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Abstract: Gene regulatory networks (GRNs) control biological processes like pluripotency, differ-
entiation, and apoptosis. Omics methods can identify a large number of putative network compo-
nents (on the order of hundreds or thousands) but it is possible that in many cases a small subset of 
genes control the state of GRNs. Here, we explore how the topology of the interactions between 
network components may indicate whether the effective state of a GRN can be represented by a 
small subset of genes. We use methods from information theory to model the regulatory interactions 
in GRNs as cascading and superposing information channels. We propose an information loss func-
tion that enables identification of the conditions by which a small set of genes can represent the state 
of all the other genes in the network. This information-theoretic analysis extends to a measure of 
free energy change due to communication within the network, which provides a new perspective 
on the reducibility of GRNs. Both the information loss and relative free energy depend on the den-
sity of interactions and edge communication error in a network. Therefore, this work indicates that 
a loss in mutual information between genes in a GRN is directly coupled to a thermodynamic cost, 
i.e., a reduction of relative free energy, of the system.  

Keywords: gene regulatory networks; mutual information; channel cascades; free energy; network 
reducibility 
 

1. Introduction 
Complex metabolic and regulatory functions in biology are realized through the in-

teraction of gene products with each other. The emergent biological properties like home-
ostasis and differentiation are not only a function of the biochemistry of the participant 
genes, but also the architecture of the interactions among them [1,2]. Stuart Kauffman’s 
method of modeling regulatory interactions among genes as a Boolean network was es-
tablished in the late 1960s [3,4]. In the last two decades, experimental characterization has 
provided a repository of gene network models for processes like apoptosis [5], immune 
response [6], embryonic development [7], and more [8]. 

Models of gene regulatory networks (GRN), or transcriptomic interaction networks 
[9], can be presented as graphs, 𝐺 = (𝑉, 𝐸), with a set of genes (or vertices or nodes), 𝑉, 
connected to each other with a set of edges, 𝐸. A node 𝑣  is connected with a directed 
edge to 𝑣 , if 𝑣  directly regulates the expression of gene 𝑣 . Each node is characterized 
by 2 degrees: the number of incoming edges to the node 𝑣  is the in-degree, deg(𝑣 ), and 
the number of edges emanating from the node 𝑣  is the out-degree, deg(𝑣 ). A strictly 
source node has deg(𝑣 )=0 and a strictly sink node has deg(𝑣 )=0. Hence, gene network 
models focus on the interaction between the states of the genes and coarse grain all the 
intermediate biochemical reactions (e.g., DNA binding, transcription, translation, etc.) 
that are involved in gene expression. 
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Graph analysis of experimentally-determined GRNs has identified attributes that are 
present across various species (both prokaryotic and eukaryotic) and irrespective of reg-
ulatory function, which include hierarchical organization [10], modularity [11,12] and crit-
icality [13]. However, there is more to gene regulation than topological properties. Fun-
damentally, all biochemical reactions involved in gene regulation are subject to the laws 
of non-equilibrium thermodynamics. A thermodynamically reducible network is the one 
where a small subset of genes controls the free energy change that accompanies the navi-
gation of the microstates of phenotypes. Therefore, in the context of network reducibility, 
it is obvious to ask what is the thermodynamic benefit of a particular gene network topol-
ogy above others? Since phenotypic microstates can be represented as an energy land-
scape [14,15], the free energy change associated with the state of a GRN is a measure of 
thermodynamic benefit. To quantitatively answer the above question, in Section 2 we for-
mulate a computational method for global transfer of information in a GRN, and in Sec-
tion 3 we compute the loss of information as a field over all possible pairs of source-re-
ceiver nodes in a network. In Section 4 we use the thermodynamics of information transfer 
[16] to evaluate the free energy of the communication map associated with a gene net-
work. This work establishes a method for calculating information loss in biological net-
works in thermodynamic terms. We use these metrics to identify the characteristics of 
networks that permit them to be reducible. 

2. GRNs as Cascades of Interfering Information Channels 
The topology of experimentally-determined GRNs is a topic of active research 

[17,18]. Topology of transcriptomic interactions across prokaryotes and eukaryotes is 
claimed to be scale-free [9], although a survey of biological networks has shown that the 
occurrence of scale-free topology is rare, but noticeably higher than other areas of appli-
cation of network theory (e.g., social networks, communication networks) [19]. Therefore, 
we present a computational approach that is applicable to all types of GRN topologies 
and can identify the thermodynamic benefit of various topologies. 

