = ∑k−1

j=0 Iij and the column sum as I′i = ∑k−1
j=0 Iji. Then:

Nσ̄ =
1
2

k−1

∑
i=0

(Ii − I′i )
2 (25)

Bσ̄ ∼ Bernoulli(
n
k
|I|+ 1

2

k−1

∑
i=0

(−2I′i Ii + I′2i −
k−1

∑
j=0

I2
ji), q) (26)

Aσ̄ ∼ Bernoulli(
n
k
|I| − 1

2

k−1

∑
i=0

(I2
i +

k−1

∑
j=0

I2
ij), p) (27)

The proof of Lemma 6 is mainly composed of careful counting techniques, and we
omit it here. When |I| is small compared to n, we have the following Lemma, which is an
extension of Proposition 6 in [12].
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Lemma 7. For t ∈ [ 1
k (b− a), 0] and |I| ≤ n/

√
log n

PG(Bσ̄ − Aσ̄ ≥ t|I| log n)

≤ exp
(
|I| log n

(
fβ(t)− βt− 1 + O(

1√
log n

)
)) (28)

where fβ(t) = mins≥0(g(s)− st) + βt ≤ g̃(β).

Corresponding to the three cases of Theorem 2, we use three non-trivial lemmas to
establish the properties of the Ising model.

Lemma 8. Let γ > b. When dist(σ̄, X) ≥ n√
log n

and D(σ̄, X), the event

Pσ|G(σ = σ̄) > exp(−Cn)Pσ|G(σ = X) happens with a probability (with respect to SSBM)
less than exp(−τ(α, β)n

√
log n), where C is an arbitrary constant and τ(α, β) is a positive

number.

Proof. We denote the event Pσ|G(σ = σ̄) > exp(−Cn)Pσ|G(σ = X) as D̃(σ̄, C). By
Equation (24), D̃(σ̄, C) is equivalent to:

(1 +
γ log n

n
)[Bσ̄ − Aσ̄] >

γ log n
n

Nσ̄ −
C
β

n (29)

We claim that σ̄ must satisfy at least one of the following two conditions:

1. ∃i 6= j s.t. 1
k(k−1)

n√
log n
≤ Iij ≤ n

k −
1

k(k−1)
n√
log n

2. ∃i 6= j s.t. Iij >
n
k −

1
k(k−1)

n√
log n

and Iji <
1

k(k−1)
n√
log n

If neither of the above two condition holds, then from condition 1 we have
Iij < 1

k(k−1)
n√
log n

or Iij > n
k −

1
k(k−1)

n√
log n

for any 0 ≤ i, j ≤ k − 1. Since

∑i,j Iij = |I| ≥ n√
log n

, there exists i, j such that Iij > n
k −

1
k(k−1)

n√
log n

. Under such

conditions, we also assume Iji >
n
k −

1
k(k−1)

n√
log n

. Let X′ be the vector that exchanges the

value of wi with wj in X. We consider:

dist(σ̄, X′)− dist(σ̄, X) = |{r ∈ [n]|Xr = wi, σ̄r 6= wj}|
+ |{r ∈ [n]|Xr = wj, σ̄r 6= wi}|
− |{r ∈ [n]|Xr = wi, σ̄r 6= wi}|
− |{r ∈ [n]|Xr = wj, σ̄r 6= wj}|

=
n
k
− Iij +

n
k
− Iji − Ii − Ij (30)

<
2

k(k− 1)
n√

log n
− Ii − Ij < 0

which contracts with the fact that σ̄ is nearest to X. Therefore, we should have Iji <
1

k(k−1)
n√
log n

. Now the (i, j) pair satisfies condition 2, which contracts with the fact that σ̄

satisfies neither of the two conditions.
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Under condition 1, we can get a lower bound on |Aσ̄| from Equation (27). Let I′ij = Iij

for i 6= j and I′ii =
n
k − Ii. Then we can simplify |Aσ̄| as:

|Aσ̄| =
n
k
|I| − 1

2

k−1

∑
i=0

(I2
i +

k−1

∑
j=0

I2
ij)

