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Abstract: The thinning operators play an important role in the analysis of integer-valued autore-
gressive models, and the most widely used is the binomial thinning. Inspired by the theory about
extended Pascal triangles, a new thinning operator named extended binomial is introduced, which is
a general case of the binomial thinning. Compared to the binomial thinning operator, the extended
binomial thinning operator has two parameters and is more flexible in modeling. Based on the
proposed operator, a new integer-valued autoregressive model is introduced, which can accurately
and flexibly capture the dispersed features of counting time series. Two-step conditional least squares
(CLS) estimation is investigated for the innovation-free case and the conditional maximum likelihood
estimation is also discussed. We have also obtained the asymptotic property of the two-step CLS
estimator. Finally, three overdispersed or underdispersed real data sets are considered to illustrate a
superior performance of the proposed model.

Keywords: extended binomial distribution; INAR; thinning operator; time series of counts

1. Introduction

Counting time series naturally occur in many contexts, including actuarial science,
epidemiology, finance, economics, etc. The last few years have witnessed the rapid develop-
ment of modeling time series of counts. One of the most common approaches for modeling
integer-valued autoregressive (INAR) time series is based on thinning operators. In order
to fit different kinds of situations, many corresponding operators have been developed;
see [1] for a detailed discussion on thinning-based INAR models.

The most popular thinning operator is the binomial thinning operator introduced
by [2]. Let X be a non-negative integer-valued random variable and α ∈ (0, 1), the binomial
thinning operator is defined as

α ◦ X =
X

∑
i=1

Bi, X > 0, (1)

and 0 otherwise, where {Bi} is a sequence of independent identically distributed (i.i.d.)
Bernoulli random variables with fixed success probability α, and Bi is independent of X.
Based on the binomial thinning operator, [3,4] independently proposed an INAR(1) model
as follows

Xt = α ◦ Xt−1 + εt, t ∈ Z, (2)

where {εt} is a sequence of i.i.d. integer-valued random variables with finite mean and
variance. Since this seminal work, the INAR-type models have received considerable
attention. For recent literature on this topic, see [5,6], among others.

Note that Bi in (1) follows a Bernoulli distribution, so α ◦ X is always less than or
equal to X; in other words, the first part of the right side in (2) cannot be greater than Xt−1,
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which limits the flexibility of the model. Although it has such a shortcoming, the simple
form makes it easy to estimate the parameter, and it also has many similar properties to the
multiplication operator in the continuous case. For this reason, there have still been many
extensions of the binomial thinning operator since its emergence. Zhu and Joe [7] proposed
the expectation thinning operator, which is the generalization of binomial thinning from
the perspective of a probability generating function (pgf). Although this extension is very
successful, the estimation procedure is a little complicated. Compared with this extension,
the thinning operator we proposed is simpler and more intuitive. For recent developments,
Yang et al. [8] proposed the generalized Poisson (GP) thinning operator, which is defined
by replacing Bi with a GP counting series. Although the GP thinning operator is flexible
and adaptable, we argue that it has a potential drawback: the GP distribution is not a
strict probability distribution in the conventional sense. Recently, Aly and Bouzar [9]
introduced a two-parameter expectation thinning operator based on a linear fractional
probability generating function, which can be regarded as a general case of at least nine
thinning operators. Kang et al [10] proposed a new flexible thinning operator, which is
named GSC because of three initiators of the counting series: Gómez-Déniza, Sarabia
and Calderín-Ojeda.

Although the binomial thinning operator is very popular, it may not perform very well
in large numerical value counting time series. This is because under such circumstances,
the predicted data are often volatile, and the data are more likely to be non-stationary
when the numerical value is large. We intend to establish a new thinning operator which
meets the following requirements: (i) it is an extension of the binomial thinning operator;
(ii) it contains two parameters to achieve flexibility, (iii) it has a simple structure and is easy
to implement.

Based on the above considerations, we propose a new thinning operator based on
the extended binomial (EB) distribution. The operator has two parameters: real-valued α
and integer-valued m (0 ≤ α ≤ 1, m ≥ 2), which is more flexible compared to some single
parameter thinning, and the binomial thinning operator (1) can be regarded as a special
case of m = 2 in the EB thinning. The case of m > 2 in the EB thinning usually performs
better than m = 2 in some large value data sets. In other words, the EB thinning alleviates
the main defect of the binomial thinning to some extent. Since the EB thinning is not a
special case of the expectation thinning in [9], we have further extended the framework of
thinning-based INAR models to provide a new way in practical application. Therefore, an
INAR(1) model is proposed based on the EB thinning operator, which is an extension of the
model (2) and can more accurately and flexibly capture the dispersed features in real data.

This paper is organized as follows. In Section 2, we review the properties of the EB dis-
tribution and then introduce the EB thinning operator. Based on the new thinning operator,
we propose a new INAR(1) model. In Section 3, two-step conditional least squares estima-
tion is investigated for the innovation-free case of the model and the asymptotic property
of the estimator is obtained. The conditional maximum likelihood estimation is discussed
and the numerical simulations. In Section 4, we focus on forecasting and introduce two
criteria to compare the prediction results for three overdispersed or underdispersed real
data sets, which are considered to illustrate a better performance of the proposed model.
In Section 5, we give some conclusions and related discussions.