We use the stochastic interpretation of the model Boolean GRNs [20,21], where the 
state of a gene, 𝑣 , is a Boolean random variable associated with a discrete probability 
distribution, 𝑃(𝑣 ) = {𝑃(𝑣 = 0), 𝑃(𝑣 = 1)}, with 0 as the OFF (or low expression) state 
and 1 (or high expression) as the ON state. Commonly, a thresholding criterion is used to 
map gene expression values from copy numbers to the ON/OFF states [22,23]. A directed 
arrow from gene 𝑣  to gene 𝑣  means either upregulation (𝑣 ↑ 𝑣 ) or down regulation (𝑣 ↓ 𝑣 ). Upregulation is promotion of expression of 𝑣  by 𝑣 , and downregulation is re-
pression of the expression of 𝑣  by 𝑣 . The state transition equation for upregulation of 𝑣  by 𝑣  is, 𝑃(𝑣 = 0)𝑃(𝑣 = 1) = 1 − 𝜌 𝜌𝜌 1 − 𝜌 𝑃(𝑣 = 0)𝑃(𝑣 = 1)  (1)

where 𝜌  is the probability of the input state 𝑣 = 0 erroneously producing an output 
state 𝑣 = 1, and 𝜌  is the probability of the input gene state 𝑣 = 1 producing an output 
state 𝑣 = 0. The two probability terms (𝜌 , 𝜌 ) are errors that cause a bit-flip, i.e., 1 to 0 
or 0 to 1, and Equation (1) is a binary information channel model [24] for (𝑣 ↑ 𝑣 ). Simi-
larly, a binary channel model for 𝑣 ↓ 𝑣  is: 𝑃(𝑣 = 0)𝑃(𝑣 = 1) = 𝜌 1 − 𝜌1 − 𝜌 𝜌 𝑃(𝑣 = 0)𝑃(𝑣 = 1) . (2)

We will assume 𝜌 = 𝜌  and focus on the accumulation of error due to the topology 
of communication. The transition matrices in the regulatory Equations (1) and (2) are the 
same as the matrices for information transfer through binary symmetric channels (BSC) 
[24]. Therefore, we can model a directed edge from an input gene to an output gene as an 
information channel, or more specifically a BSC. The maximum mutual information or the 
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channel capacity of a binary symmetric channel is 𝐶(𝜌) = 1 − 𝐻(𝜌) , where 𝐻(𝜌) =−𝜌 log 𝜌 − (1 − 𝜌) log (1 − 𝜌), which is a binary entropy function. We refer to an upreg-
ulating transition matrix for a BSC with bit-flip error 𝜌 as 𝑇up(𝜌), and a downregulating 
transition matrix as 𝑇down(𝜌). 

Equations (1) and (2) govern the information transfer between adjacent (or nearest 
neighbor) genes 𝑣  and 𝑣  that are directly connected with an edge. The propagation of 
information between non-adjacent nodes in a GRN is subject to cumulative communica-
tion errors associated with the connecting edges and superposition, due to signaling from 
multiple source nodes. 

The global state vector of a GRN with 𝑁 nodes is a 2𝑁 dimensional vector with 𝑃 2𝑖, 2𝑖 + 1 = {𝑃(𝑣 = 0), 𝑃(𝑣 = 1)}. The trajectory of 𝑃  due to the flow of information 
through the network is governed by the adjacency matrix of the GRN graph. Let the adja-
cency matrix of the graph be 𝐴, where an element 𝑎  is 1 if there is a directed edge from 
gene 𝑣  to gene 𝑣 , or 0 otherwise. The global transition matrix for the graph, 𝑇 , is a 2𝑁 × 2𝑁 matrix. The submatrices of 𝑇  are defined as: 

𝑇 2𝑖, 2𝑖 + 1; 2𝑗, 2𝑗 + 1 =
⎩⎪⎪⎨
⎪⎪⎧ 1deg(𝑣 ) 𝑇up(𝜌)  if 𝑎 = 1 and 𝑣 ↑ 𝑣1deg(𝑣 ) 𝑇down(𝜌)  if 𝑎 = 1 and 𝑣 ↓ 𝑣0 ,  if 𝑎 = 0𝐼  if 𝑖 = 𝑗 and deg-(𝑣 ) = 0

 (3)

The normalization by the in-degree, in Equation (3), assures that the effective state of 
a node 𝑣  is the superposition of all the states resulting from all the edges communicating 
information to the node. The last case in Equation (3) is for the source nodes in the graph 
and whose state remain constant during the process of information transfer [9]. 