=
n2

2k
− 1

2

k−1

∑
i=0

k−1

∑
j=0

I′2ij

We further have ∑k−1
i=0 ∑k−1

j=0 I′2ij ≤ (k − 1) n2

k2 + ( n
k − Iij)

2 + I2
ij where Iij satisfies con-

dition 1. Therefore, ∑k−1
i=0 ∑k−1

j=0 I′2ij ≤ (k− 1) n2

k2 + ( 1
k(k−1)

n√
log n

)2 + ( n
k −

1
k(k−1)

n√
log n

)2 =

n2

k −
2n2

k2(k−1)
√

log n
(1 + o(1)). As a result,

Aσ̄ ≥
n2

k2(k− 1)
√

log n
(1 + o(1)) (31)

Under condition 2, we can get a lower bound on Nσ̄. Since dist(σ̄, X′)−dist(σ̄, X) ≥ 0,
from (30) we have Iij + Iji + Ii + Ij ≤ 2n

k . Since Ii ≥ Iij > n
k −

1
k(k−1)

n√
log n

, we have

Ij ≤ 2
k(k−1)

n√
log n

. Now consider I′j − Ij ≥ n
k −

3
k(k−1)

n√
log n

. From (25):

Nσ̄ ≥ 1
2 (

n
k −

3
k(k−1)

n√
log n

)2 = n2

2k2 (1 + o(1)).

Now we use the Chernoff inequality to bound Equation (29); we can omit γ log n
n on the

left-hand side since it is far smaller than 1. Let Z ∼ Bernoulli( a log n
n ), Z′ ∼ Bernoulli( b log n

n ),
then:

PG(D̃(σ̄, C)) ≤ (E[exp(sZ)])|Bσ̄ |(E[exp(−sZ′)])|Aσ̄ |

· exp(−s(
γ log n

n
Nσ̄ −

C
β

n))

≤ exp
(
|Bσ̄|

b log n
n

(es − 1) + |Aσ̄|
a log n

n
(e−s − 1)

− s(
γ log n

n
Nσ̄ −

C
β

n)
)

Using |Bσ̄| = Nσ̄ + |Aσ̄| we can further simplify the exponential term as:

log n
n

[|Aσ̄|(b(es − 1) + a(e−s − 1)) + Nσ̄(b(es − 1)− γs)] + s
C
β

n

Now we investigate the function g1(s) = b(es − 1) + a(e−s − 1) and
g2(s) = b(es − 1) − γs. Both functions take zero values at s = 0 and
g′1(s) = (bes − ae−s), g′2(s) = bes − γ. Therefore, g′1(0) = b− a < 0, g′2(0) = b− γ < 0
and we can choose s∗ > 0 such that g1(s∗) < 0, g2(s∗) < 0. To compensate the influence
of the term sCn/β we only need to make sure that the order of log n

n min{|Aσ̄|, Nσ̄} is
larger than n. This requirement is satisfied since either |Aσ̄| ≥ n2

k2(k−1)
√

log n
(1 + o(1)) or

Nσ̄ ≥ n2

2k2 (1 + o(1)).

Lemma 9. If γ > b, β > β∗, For 1 ≤ r ≤ n√
log n

and ∀ε > 0, there is a set G(r) such that:

PG(G
(r)
n ) ≥ 1− nr(g̃(β)/2+ε) (32)
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and for every G ∈ G(r)n ,

Pσ|G(dist(σ, X) = r|D(σ, X))

Pσ|G(σ = X|D(σ, X))
< nrg̃(β)/2 (33)

For r > n√
log n

, there is a set G(r) such that:

P(G ∈ G(r)n ) ≥ 1− e−n (34)

and for every G ∈ G(r)n ,
Pσ|G(dist(σ, X) = r|D(σ, X))

Pσ|G(σ = X|D(σ, X))
< e−n (35)

Proof. We distinguish the discussion between two cases: r ≤ n√
log n

and r > n√
log n

.