2. A New INAR(1) Model

The EB distribution comes from the theory about Pascal’s triangles, which can be
regarded as a multivariate case of the binomial distribution; see [11] for more details. Based
on this distribution, we introduce the EB thinning operator and propose a corresponding
INAR(1) model.
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2.1. EB Distribution

The EB random variable Xn(m, α), denoted as EB(m, n, α), which is defined as follows:

P(Xn(m, α) = r) = Cm(n, r)αrβ(m−1)n−r, 0 ≤ r ≤ (m− 1)n, (3)

where m and n are both integers satisfying m ≥ 2 and n ≥ 1; Cm(n, r) can be calculated as

Cm(n, r) =
s1

∑
s=0

(−1)s
(

n
s

)(
r + n− sm− 1

n− 1

)
,

where s1 = min{n, integer part in r/m}; and α and β in (3) satisfy the following restriction:

βm−1 + αβm−2 + α2βm−3 + . . . + αm−1 = 1, 0 ≤ α ≤ 1, 0 ≤ β ≤ 1. (4)

The above restriction is equivalent to βm − αm = β− α. The mean and variance of EB
random variables Xn(m, α) are

E(Xn(m, α)) = nα
1−mαm−1

β− α
, Var(Xn(m, α)) = nαβ

1−m2(αβ)m−1

(β− α)2 ,

respectively. The pgf of Xn(m, α) can be written as G(t) = E(tXn(m,α)) =
( βm − αmtm

β− αt

)n
.

As Xn(m, α) can be expressed as a convolution, the EB distribution has the reproduc-
tive property. Specifically, if Y1, Y2, . . . , Yk are independent random variables with Yi ∼
EB(m, ni, α) in (3), then ∑k

i=1 Yi ∼ EB(m, ∑k
i=1 ni, α). Notice that random variable Yi ∼

EB(2, 1, α) is equivalent to a Bernoulli random variable satisfying P(Yi = 1) = 1− P(Yi =
0) = 1− α.

2.2. EB Thinning Operator

According to discussions in 2.1, we construct the EB thinning operator based on the
configuration of n = 1. Let {Ui(m, α)} be a sequence of i.i.d. random variables with
common distribution EB(m, 1, α), i.e., P(Ui(m, α) = z) = αzβ(m−1)−z, z = 0, . . . , m − 1,
where α and β satisfy (4). Note that the mean and variance of Ui are

µ = E(Ui) := α
1−mαm−1

β− α
, σ2 = Var(Ui) := αβ

1−m2(αβ)m−1

(β− α)2 . (5)

One can easily see that µ < σ2 if and only if

mαm−2(mβm − β + α) < 1. (6)

For any 3 ≤ m < ∞, the left-hand side of (6) approaches 0 as α→ 0 and m as α→ 1,
respectively. Hence, µ < σ2 or µ ≥ σ2 is possible. When m = 2, which corresponds to
the binomial distribution, and (5) gives µ = α and σ2 = αβ with α + β = 1, then we have
µ > σ2 for all 0 < α < 1. When α ≥ β and m→ ∞, one can easily show that µ = θ/(1− θ),
σ2 = θ/(1− θ)2, where θ = α/β. Therefore, µ ≤ σ2 for all 0 < θ < 1 in this case.

Based on the reproductive property of the EB distribution, we define the EB thinning
operator "}" as follows: for a non-negative integer-valued random variable X,

(m, α)} X =
X

∑
i=1

Ui(m, α), X > 0,

where (m, α)} X = 0 if X = 0. Note that the EB thinning operator reduces to the binomial
operator (1) when m = 2. It is easy to know that (m, α)} X ≤ X or > X, so the EB thinning
operator is quite flexible when dealing with the overdispersed or underdispersed data sets.
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Remark 1. The computation of (α, m) for given (µ, σ2) is based on (4) and (5). The solution can be
obtained by solving these nonlinear equations. When m = 3, β = (−α +

√
4− 3α2)/2 and when

m = 4,

β =
3

√√√√−(10α3

27
− 1

2

)
+

√(
10α3

27
− 1

2

)2

+

(
2α2

9

)3

+
3

√√√√−(10α3

27
− 1

2

)
−

√(
10α3

27
− 1

2

)2

+

(
2α2

9

)3

− α

3
.

For more complex cases (m ≥ 5), we can derive the solution (α, β, m) by solving these
large-scale nonlinear systems, and a more detailed calculation procedure is given in Section 3.3.

2.3. EB-INAR(1) Model

Based on the EB thinning operator, we define the EB-INAR(1) model as follows:

Xt = (m, α)} Xt−1 + εt, t = 1, 2, . . . (7)

where α ∈ (0, 1), {Xt} is a sequence of non-negative integer-valued random variables; the
innovation process {εt} is a sequence of i.i.d. integer-valued random variables with finite
mean and variance; and εt is independent of {Xs, s < t}.

In order to obtain the estimation equations, we give some conditional or unconditional
moments of the EB-INAR(1) model in the following proposition.

Proposition 1. Suppose {Xt} is a stationary process defined by (7) and let µ < 1; then for t ≥ 1,

1. E(Xt|Xt−1) = µXt−1 + µε;
2. E(Xt) =

µε
1−µ ;

3. Var(Xt|Xt−1) = σ2Xt−1 + σ2
ε ;

4. Var(Xt) =
σ2µε+σ2

ε (1−µ)
(1−µ)2(1+σ2)

;

5. Cov(Xt, Xt−h) = µhVar(Xt−h) and Corr(Xt, Xt−h) = µh, for h = 0, 1, 2, . . .

where µε and σ2
ε are the expectation and variance of the innovation εt, respectively.