Each multiplication of 𝑇  with 𝑃  updates the state of the GRN by communicating 
information among the nearest-neighbor nodes, which is equivalent to propagating infor-
mation by one time step: 𝑃( ) = 𝑇 𝑃( ). (4)

If the initial state of the GRN is 𝑃( ), then Equation (4) produces a trajectory of states 𝑃( ), 𝑃( ), ⋯ , 𝑃( )  that defines the evolution of the GRN state from the initial condition 
to the stationary state 𝑃 . 

The information propagation model in Equation (4) is similar to the evolution of a 
multidimensional gene network probability distribution under drift and diffusion-driven 
Fokker-Planck dynamic. Sisan et al. [14] and Ridden et al. [15] have shown that the prob-
ability distribution from Fokker-Planck model of GRNs can be used to construct an energy 
landscape over the continuum gene expression state space. Our approach using infor-
mation theory produces a discrete probability distribution of the GRN state, which can be 
used to build and discrete counterpart of the energy landscapes described in [14,15]. 

The state of the GRN, 𝑃( ), is the conditional distribution given the initial state 𝑃( ) 
after 𝑘 steps of information propagation. For each step of information propagation with 
a time step of ∆𝑡, 𝑃( ) is updated by multiplication with 𝑇 . If the initial condition of the 
GRN exists at 𝑡  then the state of a node 𝑣  after 𝑘 steps of information propagation 
from source node 𝑣  is 𝑃(𝑣 , 𝑡 + 𝑘∆𝑡|𝑣 , 𝑡 ). This conditional probability distribution is 
equivalent to the solution of a Fokker-Planck model of the same GRN [25]. Hence, the 
thermodynamic analysis of a multidimensional probability distribution resulting from a 
Fokker-Planck model of GRNs is also applicable to the probability distribution 𝑃( ) re-
sulting from our information propagation model. 

The stationary state solution to the information propagation model 𝑃  is a coarse-
grained and discretized representation of the stationary state of a Fokker-Planck model of 
the same GRN, where values of transcription factor copy number are mapped to discrete 
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macrostates 0 (low) and 1 (high). Therefore, the continuum energy landscape that exists 
for a Fokker-Planck solution to a GRN [14,15] has a discretized equivalent based on the 
stationary state solution 𝑃  to the information propagation model. 

3. Effective Information Loss Function for GRNs 
Here, we examine how communication accuracy can affect network reducibility. 

How good (or lossless) is the communication from a source node 𝑣  to a receiver node 𝑣 ? Commonly, noise in gene expression is used to measure the loss in signal quality in 
genetic circuits [26,27]. The single edge communication bit-flip error, 𝜌, introduced in the 
previous section, is a coarse-grained representation of the noise in a single transcriptomic 
regulation step. A noiseless (or error-free) edge has a channel capacity (𝐶) of 1 bit, and the 
capacity approaches 0 as 𝜌 → 0.5. So, we can quantify the loss in a single edge communi-
cation as 1 − 𝐶 bits. We measure the loss for any source-receiver pair in a GRN, beyond 
nearest neighbors, in a similar way. 

Increasing loss of information due to passage through multiple edges with error 𝜌 
is expected [28]. However, the complexity of GRNs introduces other avenues for infor-
mation loss: (1) Superposition of states due to information propagating from multiple 
source nodes, which reduces the correlation between a single source-receiver pair, and (2) 
the mixture of both up and downregulation edges to a receiver node, especially if these 
opposing signals can be induced by the same source node. We quantify the loss for a 
source-receiver pair under the conditions that causes maximum interference from the 
other nodes. 

The highest entropy state of a node is 𝑃 = {0.5,0.5}, which is also the input state 
at which a BSC achieves the channel capacity [24]. If we set the state of all the source nodes 
in the GRN to 𝑃 , then at the stationary state of the GRN, 𝑃 , the state of the all the 
nodes in the GRN is also 𝑃 . If we change the state of a source node 𝑣  to {1,0} and 
find that a receiver node 𝑣  is still at {0.5,0.5}, then there is high loss of information from 𝑣 → 𝑣 . On the other hand, if the relative entropy of the state of 𝑣  is low with respect to 
the state {1,0}, then the information loss is lower. 