When r ≤ n√
log n

, we can show that dist(σ, X) = r implies D(σ, X) by using the

triangle inequality of dist. For f ∈ Sk\{id}, where id is the identity mapping, we have:

2n
k
≤ dist( f (X), X) ≤ dist(σ, f (X)) + dist(σ, X)

Therefore, dist(σ, f (X)) ≥ 2n
k −

n√
log n
≥ dist(σ, X) and Equation (33) is equivalent

with:
Pσ|G(dist(σ, X) = r)

Pσ|G(σ = X)
< nrg̃(β)/2 (36)

The left-hand side can be written as:

Pσ|G(dist(σ, X) = r)
Pσ|G(σ = X)

= ∑
dist(σ̄,X)=r

exp(−β(H(σ̄)− H(X)))

by (24) ≤ ∑
dist(σ̄,X)=r

exp(βn(Bσ̄ − Aσ̄))

where βn = β(1 + γ
log n

n ).
Define Ξn(r) := ∑dist(σ̄,X)=r exp(βn(Bσ̄ − Aσ̄)) and we only need to show that:

PG(Ξn(r) ≥ nrg̃(β)/2) ≤ nr(g̃(β)/2+ε) (37)

Define the event Λn(G, r) := {Bσ̄ − Aσ̄ < 0, ∀σ̄ s.t. dist(σ̄, X) = r}, and we proceed
as follows:

PG(Ξn(r) ≥ nrg̃(β)/2) ≤ PG(Λn(G, r)c)

+ PG(Ξn(r) ≥ nrg̃(β)/2|Λn(G, r))

For the first term, since |{σ̄|dist(σ̄, X) = r}| = (k − 1)rnr, by Lemma 7,
PG(Λn(G, r)c) ≤ (k− 1)rnrg(β̄) ≤ nr(g̃(β)/2+ε/2). For the second term, we use Markov in-
equality:

PG(Ξn(r) ≥ nrg̃(β)/2|Λn(G, r)) ≤ E[Ξn(r)|Λn(G, r)]n−rg̃(β)/2
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The conditional expectation can be estimated as follows:

E[Ξn(r)|Λn(G, r)] = ∑
dist(σ̄,X)=r

−1

∑
tr log n=−∞

PG(Bσ̄ − Aσ̄ = tr log n) exp(βntr log n)

≤ (k− 1)rnr+rβn(b−a)/k + ∑
dist(σ̄,X)=r

−1

∑
tr log n=r b−a

k log n

PG(Bσ̄ − Aσ̄ = tr log n) exp(βntr log n)

r + rβn(b − a)/k = fβn(
b−a

k ) < g̃(βn), therefore, (k − 1)rnr+rβn(b−a)/kn−rg̃(β)/2 ≤
nr(g̃(β)/2+ε/2). Using Lemma 7, we have:

PG(Bσ̄ − Aσ̄ = tr log n) exp(βnrt log n) ≤ n
r( fβn (t)−1+O( 1√

log n
))

Since βn → β, ∀ε, when n is sufficiently large we have g̃(βn) ≤ g̃(β) + ε/2. Therefore,

∑
dist(σ̄,X)=r

−1

∑
tr log n=

r(b−a)/k log n

PG(Bσ̄ − Aσ̄ = t log n) exp(βnrt log n)

≤ nr(g̃(βn)−g̃(β)/2)

≤ nr(g̃(β)/2+ε/2)O(log n)(k− 1)r

Combining the above equations, we have:

PG(Ξn(r) ≥ nrg̃(β)/2) ≤ nr(g̃(β)/2+ε/2)O(log n)(k− 1)r

≤ nr(g̃(β)/2+ε)

When r > n√
log n

, using Lemma 8, we can choose a sufficiently large constant C > 1

such that kn exp(−Cn) < e−n:

Pσ|G(dist(σ, X) = r|D(σ, X))

Pσ|G(σ = X|D(σ, X))
= ∑

D(σ,X)
dist(σ,X)=r

Pσ|G(σ = σ̄)

Pσ|X(σ = X)

> exp(−n)

happens with probability less than e−n. Therefore, Equation (35) holds.