The proof of some of these properties mentioned above is given in Appendix A.

Remark 2. Inspired by the INAR(p) model in [12], we can further extend this model to INAR(p);
the EB-INAR(p) model is defined as follows:

Xt = (m, α1)} Xt−1 + . . . + (m, αp)} Xt−p + εt, t = 2, 3, . . .

where α1, . . . , αp ∈ (0, 1), m is an integer satisfying m ≥ 2, {Xt} is a sequence of non-negative
integer-valued random variables, the innovation process {εt} is a sequence of i.i.d. integer-valued
random variables with finite mean and variance, and εt is independent with {Xs, s < t}.

We will show that the new model can accurately and flexibly capture the dispersion
features of real data in Section 4.

3. Estimation

We use the two-step conditional least squares estimation proposed by [13] to investi-
gate the innovation-free case and the asymptotic properties of the estimators are obtained.
Conditional maximum likelihood estimation for the parametric cases are also discussed.
Finally, we demonstrate the finite sample performance via simulation studies.
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3.1. Two-Step Conditional Least Squares Estimation

Denote θ1 = (µ, µε)>, θ2 = (σ2, σ2
ε )
> and θ = (θ>1 , θ>2 )>. The two-step CLS estimation

will be conducted by the following two steps.
Step 1.1. The estimator for θ1.

Let g1(θ1, Xt−1) = E(Xt|Xt−1) = µXt−1 + µε, q1t(θ1) = (Xt − g1(θ1, Xt−1))
2. Let

Q1(θ1) =
n

∑
t=1

q1t(θ1)

be the CLS criterion function. Then the CLS estimator θ̂1,CLS := (µ̂CLS, µ̂ε,CLS)
> of θ1 can be

obtained by solving the score equation ∂Q1(θ1)
∂θ1

= 0, which implies a closed-form solution:

θ̂1,CLS =

(
∑n

t=1 X2
t−1 ∑n

t=1 Xt−1

∑n
t=1 Xt−1 n

)−1(
∑n

t=1 XtXt−1
∑n

t=1 Xt

)
.

Step 1.2. The estimator for θ2.
Let Yt = Xt − E(Xt|Xt−1), g2(θ2, Xt−1) = Var(Xt|Xt−1) =σ2Xt−1 + σ2

ε . Then

E(Y2
t |Xt−1) = E((Xt − E(Xt|Xt−1)

2)|Xt−1)

= Var(Xt|Xt−1) = g2(θ2, Xt−1).

Let q2t(θ2) = (Y2
t − g2(θ2, Xt−1))

2; then the CLS criterion function for θ2 can be
written as

Q2(θ2) =
n

∑
t=1

q2t(θ2).

By solving the score equation ∂Q2(θ2)
∂θ2

= 0, we can obtain the CLS estimator θ̂2,CLS :=
(σ̂2

CLS, σ̂2
ε,CLS)

> of θ2, which also is a closed-form solution:

θ̂2,CLS =

(
∑n

t=1 X2
t−1 ∑n

t=1 Xt−1

∑n
t=1 Xt−1 n

)−1(
∑n

t=1 Y2
t Xt−1

∑n
t=1 Y2

t

)
.

Step 2. Estimating parameters (m, α) via the method of moments.
The estimator (m̂, α̂) of (m, α), which is called a two-step CLS estimator, can be

obtained by solving the following estimation equations:µ̂CLS = α 1−mαm−1

β−α ,

σ̂2
CLS = αβ

1−m2(αβ)m−1

(β−α)2 ,
(8)

where α and β satisfy (4).
Therefore, the resulting CLS estimator is Θ̂CLS = (m̂CLS, α̂CLS, µ̂ε,CLS, σ̂2

ε,CLS)
>. To

study the asymptotic behaviour of the estimator, we make the following assumptions:

Assumption 1. {Xt} is a stationary and ergodic process;

Assumption 2. EX4
t < ∞.

Proposition 2. Under assumptions 1 and 2, the CLS estimator θ̂1,CLS is strongly consistent and
asymptotically normal:

√
n(θ̂1,CLS − θ1,0)

L−→ N(0, V−1
1 W1V−1

1 ),
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where V1 := E
(

∂
∂θ1

g1(θ1,0, X0)
∂

∂θ>1
g1(θ1,0, X0)

)
, W1 := E

(
q11(θ1,0)

∂
∂θ1

g1(θ1,0, X0)
∂

∂θ>1

g1(θ1,0, X0)
)

, and θ1,0 = (µ0, µε0) denotes the true value of θ1.

To obtain the asymptotic normality of θ̂2,CLS, we make a further assumption:

Assumption 3. EX6
t < ∞.

Then we have the following proposition.