The actual steps for quantifying the loss function from source node 𝑣  to a receiver 
node 𝑣  are the following: 
(1) Compute the stationary state solution to the GRN for two initial conditions: (a) 𝑃 , ≡ 𝑃( ) 2𝑖, 2𝑖 + 1 = {1,0}, and (b) 𝑃 , ≡ 𝑃( ) 2𝑖, 2𝑖 + 1 = {0,1}, with the rest 

of the source nodes at 𝑃 . The solution at a receiver node 𝑣  is 𝑃 (𝑣 |𝑃 , ) and 𝑃 (𝑣 |𝑃 , ), respectively. 
(2) Construct the effective transition matrix for communication from 𝑣 → 𝑣  as: 

𝑇eff(𝑖 → 𝑗) ≔ 𝑃 𝑣 𝑃 , 𝑃 𝑣 𝑃 , = 𝑃 𝑣 = 0 𝑣 = 0 𝑃 𝑣 = 0 𝑣 = 1𝑃 𝑣 = 1 𝑣 = 0 𝑃 𝑣 = 1 𝑣 = 1 . (5)

(3) Compute the loss function in bits for communication from 𝑣 → 𝑣  as: 𝐿(𝑖 → 𝑗) = 1 − 𝑐(𝑇eff(𝑖 → 𝑗)). (6)

The second term in Equation (6) is the channel capacity in bits for the effective tran-
sition matrix. The loss function defined in Equation (6) is a field over all existing pairs of 
source-receiver combinations in a GRN. By definition, 𝐿(𝑖 → 𝑖) = 0, and 𝐿(𝑖 → 𝑗) = 1 if 
there is no path from 𝑣 → 𝑣 . 

We demonstrate the loss function, Equation (6), using numerical results from model 
graphs generated using the Barabási–Albert preferential attachment model (SI: Section A) 
[29]. All of our analysis uses graphs with 100 nodes. Two parameters are used to control 
the graph generation process: (1) The in-degree of every node in the graph, 𝑚, while plac-
ing no constraint on the out-degree, and (2) the ratio of downregulation edges to upregu-
lation edges in the graph, 𝛽(SI: Section B). The in-degree to a node is the number of other 
nodes that can directly regulate that gene. Hence, in our simulation we have assumed that 



Entropy 2021, 23, 63 5 of 13 
 

 

every gene in the network is directly regulated by 𝑚 other genes. Obviously, the in-de-
gree is inhomogeneous in a real GRN, but this assumption allows us to conveniently study 
the impact of increasing density of direct transcriptomic regulation in a GRN on the global 
information loss. Our method of information propagation and subsequent analysis is not 
restricted to the model GRNs chosen for demonstration and is applicable to all types of 
directed graphs. 

Increasing 𝑚 increases the number of nodes in the GRN that have a path to a single 
node, which we refer to as the accessibility score (SI: Section C). This is illustrated in Figure 
1a using three Barabási–Albert graphs with 𝑚 = 1, 2, and 3, respectively. Every node is 
shaded in proportion to the number of other nodes in the graph that can access it—a node 
with a darker shade means more nodes have a path to it. Rather than the distribution of 
shades in a single graph in Figure 1a, it is more important to note the global prevalence of 
darker shade nodes with increasing 𝑚. The increasing fraction of darker shaded nodes 
means an increase in global accessibility across all the nodes in the network. The mean 
accessibility score, or the average accessibility to a node from all other nodes in the net-
work, increases with 𝑚 by design. 

 

 

Figure 1. Topological factors that increase the information loss field, Equation (6). Blue arrows represent upregulation 
edges and red arrows represent downregulating edges. (a) Model GRNs with 100 nodes generated using the Barabási-
Albert model. Each of the graphs has a fixed in-degree for every single node (𝑚). There are no constraints on the out-
degree. Higher values of 𝑚 and the mean accessibility scores of the graphs indicate greater global connectivity between 
nodes in the graph. More highly accessible nodes are indicated by a darker color. A high accessibility score increases signal 
interference and reduces the effective channel capacity between a single source-receiver pair. (b) The effect of a mixture 
of up and down regulation edges between nodes for graphs of type 𝑚 = 2. 𝛽 represents the ratio of down-regulating 
edges to up-regulating edges in the graph. 𝑛  is the number of nodes in the graph that are receiving both up and 
down regulating signal. Increasing 𝛽 increases the number of nodes that can receive mixed signals. 

The other factor that can reduce the effective information transfer is the mixture of 
up and down regulation signals to a given node in the network. Figure 1b shows that how 
increasing the ratio of downregulation edges to the upregulation edges in the graph, 𝛽, 
increases the number of nodes in the graph that are receiving mixed signals, 𝑛 . If the 
signal from a source node forks into two separate pathways to a receiver node, and one 
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path ends with an upregulation edge and the other with a downregulation edge, then the 
effective information transfer to the receiver node is reduced. 