If γ > b and β < β∗, we have the following lemma:

Lemma 10. If γ > b and β < β∗, there is a set G(1)n such that PG(G
(1)
n ) ≥ 1− ng(β̄) and:

E[
n

∑
r=1

exp(βn(As
r − A0

r ))|G ∈ G
(1)
n ] = (1 + o(1))ng(βn) (38)

Var[
n

∑
r=1

exp(βn(As
r − A0

r ))|G ∈ G
(1)
n ] ≤ (1 + o(1))ng(2βn) (39)

Lemma 10 is an extension of Proposition 10 in [12] and can be proved using almost
the same analysis. Thus we omit the proof of Lemma 10 here.
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Lemma 11. If γ > b and β < β∗, there is a set G ′n such that:

PG(G ′n) ≥ 1− (1 + o(1))max{ng(β̄), ng̃(2βn)−2g(βn)+ε} (40)

and for every G ∈ G ′n,

Pσ|G(dist(σ, X) = 1|D(σ, X))

Pσ|G(σ = X|D(σ, X))
≥ (1 + o(1))ng(βn) (41)

Proof. The left-hand side of Equation (41) can be rewritten as:

Pσ|G(dist(σ, X) = 1)
Pσ|G(σ = X)

= (1 + o(1))
k−1

∑
s=1

n

∑
r=1

exp(βn(As
r − A0

r )) (42)

Let G(1)n be defined in Lemma 10 and G(2)n := {|∑n
r=1 exp(βn(As

r − A0
r )) −

(1 + o(1))ng(βn)| ≤ ng(βn)−ε/2}.
Using Chebyshev’s inequality, we have:

PG(G 6∈ G
(2)
n

∣∣∣G ∈ G(1)n ) ≤ ng̃(2βn)−2g(βn)+ε

Let G ′n = G(1)n ∩ G
(2)
n :

PG(G ∈ G ′n) = PG(G
(1)
n )PG(G ∈ G

(2)
n |G ∈ G

(1)
n )

≥ (1− ng̃(2βn)−2g(βn)+ε)(1− ng(β̄))

= 1− (1 + o(1))max{ng(β̄), ng̃(2βn)−2g(βn)+ε}

and for every G ∈ G ′n,

n

∑
r=1

exp(βn(As
r − A0

r )) = (1 + o(1))ng(βn)

Therefore, from Equation (42) we have:

Pσ|G(dist(σ, X) = 1)
Pσ|G(σ = X)

≥ (1 + o(1))ng(βn)

Let Λ := {ω j · 1n|j = 0, . . . , k− 1} where 1n is the all-ones vector with dimension n,
and we have the following lemma:

Lemma 12. Suppose γ < b and σ̄ satisfies dist(σ̄, 1n) ≥ n√
log n

and D(σ̄, 1n). Then the event

Pσ|G(σ = σ̄) > exp(−Cn)Pσ|G(σ = 1n) happens with a probability (with respect to SSBM) less
than exp(−τ(α, β)n

√
log n) where C is an arbitrary constant, τ(α, β) is a positive number.

Proof. Let nr = |{σ̄i = wr|i ∈ [n]}|. Then n0 ≥ nr for r = 1, . . . , k − 1 since
arg minσ′∈Λ dist(σ̄, σ′) = 1n. Without loss of generality, we suppose n0 ≥ n1 · · · ≥ nk−1.
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Define Nσ̄ = 1
2 (n(n − 1) − ∑k−1

r=0 nr(nr − 1)) = 1
2 (n

2 − ∑k−1
r=0 n2

r ). Denote the event
Pσ|G(σ = σ̄) > exp(−Cn)Pσ|G(σ = 1n) as D′(σ̄, C), which can be transformed as:

(1 +
γ log n

n
)

 ∑
σ̄i 6=σ̄j ,Xi=Xj

Zij + ∑
σ̄i 6=σ̄j ,Xi 6=Xj

Zij


≤ γ log n

n
Nσ̄ +

C
β

n (43)

Firstly we estimate the order of Nσ̄, and obviously Nσ̄ ≤ 1
2 n2. Using the conclusion in