Proposition 3. Under assumptions 1 and 3, the CLS estimator θ̂2,CLS is strongly consistent and
asymptotically normal:

√
n(θ̂2,CLS − θ2,0)

L−→ N(0, V−1
2 W2V−1

2 ),

where V2 := E
(

∂
∂θ2

g2(θ2,0, X0)
∂

∂θ>2
g2(θ2,0, X0)

)
, W2 := E

(
q21(θ2,0)

∂
∂θ2

g2(θ2,0, X0)
∂

∂θ>2

g2(θ2,0, X0)
)

, and θ2,0 = (σ2
0 , σ2

ε0
) denotes the true value of θ2.

Based on Propositions 2 and 3 and Theorem 3.2 in [14], we have the following proposition.

Proposition 4. Under assumptions 1 and 3, the CLS estimator θ̂CLS = (θ̂1,CLS, θ̂2,CLS)
> is

strongly consistent and asymptotically normal:

√
n(θ̂CLS − θ0)

L−→ N(0, Ω),

where

Ω =

(
V−1

1 W1V−1
1 V−1

1 MV−1
2

V−1
2 M>V−1

1 V−1
2 W2V−1

2

)
,

M = E
(√

q11(θ1,0)q21(θ2,0)
∂

∂θ1
g1(θ1,0, X0)

∂
∂θ>2

g2(θ2,0, X0)
)

, and θ0 = (θ1,0, θ2,0)
> denotes the

true value of θ.

We do the following preparation to establish Proposition 5. Based on (5), solve the
equation about (m, α), and denote the solution as (h1(µ, σ2), h2(µ, σ2)). Let

D = D(µ, σ2) =

(
∂h1/∂µ ∂h1/∂σ2

∂h2/∂µ ∂h2/∂σ2

)
. (9)

Based on Proposition 4, we state the strong consistency and asymptotic normality of
(m̂, α̂)> in the following proposition.

Proposition 5. Under assumptions 1 and 3, the CLS estimator (m̂CLS, α̂CLS)
> is strongly consis-

tent and asymptotically normal:

√
n
(

m̂CLS −m0
α̂CLS − α0

)
L−→ N(0, DΣD>),

where D is given in (9); Σ = diag(IV−1
1 W1V−1

1 I>, IV−1
2 W2V−1

2 I>) with I = (1, 0); m0 and α0
denote the true values of m and α, respectively.

The brief proofs of Propositions 2–5 are given in Appendix A.
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3.2. Conditional Maximum Likelihood Estimation

We maximize the likelihood function with respect to the model parameters θ =
(m, α, δ) to get the conditional maximum likelihood (CML) estimate of the parametric case

L(X1 = x1, . . . , XN = xN |θ) = Pθ(X1 = x1)
N

∏
i=1

Pθ(Xi = xi|Xi−1 = xi−1, . . . , X1 = x1)

= Pθ(X1 = x1)
N

∏
i=1

Pθ(Xi = xi|Xi−1 = xi−1),

where δ is the parameter of εi, PX1 is the pmf for X1 and Pθ(Xi+1|Xi) is the conditional
pmf. Since the marginal distribution is difficult to obtain in general, a simple approach
is conditional on the observed X1. By essentially ignoring the dependency on the initial
value and considering the CML estimate given X1 as an estimate for θ by maximizing the
conditional log-likelihood

l(X1 = x1, . . . , XN = xN |θ) =
N

∑
i=2

log Pθ(Xi|Xi−1)

over Θ, we denote the CML estimate by θ̂ = (m̂, α̂, δ̂). The log-likelihood function is
as follows:

l(X1 = x1, . . . , XN = xN |θ) =
N

∑
i=2

log
{min{(m−1)xi−1,xi}

∑
w=0

Cm(xi−1, w)αwβ(m−1)xi−1−w · P(εi = xi − w)
}

,

where α and β satisfy (4); εi follows a non-negative discrete distribution with a parameter
δ. In what follows, we consider two cases: m = 3, 4.

Case 1: For m=3 with Poisson innovation, i.e., εt ∼ P(δ).

l(X1 = x1, . . . , XN = xN |θ) =
N

∑
i=2

log

{
min{2xi−1,xi}

∑
w=0

xi−1− w
2

∑
t1=max{0,xi−1−w}

(
xi−1

t1

)(
xi−1 − t1

2xi−1 − 2t1 − w

)

· (β2)t1(αβ)2xi−1−2t1−w(α2)t1−xi−1+w δ(xi−w)

(xi − w)!
e−δ

}
,

where β is given in Remark 1.
Case 2: For m=4 with geometric innovation, i.e. εt ∼ Ge(δ) = (1− δ)kδ for k =

0, 1, 2, . . .

l(X1 = x1, . . . , XN = xN |θ) =
N

∑
i=2

log

{
min{3xi−1,xi}

∑
w=0

xi−1− w
3

∑
t1=xi−1−w

3xi−1−3t1−w
2

∑
t2=max{0,2xi−1−2t1−w}

(
xi−1

t1

)(
xi−1 − t1

t2

)

·
(

xi−1 − t1 − t2

3xi−1 − 3t1 − 2t2 − w

)
(β3)t1(αβ2)t2(α2β)3xi−1−3t1−2t2−w

· (α3)2t1+t2−2xi−1+w(1− δ)(xi−w)δ

}
,

where β is given in Remark 1. For higher order m, the formula is a little tedious, which is
omitted here. For the estimate of EB-INAR(p), the CML estimation is too complicated, but
the two-step CLS estimation is quite feasible, the procedure is similar to the case of p = 1.
For this reason, we only consider the case of EB-INAR(1) in simulation studies.
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3.3. Simulation

A Monte Carlo simulation study was conducted to evaluate the finite sample per-
formance of the estimator. For CLS estimation, we used the package BB in R for solving
and optimizing large-scale nonlinear systems to solve Equations (4) and (8). For CML
estimation, we used the package maxLik in R to maximize the log-likelihood function.