As illustrated in Figure 2a, the state of a receiver node, 𝑣 , is determined by the states 
of all contributing source nodes, using Equations (3) and (4). The 3rd panel of Figure 2a 
shows that when all the source nodes are at maximum entropy, the receiver node is also 
at maximum entropy and independent of up or downregulation and the edge bit-flip er-
ror, 𝜌. On the other hand, when a single source node, 𝑣 , is at low entropy, then the bit-
flip error values for the edges on the source-receiver path determine the state of the re-
ceiver node as shown in the first and second panels of Figure 2a. Furthermore, the state of 
the receiver node is superposed with the maximum entropy state of the other source 
nodes. Therefore, the low entropy input from a single source gains entropy as a function 
of the edge bit-flip errors and from superposition from other sources. The information loss 
field computation using Equations (3)–(6) determines the effect demonstrated in  
Figure 2a for GRNs involving a large number of genes and complex information propa-
gation pathways. 
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Figure 2. Information superposition and loss field, as defined in Equation (6), for the model GRNs 
shown in Fig. 1. (a) Effective state of entropy (indicated by color opacity, higher opacity corresponds 
to higher entropy) at a receiver node (colored black) due to edge communication errors and inter-
ference from other source nodes (colored green). Blue arrows represent upregulation edges and red 
arrows represent downregulation edges. The numbers in the braces represent probabilistic state of 
the individual nodes as {𝑃(𝑣 = 0), 𝑃(𝑣 = 1)}. The exact error values are important only for the 
edges that are in the source-receiver path. Maximum entropy inputs at all source nodes results in 
the maximum entropy state at the receiver node independent of the edge error or the type of regu-
lation. (b) Loss field values for model graphs showing the effect of increasing superposition, as a 
function of increasing 𝑚 with 𝛽 = 0 and with two different values of edge communication error 𝜌. The first row of loss fields is for 𝜌 = 0.01 and the second row is for 𝜌 = 0.1. The nodes are num-
bered in the descending order of their access to other nodes, i.e., node 0 can send signal to most of 
the other nodes in the graph and node 99 does not send information to any other node. The loss 
values are the lowest for the source node 0, which is the node with access to most of the other nodes 
in the graph. If a receiver node 𝑣  is inaccessible from source node 𝑣 , then 𝐿(𝑖 → 𝑗) = 1 bit by de-
fault. (c) Loss field values for GRNs with mixture of up and downregulation, as shown in Figure 1b. 𝜌 = 0.01 for these loss fields. Increasing the ratio of down regulation to up regulation increases the 
loss only for the dominant source nodes (𝑖 5 in this example). For (b) and (c), the color bar scale 
indicates the loss field values, 𝐿(𝑖 → 𝑗) as determined using in Equation (6). 

When we evaluate the loss field for every source-receiver pair in the model GRNs 
shown in Figure 1a, we notice that the information loss due to superposition increases 
markedly with increasing 𝑚, as shown in Figure 2b. The sensitivity of the loss field to the 
in-degree 𝑚, also depends on the edge bit-flip error value 𝜌. When the bit-flip error is 
small, 𝜌 = 0.01 (1st row in Figure 2b), then the contrast between the loss field for 𝑚 = 1 
and 𝑚 = 3 is significant, increasing approximately from 0.2 bits to 0.9 bits. When the bit-
flip error is larger, 𝜌 = 0.1 (2nd row in Figure 2b), then the increase in loss field from the 𝑚 = 1 type GRN to 𝑚 = 3 is smaller, approximately from 0.8 bits to 1 bit. Hence, the loss 
field quantifies the effective deterioration of signaling due to combination of superposi-
tion and edge communication errors. Though the 𝑚 = 3 type GRN has more source-re-
ceiver pairs compared to the 𝑚 = 1 type GRN, abundance of accessibility reduces the 
quality of communication as apparent in the respective loss fields. 

As evident from the loss fields in Figure 2b, a low entropy input of 𝑃 ,  or 𝑃 ,  
from a single source node can be diminished if high entropy information from the rest of 
the source nodes in the graph is superposed on the receiver, leading to a high global en-
tropy for the network. Therefore, for graphs with a high mean accessibility score, which 
increases with 𝑚, it is harder to control or correlate the state of all the nodes in the GRN 
using a single source node without cooperation from other source nodes. The increase in 
information loss with increasing 𝑚 is most prominent for the dominant source nodes, 
which can send information to all the nodes in the graph (near 0 on the source node axis 
in Figure 2b). 