Appendix A of [18], we have:

k−1

∑
r=0

n2
r ≤

{
nn0 n0 ≤ n

2

n2 − 2n0(n− n0) n0 > n
2

(44)

By assumption of dist(σ̄, 1n) ≥ n√
log n

, we have n0 ≤ n− n√
log n

and n0 ≥ n
k follows

from n0 ≥ nr. When n0 > n
2 , we have Nσ̄ ≥ n0(n− n0) ≥ n2√

log n
(1 + o(1)). The second

inequality is achieved if n0 = n− n√
log n

. When n0 < n
2 , Nσ̄ ≥ n2−nn0

2 ≥ n2

4 and the second

inequality is achieved when n0 = n
2 . Thus generally we have n2√

log n
(1 + o(1)) ≤ Nσ̄ ≤ n2

2 .

Since C
β n = o( log n

n Nσ̄) we can rewrite Equation (43) as: ∑
σ̄i 6=σ̄j
Xi=Xj

−Zij + ∑
σ̄i 6=σ̄j
Xi 6=Xj

−Zij

 ≥ −γ
log nNσ̄

n
(1 + o(1)) (45)

Let N1 = ∑σ̄i 6=σ̄j ,Xi=Xj
1 and N2 = ∑σ̄i 6=σ̄j ,Xi 6=Xj

1 = Nσ̄ − N1.
Using the Chernoff inequality we have:

PG(D′(σ̄, C)) ≤ (E[exp(−sZ)])N1(E[exp(−sZ′)])N2

· exp(γ
log nNσ̄s

n
(1 + o(1)))

= exp
( log n

n
(1 + o(1))(e−s − 1)(aN1 + bN2)

+ γ
log nNσ̄s

n
(1 + o(1))

)
Since s > 0 and a > b, we further have:

PG(D′(σ̄, C)) ≤ exp(
Nσ̄ log n

n
(b(e−s − 1) + γs + o(1)))

Let hb(x) = x − b − x log x
b , which satisfies hb(x) < 0 for 0 < x < b, and take

s = − log γ
b > 0, using Nσ̄ ≥ n2√

log n
we have:

PG(D′(σ̄, C)) ≤ exp(Nσ̄
log n

n
hb(γ)(1 + o(1)))

≤ exp(hb(γ)n
√

log n(1 + o(1)))
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Proof of Theorem 2. (1) Since Pσ(σ 6∈ Sk(X)) = ∑ f∈Sk
Pσ(σ 6= f (X)|D(σ, f (X)))

Pσ(D(σ, f (X))), we only need to establish Pσ(σ 6= X|D(σ, X)) ≤ ng̃(β)/2+ε. From Lemma 9,
we can find G(r)n for r = 1, . . . , n. Let G ′n = ∩n

r=1G
(r)
n and choose ε

2 ; from Equations (32) and
(34), we have:

PG(G ′cn ) = PG(∪n
r=1(G

(r)
n )c)

≤
n/
√

log n

∑
r=1

nr(g̃(β)/2+ε/2) + ne−n

≤ 1
2

ng̃(β)/2+ε

where the last equality follows from the estimation of sum of geometric series. On the other
hand, for every G ∈ G ′n, from Equations (33) and (35), we have:

Pσ|G(σ 6= X|D(σ, X))

1− Pσ|G(σ 6= X|D(σ, X))
=

Pσ|G(σ 6= X|D(σ, X))

Pσ|G(σ = X|D(σ, X))

<
n/
√

log n

∑
r=1

nrg̃(β)/2 + ne−n

from which we can get the estimation Pσ|G(σ 6= X|D(σ, X)) ≤ 1
2 ng̃(β)/2+ε. Finally,

Pσ(σ 6= X|D(σ, X)) = ∑
G∈G ′n

PG(G)Pσ|G(σ 6= X|D(σ, X))

+PG(G ′cn ) ≤ ng̃(β)/2+ε.