We considered the following configurations of the parameters:

• Poisson INAR(1) models with θ = (m, α, δ)> :
(A1) = (3, 0.2, 1)>; (A2) = (3, 0.1, 0.5)>; (A3) = (4, 0.2, 1)>; (A4) = (4, 0.1, 0.5)>;

• Geometric INAR(1) models with θ = (m, α, δ)> :
(B1) = (3, 0.3, 0.5)>; (B2) = (3, 0.4, 2/3)>; (B3) = (4, 0.3, 0.5)>; (B4) =
(4, 0.4, 2/3)>.

In simulations, we chose sample sizes n = 100, 200 and 400 with M = 500 replications
for each choice of parameters. The root mean squared error (RMSE) was calculated to
evaluate the performance of the estimator according to the following formula: RMSE =√√√√ 1

M− 1

M

∑
j=1

(ξ̂ j − ξ0)2, where ξ̂ j is the estimator of ξ0 in the jth replication.

For the CLS estimate, the solutions of (4) and (8) are sensitive to µ̂ and σ̂2, so we
adopted the following estimation procedure. First, calculate 500 groups of µ̂ and σ̂2

estimates, then use the mean values of µ̂ and σ̂2 to solve the Equations (4) and (8). The sim-
ulation results of CLS are summarized in Table 1. We found that the estimation values
are closer to the true value and the values of RMSE gradually decrease as the sample
size increases.

Table 1. Means of estimates, RMSEs (within parentheses) by CLS.

Case n m̂ α̂ δ̂

A1 100 2.9100 0.1758 1.0220(0.1595)
200 2.9219 0.1931 1.0142(0.1148)
400 2.9995 0.1984 1.0090(0.0771)

A2 100 2.7628 0.0886 0.5014(0.0893)
200 2.8169 0.0873 0.5049(0.0668)
400 2.9132 0.0942 0.5004(0.0449)

A3 100 3.7885 0.1713 1.0265(0.1594)
200 3.8450 0.1902 1.0165(0.1127)
400 3.8957 0.1952 1.0113(0.0789)

A4 100 3.8421 0.0912 0.5059(0.0912)
200 3.8483 0.0912 0.5031(0.0603)
400 3.9590 0.0981 0.5012(0.0439)

B1 100 2.9074 0.3122 0.4981(0.0511)
200 2.9588 0.3115 0.5008(0.0365)
400 2.9858 0.3087 0.4984(0.0270)

B2 100 3.0719 0.3841 0.6578(0.0553)
200 3.0523 0.3877 0.6569(0.0400)
400 3.0986 0.3924 0.6600(0.0307)

B3 100 3.6127 0.2703 0.4962(0.0536)
200 3.7937 0.2961 0.4980(0.0404)
400 3.9217 0.2984 0.4970(0.0269)

B4 100 3.9575 0.3935 0.6417(0.0653)
200 4.0388 0.3929 0.6556(0.0478)
400 4.0027 0.3953 0.6606(0.0353)

Note: RMSE, root mean squared error.
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As it is a little difficult to estimate the parameter m in CML estimation, we considered
m as known. The simulation results of CML estimators are given in Table 2. For all cases,
all estimates generally show small values of RMSE, and the values of RMSE gradually
decrease as the sample size increases.

Table 2. Means of estimates, RMSEs (within parentheses) by CML.

Case n 100 200 400

A1 α̂ 0.1858(0.0656) 0.1927(0.0476) 0.1970(0.0347)
δ̂ 1.0070(0.1420) 1.0043(0.1057) 1.0057(0.0806)

A2 α̂ 0.1041(0.0575) 0.1027(0.0453) 0.0973(0.0357)
δ̂ 0.4939(0.0804) 0.4964(0.0593) 0.4973(0.0422)

A3 α̂ 0.1827(0.0592) 0.1923(0.0406) 0.1966(0.0306)
δ̂ 1.0186(0.1358) 1.0030(0.1059) 1.0002(0.0789)

A4 α̂ 0.0938(0.0500) 0.0940(0.0414) 0.0987(0.0342)
δ̂ 0.4993(0.0790) 0.5052(0.0583) 0.4967(0.0420)

B1 α̂ 0.2982(0.0456) 0.2980(0.0329) 0.2992(0.0237)
δ̂ 0.5086(0.0469) 0.5013(0.0323) 0.5016(0.0224)

B2 α̂ 0.3888(0.0455) 0.3949(0.0331) 0.3980(0.0222)
δ̂ 0.6685(0.0501) 0.6681(0.0374) 0.6664(0.0256)

B3 α̂ 0.2904(0.0441) 0.2958(0.0276) 0.2990(0.0219)
δ̂ 0.5039(0.0480) 0.5003(0.0338) 0.5006(0.0264)

B4 α̂ 0.3867(0.0348) 0.3940(0.0240) 0.3965(0.0163)
δ̂ 0.6650(0.0539) 0.6674(0.0382) 0.6662(0.0271)

Note: RMSE, root mean squared error.