Increasing the ratio of up and down regulation edges (𝛽) for a fixed GRN increases 
the loss field value only for the dominant source nodes as shown in Figure 2c, which in 
this example are the first five source nodes (𝑖 5). Increasing the mixture of up and down 
regulation does not change the loss field for the lower ranked source nodes, i.e., the source 
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nodes that can propagate information to only a small subset of the receiver nodes in the 
GRN. Moreover, comparing Figure 2b,c reveals that information loss is more greatly af-
fected by the increase in superposing pathways (i.e., 𝑚) than by the increasing mixture of 
up and downregulation. 

The large difference in loss field contrasts between 𝑚 = 1 and 𝑚 = 3 in Figure 2b 
suggests that we can claim that network of type 𝑚 = 1 allows for an ideal master regula-
tor that can communicate to all the other nodes in the GRN with minimal information loss 
when the communication error in every single edge is low. The value of loss for the 𝑚 =3 GRN is high because of the existence of many pathways, so it is challenging for a single 
node (or gene) to emerge as a master regulator. Therefore, a relatively low number of 
superposing pathways supports the existence of a master regulator and can be an indica-
tor of a reducible network, unless the communication error in the edges is very high. 

4. Relative Free Energy and Reducibility of GRNs 
The method of calculating the effective transition matrix, Equation (5), and the loss 

field, Equation (6), has a direct thermodynamic interpretation. Low information loss be-
tween a pair of genes means the network topology and the edge communication error 
values are such that there exists high mutual information, or correlation, between the 
states of two genes. Parrondo et al. has shown that the existence of high mutual infor-
mation between the two components of a system equates to a proportionate increase in 
the nonequilibrium free energy of the system [16]. Since the amount information loss, or 
mutual information, is a consequence of the information propagation in GRNs, Equation 
(4), we can effectively compute the free energy change associated with the information 
propagation. 

More specifically, a lower information loss, Equation (6), from a source gene 𝑣  to a 
receiver gene 𝑣  means when the source node is at low entropy then the receiver node is 
also close to a low entropy state. But if the information loss from 𝑣  to 𝑣  is high, then 
the receiver node is closer to the maximum entropy state. A set of low loss values from a 
single source node to all the other nodes in the network, like for the source node 𝑣  in the 𝑚 = 1 type GRN for 𝜌 = 0.01 shown in Figure 2b, means a single source node shifts all 
the other nodes in the network close to a low entropy state. The relative entropy of the 
state of an individual node with respect to the maximum entropy state, 𝑃 , provides 
the relative free energy of a single node. Summing over this relative entropy over all the 
nodes in the network determines the relative free energy induced by the single low en-
tropy source node. Therefore, the reduction in entropy of all the nodes due to information 
propagation results in an increase in the free energy of the network with respect to the 
maximum entropy state of the network. 

The highest entropy state of a network is the equilibrium state where each node is in 
the maximum entropy state, 𝑃 . Changing the state of a single source node, either to 𝑃 ,  or to 𝑃 ,  and propagating the information using Equation (4) to achieve the sta-
tionary state, 𝑃 , results in moving individual nodes from the highest entropy state to a 
lower entropy state. The relative free energy associated with the global lower entropy sta-
tionary state 𝑃  is, 1𝑘 𝑇 Δ𝐹(𝑃 , ) =   𝑃 𝑣 = 𝑎 𝑣 = 1 log 𝑃 𝑣 = 𝑎 𝑣 = 1𝑃 𝑣 = 𝑎∈{ , }∈  (7)

where 𝑃 (𝑣 |𝑣 = 1) is the stationary state of node 𝑣  when the source node 𝑣  is ON. 
We can similarly compute a free energy change due to 𝑃 ,  or due to any other state of 
the input, 𝑃(𝑣 ). Since each edge in the model GRNs is a binary symmetric channel, the 
free energy change in the network due to setting a node 𝑣  to 𝑃 ,  or 𝑃 ,  is the same. 

Therefore, we anticipate that the lower loss field for source node 𝑣  for the 
graph 𝑚 = 1  shown in Figure 2b means that a single source node can push the entire 
GRN to a lower entropy more successfully than the other two cases (for 𝑚 = 2  or 3). So, 
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for 𝑚 = 1  type graphs the relative free energy of the GRN due to the low entropy state 
of source node 𝑣  should be higher than for graphs where 𝑚 1. 