(2) When β < β∗, using Lemma 11, for every G ∈ G ′n we can obtain:

1− Pσ|G(σ = X|D(σ, X))

Pσ|G(σ = X|D(σ, X))
≥ (1 + o(1))ng(βn)

We then have:
Pσ|G(σ = X|D(σ, X)) ≤ (1 + o(1))n−g(βn)

Then:

Pσ(σ = X|D(σ, X)) ≤ P(G ′cn )

+ ∑
G∈G ′n

PG(G)Pσ|G(σ = X|D(σ, X))

≤ (1 + o(1))n−g(βn) + (1 + o(1))max{ng(β̄), ng̃(2βn)−2g(βn)+ε}

≤ (1 + o(1))max{ng(β̄), n−g(β)+ε}

(3) When γ < b, for any f ∈ Sk, we have dist( f (X), Λ) = (k−1)n
k > n√

log n
. Therefore,

using Lemma 12, we can find a graph G ′n such that PC(G ′n) ≤ exp(−nC) and for any
G 6∈ G ′n, Pσ|G(σ = f (X)) ≤ exp(−Cn). Therefore,

Pa(X̂∗) ≤ PG(G ′n) + k! exp(−Cn) = (1 + k!) exp(−Cn)

The conclusion of Pa(X̂∗) ≤ exp(−Cn) follows since C can take any positive value.
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8.3. Proof of Theorem 3

Lemma 13 (Lemma 8 of [7]). Let m be a positive number larger than n. When Z1, . . . , Zm are
i.i.d. Bernoulli( b log n

n ) and W1, . . . , Wm are i.i.d Bernoulli( a log n
n ), independent of Z1, . . . , Zm, then:

P(
m

∑
i=1

(Zi −Wi) ≥ 0) ≤ exp(−m log n
n

(
√

a−
√

b)2) (46)

Proof of Theorem 3. Let P(r)
F denote the probability when there is σ satisfying

dist(σ, X) = r and H(σ) < H(X).
From Equation (23), when σ differs from X only by one coordinate, from Lemma 13

the probability for H(σ) < H(X) is bounded by PG(As
r − A0

r > 0) ≤ n−
(
√

a−
√

b)2
k . Therefore,

P(1)
F ≤ (k − 1)ng(β̄). Using Lemma 7, we can get P(r)

F ≤ (k − 1)rnrg(β̄) for r ≤ n√
log n

.

For r ≥ n√
log n

, choosing C = 0 in Lemma 8 we can get ∑r≥ n√
log n

P(r)
F ≤ e−n. That

is, the dominant term is ∑r≤ n√
log n

P(r)
F since the other part decreases exponentially fast.

Therefore, the upper bound for error rate of X̂′ is:

PF =
n

∑
r=1

P(r)
F ≤ (1 + o(1))

∞

∑
r=1

(k− 1)rnrg(β̄)

≤(1 + o(1))
(k− 1)ng(β̄)

1− (k− 1)ng(β̄)
= (k− 1 + o(1))ng(β̄)

When σ ∈ W∗, since |{r ∈ [n]|σr = ωi}| = I′i +
n
k − Ii, we have I′i = Ii. From

Lemma 6, we can see |Bσ̄| = |Aσ̄| and Nσ̄ = 0. Then from Equation (24), H(σ̄) < H(X) is
equivalent with Bσ̄ > Aσ̄.

Therefore, when dist(σ̄, X) ≥ n√
log n

and D(σ, X), from Equation (31), we have

Aσ̄ ≥ n2

k2(k−1)
√

log n
(1 + o(1)). We use Lemma 13 by letting m = |Aσ̄| when m ≥ n√

log n
;

the error term is bounded by ∑r≥ n√
log n

P(r)
F ≤ ∑r≥ n√

log n
(k− 1)r exp(− (

√
a−
√

b)2

k2(k−1) n
√

log n)) ≤

exp(−n), which decreases exponentially fast. For m < n√
log n

, we can use Lemma 7 directly

by considering ∑
n√
log n

r=2 P(r)
F . The summation starts from r = 2 since σ ∈W∗. Therefore,

PF =
n

∑
r=2

P(r)
F ≤ (1 + o(1))

∞

∑
r=2

(k− 1)rnrg(β̄)

≤((k− 1)2 + o(1))n2g(β̄).
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