4. Real Data Examples

In this section, three real data sets, including overdispersed and underdispersed
settings, are considered to illustrate the better performance of the proposed model. The first
example is overdispersed crime data in Pittsburgh; the second is overdispersed stock data in
New York Stock Exchange (NYSE); and the third is underdispersed crime data in Pittsburgh,
which was also analyzed by [15]. As is well known, in time series analysis, forecasting is
very important in model evaluation. We first introduce two criteria on forecasting, and
other preparations.

4.1. Forecasting

Before introducing the evaluation criterion, we briefly introduce the basic procedure
as follows: First, we divide the n1 + n2 data into two parts, the training set with the first n1
data and the prediction set with the last n2 data. The training set is used to estimate the
parameters and evaluate the fitness of the model. Then we can evaluate the efficiency of
each model by comparing the following criteria between prediction data and the real data
in the prediction set.

Similar to the procedure in [16], which performs an out-of-sample experiment to
compare forecasting performances of two model-based bootstrap approaches, we introduce
the forecasting procedure as follows: For each t = (n1 + 1), . . . , (n1 + n2 − 5) we estimate
an INAR(1) model for the data x1, . . . , xt, then we use the fitted result based on x1, . . . , xt
to generate the next five forecasts, which is called the 5-step ahead forecast xF

t+1, . . . , xF
t+5

for each t in {(n1 + 1), . . . , (n1 + n2 − 5)}, where xF
t is the forecast at time t. In this way we

obtain many sequences of 1, 2, . . . , 5 step-ahead forecasts, finally we replicate the whole
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procedure P times. Then we can evaluate the point forecast accuracy by the forecast mean
square error (FMSE) defined as

FMSE =
1
P

n2

∑
i=(n1+1)

(xi − xF
i )

2,

and forecast mean absolute error (FMAE) defined as

FMAE =
1
P

n2

∑
i=(n1+1)

|xi − xF
i |,

where xi is the true value of the data, xF
i is the mean of all the forecasts at i and P is the

number of replicates.

4.2. Overdispersed Cases

We consider two overdispersed data sets, the first one contains 144 observations
and represents monthly tallies of crime data from the Forecasting Principles website
http://www.forecastingprinciples.com, and these crimes are reported in the police car
beats in Pittsburgh from January 1990 to December 2001; the second one is Empire District
Electric Company (EDE) data set from the Trades and Quotes (TAQ) set in NYSE, which
contains 300 observations, and it was also analyzed by [17].

4.2.1. P1V Data

The 45th P1V (Part 1 Violent Crimes) data set contains crimes of murder, rape, robbery
and other kinds; see more details in the data dictionary on the Forecasting Principles web-
site. Figure 1 plots the time series plot, the autocorrelation function (ACF) and the partial
autocorrelation function (PACF) of 45th data of P1V series, respectively. The maximum
value of the data is 15 and the minimum is 0; the mean is 4.3333; the variance is 7.4685.
From the ACF plot, we found that the data are dependent. From the PACF plots, we can
see that only the first sample is significant, which strongly suggests an INAR(1) model.

First, we divided the data set into two parts–the training set with the first n1 = 134
counting data and the prediction set with the last n2 = 10 data. We fit the training set
by the following models: expectation thinning INAR(1) (ETINAR(1)) model in [9], GSC
thinning INAR(1) (GSCINAR(1)) model in [10], the binomial thinning INAR(1) model and
EB thinning EB-INAR(1) models with m = 3, 4. According to the mean and variance of P1V
data, we used one of the most common settings–geometric distribution–as the distribution
of the innovation in above models.

In order to compare the effectiveness of the models, we consider the following evalua-
tion criteria: (1) AIC. (2) The mean and standard error of Pearson residual rt and its related
Ljung–Box statistics, where the Pearson residuals are defined as

rt =
Xt − µ̂Xt−1 − µ̂ε

[σ̂2Xt−1 + σ̂2
ε ]

1
2

, t = 1, 2, . . . ,

where µ̂ and σ̂2 are the estimated expectation and variance for related thinning operators,
respectively. (3) Three goodness-of-fit statistics: RMS (root mean square error), MAE
(mean absolute error) and MdAE (median absolute error), where the error is defined by
Xt − E(Xt|Xt−1), t = 1, . . . , n1. (4) The mean of the data x̂ on the training set calculated by
the estimated results.

Next, focusing on forecasting, we generated P = 100 replicates based on the training
set for each model. Then we calculated the FMSE and FMAE for each model.

All results of the fitted models are given in Table 3. There is no evidence of any
correlation within the residuals of all five models, which is also supported by the Ljung–
Box statistic based on 15 lags (because χ2

0.05(14) = 23.6847). There were no significant

http://www.forecastingprinciples.com
http://www.forecastingprinciples.com
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differences for the RMS, MAE, MdAE and x̂ values (the true mean of the 134 training set
was 4.3880) of the models. In other words, no model performed the best in terms of these
four criteria, so we also considered AIC. Since the CML estimator cannot be adopted in
GSCINAR(1), one can only compare other criteria.