In Figure 3 we present network relative free energy distributions resulting from edge 
errors, as a function of signal superposition. Unlike the loss field results in Figure 2b,c, 
which were for graphs with the same communication error value 𝜌, we assumed that the 
communication error for an edge is a uniformly distributed random variable in the do-
main [0,0.5]. The distributions in relative free energy for each type of network, i.e., 𝑚= 1, 
2, or 3, were obtained by simulating 5000 replicates of a graph with the same connectivity 
but a different set of error values for the edges, sampled from the uniform distribution 𝒰 0,0.5 . An example of type 𝑚 = 1 network with a random edge communication error 
field is shown in Figure 3a. This calculation is similar to observing the relative free energy 
distribution in a cell population, where each cell has the same GRN topology but there 
exists a variability in edge communication errors within each cell’s network. If the distri-
bution in the edge errors, 𝜌, is narrower than a uniform distribution the result will be a 
reduced variance in the relative free energy distributions shown in Figure 3. 

 
Figure 3. Distribution of relative free energy of networks with different mean accessibility scores 
and a uniformly distributed edge error field, 𝜌 ∈ 𝒰 0,0.5 . (a) The graph shown is one among the 
5000 realizations of a random error field on a type 𝑚 = 2 Barabási-Albert graph, which has a mean 
accessibility score 9. (b–d), show the resulting distributions in relative free energy over 5000 re-
alizations due to the same uniformly distributed error field, but for graphs with different accessibil-
ity scores originating from the choice of 𝑚. 

The relative free energy distribution for 𝑚 = 1 (Figure 3b) is asymmetric, but for 
GRNs with high number of superposing pathways, as in 𝑚 = 3 type graphs, the relative 
free energy is distributed like a normal distribution. The broader distribution suggests 
that the relative free energy of each replicate network simulation is uncorrelated due to 
increasing interference. Correlation among replicates is a combined consequence of 𝑚 
and the edge communication error values. If the edge errors are distributed in low range 
of values, e.g., uniformly distributed between [0.0,0.1] then in spite of the effects of super-
position, the probabilistic states (the global state vector 𝑃 ) of the replicates will be closer 
to each other. However, when the edge errors vary over a wider range, e.g., uniformly 
distributed between [0.0,0.5], then increasing 𝑚, which increases the number of edges and 



Entropy 2021, 23, 63 10 of 13 
 

 

pathways for information transfer, increases the variability in the probabilistic GRN states 
among replicates. Hence, if a GRN has a high mean accessibility score, then the relative 
free energy values present in individual cells in a population are more uncorrelated with 
each other. Since experimentally observed phenotypic manifestations caused by a GRN 
are a function of the free energy change that are induced by a GRN [14,15], we claim the 
distributions in observed phenotypes are analogous to the distributions in ∆𝐹, especially 
for the graphs with lower mean accessibility score. 

Performing the relative free energy calculations for multiple source nodes in the 
model GRNs, instead of only the most dominant one, reveals a thermodynamic criterion 
for reducibility. Figure 4a shows the relative free energy distributions for the top ten 
source nodes (ranked by the number of other nodes they can send signal to) in the model 
GRNs due to a uniformly distributed edge error value. An order exists in the relative free 
energy distributions as a function of source nodes for 𝑚 = 1 type graph. Not only does 
the source node 𝑣  induce significantly higher relative free energy compared to the other 
source nodes, but also the median value of ∆𝐹 for the 𝑚 = 1 graph is higher than the 
value for 𝑚 = 2 and 𝑚 = 3 graphs. Therefore, the relative free energy distributions are a 
criterion for thermodynamic hierarchy for source nodes and help to identify candidate 
master regulators in GRNs. Comparison of the ∆𝐹  distributions for multiple source 
nodes reveals whether that hierarchy exists or not. We claim that the existence of a 
strongly resolvable hierarchy, i.e., ordered median ∆𝐹 values and low overlap in the ∆𝐹 
distributions for different source nodes, implies that the GRN is thermodynamically re-
ducible. In a network with a small 𝑚 value, most of the communication to other genes 
originate from the source node that has the highest out-degree, which creates an outgoing 
communication hub. Whereas, in a network with a large 𝑚 value, there are multiple 
pathways for communication among genes in addition to the ones originating from the 
outgoing hub. However, the presence of several communication pathways is accompa-
nied with the cost of a lower inducible relative free energy and the lack of hierarchy 
among the source nodes (Figure 4a). Interestingly, outgoing hubs have been observed in 
naturally-occurring GRNs [30,31], which may be justified using the thermodynamic hier-
archy resulting from the relative free energy distributions. 
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Figure 4. Ordering in the inducible relative free energy distributions caused by a variable edge com-
munication error field. (a) Relative free energy distribution of the top ten source nodes for 𝑚= 1,2, 
and 3 type graphs, which have mean accessibility scores 4, 9, and 14, respectively. The communica-
tion error for every edge in the graphs were assumed to be uniformly distributed in the domain 
[0.0,0.5]. (b) Free energy distribution for top ten source nodes in type 𝑚 = 2 (mean accessibility 
score 9) for increasing domain of variability in the edge communication error value. 