Considering the fitness on the training set, the EB-INAR(1) with m = 3 has the
smallest AIC, EB-INAR(1) with m = 4 has almost the same AIC as m = 3. For the results on
forecasting, EB-INAR(1) with m = 4 has the smallest FMSE and the second smallest FMAE
among all models. EB-INAR(1) with m = 3 has the second smallest FMSE and the smallest
FMAE. Based on these results, we conclude that EB-INAR(1) with m = 3, 4 performs better
than INAR(1), ETINAR(1) and GSCINAR(1).
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Figure 1. The data, autocorrelation function (ACF) and partial autocorrelation function (PACF) of
45th P1V series.

4.2.2. Stock Data

We analyzed another overdispersed data set of Empire District Electric Company
(EDE) from the Trades and Quotes (TAQ) data set in NYSE. The data are about the number
of trades in 5 min intervals between 9:45 a.m. and 4:00 p.m. in the first quarter of 2005
(3 January–31 March 2005, 61 trading days). Here we analyze a portion of the data between
first to fourth trading days. As there are 75 5 min intervals per day, the sample size was
T = 300.

Figure 2 plots the time series plot, the ACF and the PACF of the EDE series. The maxi-
mum value of the data is 25 and the minimum is 0; the mean is 4.6933; and the variance
is 14.1665. It seems that the series is not completely stationary with several outliers or
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influential observations based on the time series plot. Zhu et al. [18] analyzed the Poisson
autoregression for the stock transaction data with extreme values, which can be considered
in the current setting. From the ACF plot, we found that the data are dependent. From the
PACF plots, we can see that only the first sample is significant, which strongly suggests
an INAR(1) model. We used the same procedures and criteria as before. We used the
geometric distribution as the distribution of the innovation in above models.

First divide the data set into two parts–the training set with the first n1 = 270 data
and the prediction set with the last n2 = 30 data. All results of the fitted models are given
in Table 4. Among all models, EB-INAR(1) with m = 4 has the smallest AIC, and there
is no evidence of any correlation within the residuals of all five models, which is also
supported by the Ljung–Box statistic based on 15 lags. There are no significant differences
for the RMS, MAE, MdAE and x̂ values (the true mean of the 270 training set was 4.3407)
of all considered models. For the results of prediction, EB-INAR(1) with m = 4 has the
smallest FMSE and FMAE among all models. Based on the above results, we conclude that
EB-INAR(1) with m = 4 performs best for this data set.
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Figure 2. The data, ACF and PACF of first to fourth trading days of EDE series.
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Table 3. Fitting results, AIC and some characteristics of P1V data.

Model Estimates AIC rt std(rt) Ljung-Box RMS MAE MdAE x̂ FMSE FMAE

INAR(1) α̂ = 0.3955 641.9136 0.0020 0.8008 12.5545 2.6384 2.0236 1.5828 4.3811 0.3988 0.1809
δ̂ = 0.2741

q̂ = 0.4942
ETINAR(1) r̂ = 0.3739 639.3243 0.0134 0.8392 16.6092 2.6736 2.0628 1.6958 4.3758 0.3847 0.1821

δ̂ = 0.3112

GSCINAR(1) γ̂ = 0.8944 ——– 0.0005 0.6805 12.7469 2.6304 2.0027 1.7395 4.3838 0.4115 0.1935
δ̂ = 0.2515

EB-INAR(1) with m = 3 α̂ = 0.3299 636.2386 0.0097 0.8525 15.7722 2.6666 2.0563 1.7167 4.3771 0.3770 0.1748
δ̂ = 0.3050

EB-INAR(1) with m = 4 α̂ = 0.3164 636.2887 0.0145 0.8526 17.0785 2.6789 2.0673 1.6815 4.3756 0.3589 0.1791
δ̂ = 0.3156

Table 4. Fitting results, AIC and some characteristics of EDE data.

Model Estimates AIC rt std(rt) Ljung-Box RMS MAE MdAE x̂ FMSE FMAE

INAR(1) α̂ = 0.2457 1341.648 0.0003 0.8590 13.0696 3.3407 2.4817 2.0075 4.3358 10.2602 1.2368
δ̂ = 0.2341

q̂ = 0.3204
ETINAR(1) r̂ = 0.4125 1339.397 0.0041 0.8811 16.4070 3.3570 2.4910 2.0534 4.3357 10.6103 1.2688

δ̂ = 0.2533

GSCINAR(1) γ̂ = 0.9578 ——– −0.0003 0.8027 13.1596 3.3397 2.4812 2.0409 4.3361 10.4577 1.2362
δ̂ = 0.2284

EB-INAR(1) with m = 3 α̂ = 0.2200 1338.071 0.0018 0.8801 14.5878 3.3477 2.4863 2.0299 4.3352 10.1038 1.2317
δ̂ = 0.2448

EB-INAR(1) with m = 4 α̂ = 0.2194 1337.554 0.0027 0.8838 15.3238 3.3514 2.4880 2.0224 4.3350 10.0463 1.2279
δ̂ = 0.2486
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4.3. Underdispersed Case

The 11th FAMVIOL data set contains the crimes of family violence, which can also
be obtained from the Forecasting Principles website. Figure 3 plots the time series plot,
the ACF and the PACF of the 11th data set of FAMVIOL series. The maximum value of
the data is 3 and the minimum is 0; the mean is 0.4027; and the variance is 0.3820. We use
the procedures and criteria in Section 4.2.1 to compare different models. According to the
mean and the variance of FAMVIOL data, we use one of the most common settings-Poisson
distribution as the distribution of the innovation in above models.