The existence of the order in ∆𝐹 distributions is a function not only of topology and 
also of the distribution in the edge communication error values. We demonstrate this in 
Figure 4b using the ∆𝐹  distributions for 𝑚 = 2 type graphs, but with increasing the 
range of values of 𝜌. When the edge error value is uniformly distributed within a more 
constricted range, 𝜌 ∈ 0,0.1 , we still observe a strong hierarchy in ∆𝐹 distributions—
the median ∆𝐹 values for different source nodes are separated beyond the dispersion in 
the individual distributions. However, this hierarchy is lost upon increasing the extent of 
variability in 𝜌 to uniformly distributed in [0.0,0.5], the ∆𝐹  distributions for different 
source nodes become similar to each other, and the median ∆𝐹 values decrease for all the 
source nodes compared to the two narrower distributions in 𝜌. Thus, increasing variabil-
ity in edge error values diminishes the possibility of the existence of a small subset of 
thermodynamic master regulators. 

The choice of a probabilistic edge error field instead of a fixed error value for all edges 
is a better model for real biological GRNs. For a specific regulatory process, the set of 
intracellular reactions is the same for all cells in a steady state population. We explicitly 
considered variability in 𝜌, which could result from stochastic fluctuations in concentra-
tions, binding rates, diffusion, etc, due to heterogeneity in the internal environment of the 
cells. Therefore, the variability in the edge error values result in the distributions of ∆𝐹. 
In fact, experimental observations of the heterogeneity in gene expression in steady state 
distributions of cell population phenotypes resulting from [14] are highly reminiscent of 
the frequency distributions shown in Figure 3. We have previously demonstrated that 
distributions of phenotypes in cell populations represent microstates of a potential land-
scape, which is consistent with these observations of distributions in ∆𝐹. 

5. Conclusions 
Scale-free or power law topologies are popular models for biological regulatory net-

works. We found that even within these topological classes, the quality of information 
transfer can vary due to interference of signal from multiple sources and superposition of 
up and down regulation signals. We developed the concept of a loss field to quantify the 
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pairwise communication among nodes, and the algorithm to compute this loss field. The 
loss field can be used to identify potential master regulators by determining the quality 
and uniformity of communication from a single node to all the other nodes in the network. 
Relatively low connectivity is necessary for the existence of a master regulator and is an 
indicator of a reducible network. In the absence of high edge errors, a source node in a 
network that has fewer superposing pathways is more influential for communication ef-
ficiency and that network is more likely to be reducible. 

We found a fundamental connection between the magnitude of information loss and 
the relative free energy that can be induced in a network using a single source node, i.e., 
without co-operation (or correlation) with other source nodes. Moreover, the relative free 
energy distributions induced by individual nodes emerge as a criterion for a thermody-
namic hierarchy of source nodes (and identification of candidate master regulators) in 
GRNs. We claim that the existence of a strongly resolvable hierarchy, i.e., ordered median ∆𝐹 values and low overlap in the ∆𝐹 distributions for different source nodes, means the 
GRN is thermodynamically reducible. Calculation of this free energy for a variable com-
munication error field produces distributions of the inducible free energy change that 
serve as a signature of the quality of communication. Specifically, if the information loss 
is high then the distribution in relative free energy of the microstates of the network is 
closer to a normal distribution. On the other hand, if the information loss is low, and there 
is a dominant node, then this inducible relative free energy distribution is asymmetrical. 
Therefore, the deviation of the relative free energy distribution from a normal distribution 
is associated with lower information loss, higher relative free energy, and a more reduci-
ble network. By calculating the relative free energy change that can be obtained by differ-
ent nodes in a network, ranked according to their accessibility to other nodes, we can de-
termine how many nodes are required to achieve a threshold relative free energy. Hence, 
our combined approach of information propagation followed by relative free energy cal-
culation informs us about the minimum set of nodes in the network that are relevant to 
determine the thermodynamic states of the network. 
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