All results of the fitted models are given in Table 5. There is no evidence of any
correlation within the residuals of all five models, which is also supported by the Ljung–
Box statistic based on 15 lags. There are no significant differences about the criteria on
the fitness and forecasting of all models. ETINAR(1) with the biggest AIC, performed the
worst in these models.

Now let us have a brief summary. For the P1V data and stock data, which are
overdispersed with slightly high-count data, the EB-INAR(1) of m > 2 is obviously better
than m = 2. For the FAMVIOL data, which is underdispersed with small-count data,
the EB-INAR(1) with m > 2 is also competitive.
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Figure 3. The data, ACF and PACF of the 11th data set of the FAMVIOL series.
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Table 5. Fitting results, AIC and some characteristics of FAMVIOL data.

Model Estimates AIC rt std(rt) Ljung-Box RMS MAE MdAE x̂ FMSE FMAE

INAR(1) α̂ = 0.1750 206.5983 −0.0005 0.9157 8.6672 0.5596 0.4940 0.4851 0.3759 0.1111 0.0790
δ̂ = 0.3101

q̂ = 0.1774
ETINAR(1) r̂ = 0.0267 208.5826 −0.0003 0.9122 8.6344 0.5596 0.4939 0.4866 0.3759 0.1205 0.0837

δ̂ = 0.3092

GSCINAR(1) γ̂ = 0.9741 ——– 0.0023 0.8609 8.3735 0.5595 0.4932 0.4944 0.3759 0.1020 0.0814
δ̂ = 0.3045

EB-INAR(1) with m = 3 α̂ = 0.1505 206.5335 0.0007 0.9005 8.5485 0.5595 0.4935 0.4900 0.3757 0.1135 0.0792
δ̂ = 0.3068

EB-INAR(1) with m = 4 α̂ = 0.1371 206.8414 −0.0014 0.8943 8.4928 0.5597 0.4944 0.4802 0.3759 0.1149 0.0808
δ̂ = 0.3131
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5. Conclusions

This paper proposes an EB-INAR(1) model based on the newly constructed EB thin-
ning operator, which is an extension of the thinning-based INAR models. We gave the
estimation method for parameters and established the asymptotic properties of the es-
timators for the innovation-free case. Based on the simulations and real data analysis,
the EB-INAR(1) model can accurately and flexibly capture the dispersion features of the
data, which shows its effectiveness and practicality. Compared with other models, such as
ETINAR(1) and GSCINAR(1), our model is competitive.

We point out that many existing integer-valued models can be generalized by replacing
the binomial thinning operator with the EB thinning operator, such as those models
in [19–23]. In addition, we can extend the considered first-order INAR model to the higher-
order one. More research will be studied in the future.
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Appendix A

Proof of Proposition 1. Since 1–4 are easy to verify, we only prove 5. By the law of total
covariance, we have

Cov(Xt, Xt−h) = Cov
(
E(Xt|Xt−1, . . . ), E(Xt−h|Xt−1, . . . )

)
+ E

(
Cov(Xt, Xt−h|Xt−1, . . . )

)
= Cov(µXt−1 + µε, Xt−h)

+ E
(
E(Xt − E(Xt|Xt−1, . . . ))(Xt−h − E(Xt−h|Xt−1, . . . ))|Xt−1, . . .

)
= µ · Cov(Xt−1, Xt−h) + 0

= · · ·
= µh ·Var(Xt−h).

Thus, the autocorrelation function Corr(Xt, Xt−h) = µh.

Proof of Propositions 2 and 3. Propositions 2 and 3 are similar to Theorems 1 and 2 in [8],
which can be proved by verifying the regularity conditions of Theorems 3.1 and 3.2 in [24].
For instance, in the proof of Proposition 2, the partial derivatives ∂g(α, Fm−1)/∂αi have
finite fourth moments in [24], which correspond to Assumption 2 in Section 3.1, u2

m(α)
in [24] is corresponds to q1t(θ1) in Step 1.1. Hence, Proposition 2 can be regarded as a direct
conclusion of Theorem 3.2.

Besides, the proof of Proposition 3 is similar to Proposition 2; the procedure is almost
the same as Theorem 3.2 in [24].

Proof of Proposition 4. Similarly to the Theorem in [25], based on Theorem 3.2 in [14],
we have

√
n(θ̂CLS − θ0)

L−→ N(0, Ω),

where

Ω =

(
V−1

1 W1V−1
1 V−1

1 MV−1
2

V−1
2 M>V−1

1 V−1
2 W2V−1

2

)
.
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Based on the proof of the Theorem in [25],
√

q1t(θ1) corresponds to ut and
√

q2t(θ2)
corresponds to Ut in [25]. Based on the result of V1, W1 in Proposition 2 and V2, W2 in

Proposition 3, we can obtain M = E
(√

q11(θ1,0)q21(θ2,0)
∂

∂θ1
g1(θ1,0, X0)

∂
∂θ>2

g2(θ2,0, X0)
)

.

Proof of Proposition 5. Since the solutions (h1(µ, σ2), h2(µ, σ2)) about (m, α) in (3.1) are
real-valued and have a nonzero differential, Proposition 5 is an application of the δ-method,
for example, which can be found in Theorem A on p.122 of [26].
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