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Abstract: This study proposesd a novel, entropy-based structural health monitoring (SHM) system
for measuring microvibration signals generated by actual buildings. A structural health diagnosis
interface was established for demonstration purposes. To enhance the reliability and accuracy of
entropy evaluation at various scales, composite multiscale cross-sample entropy (CMSCE) was
adopted to increase the number of coarse-grained time series. The degree of similarity and asyn-
chrony between ambient vibration signals measured on adjacent floors was used as an in-dicator
for structural health assessment. A residential building that has been monitored since 1994 was
selected for long-term monitoring. The accumulated database, including both the earthquake and
ambient vibrations in each seismic event, provided the possibility to evaluate the practicability of the
CMSCE-based method. Entropy curves obtained for each of the years, as well as the stable trend of
the corresponding damage index (DI) graphs, demonstrated the relia-bility of the proposed SHM
system. Moreover, two large earthquake events that occurred near the monitoring site were analyzed.
The results revealed that the entropy values may have been slightly increased after the earthquakes.
Positive DI values were obtained for higher floors, which could provide an early warning of structural
instability. The proposed SHM system is highly stable and practical.

Keywords: structural health monitoring; multi-scale; composite cross-sample entropy; long-term
evaluation

1. Introduction

Infrastructures, including bridges, dams, and buildings have been widely set up to
protect and facilitate our daily life. As the structural performance of a building which is
frequently subjected to natural hazards or human use is likely to lose its original strength
over time, how to evaluate whether the building is safe or not has become an important
issue. As a result, structural health monitoring (SHM) has been extensively developed over
the last few decades.

In 1993, Kim analyzed a ten-bay hexagonal truss and applied a new method to match
the undamaged analytical model and the damaged test modes [1]. Zhang proposed
transmittance function monitoring, which measured vibrations to detect the damage to
a structure without measuring the excitation force from the sensor’s location [2]. In 2002,
Lee used environmental vibration data caused by the dynamic loads of vehicles to identify
the location and severity of the damage, then consider the mass effect of the dynamic load
on the bridge by using the resonance frequency and the modal shape of the damage [3].
In 2003, Chang summarized the limitations and applications of vibration-based SHM
methods and used the actual measured structural dynamic response to update the stiff-ness
matrix, mass matrix, and damping matrix [4]. In 2010, inspired by the field of bio-medical
engineering, an SHM system was implemented by integrating the naïve Bayesian (NB)
classification and DNA-like expression data, taking advantage of a double-tier re-gression

Entropy 2021, 23, 60. https://doi.org/10.3390/e23010060 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-2618-3832
https://doi.org/10.3390/e23010060
https://doi.org/10.3390/e23010060
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23010060
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/23/1/60?type=check_update&version=2


Entropy 2021, 23, 60 2 of 17

process to extract the expression array from the recorded structural time history [5]. In
2020, Shokravi [6] made use of extended observability matrices and used subspace system
identification (SSI) to resolve the problem of SHM in the real world.

Rudolph Clausius first proposed entropy to represent the variation of an object. En-
tropy is an amount of energy in thermodynamics that cannot work in terms of kinetics [7].
In 1948, Shannon used the entropy that was often mentioned in thermodynamics in in-
formation theory. Entropy is defined as the average amount of information which was
contained in each signal received, also called information entropy [8]. In 1991, Pincus im-
proved the Kolmogorov entropy with approximate entropy (ApEn), which could measure
the complexity and regularity of time series in real life without the need for coarse-grained
processes [9]. Richman published sample entropy (SampEn) in 2000, improving the short-
comings of ApEn. The advantage of sample entropy is that the length of time series has no
effect on the analysis results and thus the error of ApEn can be reduced [10,11]. In 2002,
Costa et al. proposed multiscale entropy (MSE) to solve the difficulty of using single-scale
sampling entropy to determine interbeat interval time series in normal people who have
arrhythmia and congestive heart disease [12,13]. The measured original signal is converted
to different scales and then analyzed by sampling entropy. The results showed that the
accuracy when distinguishing different signals could be in-creased. The experimental
verification was conducted by measuring the heart rhythm timing signal through the MSE
method. The entropy value of the healthy group was the highest, and the signal which
demonstrated health was the most complicated. So far, the multiscale entropy analysis
method has been widely used.

In 1996, Pincus proposed cross approximate entropy (Cross-ApEn) [14]. Richman
developed cross sample entropy (Cross-SampEn) to express the asynchrony and the dis-
similarity between two distinct time series in 2000 [10]. The results indicated that one
time series was more synchronized than the other time series, and the cross-approximate
entropy and cross-sampling entropy were lower. Fabris et al. used sampling entropy and
cross-sampling entropy to analyze electroglottogram and microphone signals to distin-
guish between a healthy control group and patients with throat or vocal cord diseases [15].
In 2013, Wu et al. applied composite multiscale entropy (CMSE) to improve the unre-
liability of the sampling entropy of the coarse-grained sequence when the scale factor
became larger [16]. Yin et al. then proposed composite multiscale cross-sample entropy
(CMSCE) to revise the standard of multiscale sampling entropy [17]. Nowadays, more
and more researchers in various fields use entropy for different forms of signal analysis
or malfunction monitoring. In 2017, Wimarshana et al. applied wavelet transformation
and sampling entropy to detect breathing cracks on a cantilever beam and optimized the
parameters of sampling entropy to increase detection efficiency [18]. Guan et al. applied
cross-sample entropy to the failure detection of shear structures and input white noise to
simulate random loads by using finite element models [19].

The aim of this study was to develop an entropy-based SHM system to effectively
monitor long-term structural safety. Based on previous research and experimental results,
composite multiscale cross-sample entropy (CMSCE), which had good performance in
accuracy and reliability, was adopted as the core SHM algorithm. A structural health
monitoring demonstration program combining CMSCE and the damage index was also
developed with the support of LabVIEW software. The flowchart of the study is shown in
Figure 1.
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Figure 1. Flowchart of the study.

2. Methodology
2.1. Composite Multiscale Cross-Sample Entropy Method

In the concept of multiscale entropy (MSE) proposed by Costa [13], an original signal is
transformed into various scales through coarse graining. Thus, the signal can be accurately
analyzed. Moreover, the original time series can be divided into nonoverlapping windows
with a time scale τ ranging from 1 to N. The length of each coarse-grained time series is
N/τ, and a new time series

{
y(τ)j

}
can be constructed by calculating the arithmetic mean

of each window.
y(τ)j =

1
τ ∑jτ

i=(j −1)τ+1 xi, 1 ≤ j ≤ N/τ (1)

Wu et al. [16] proposed the concept of composite MSE (CMSE) to improve the accuracy
of MSE by increasing the number of coarse-grained time series. In CMSE, a kth coarse-
grained time series for a scale factor of τ can be defined as follows:

y(τ)k,j =
1
τ ∑jτ+k−1

i=(j −1)τ+k xi, 1 ≤ j ≤ N/τ, 1 ≤ k ≤ τ (2)

Cross-sample entropy (cross-SampEn) primarily entails evaluating the degree of asyn-
chrony and dissimilarity between two time series from the same system. Cross-SampEn and
SampEn involve similar procedures, which can be summarized as follows: First, consider two
individual time series {Xi} = {x 1, . . . , xi, . . . , xN} and

{
Yj
}
= {y 1, . . . , yj, . . . , yN

}
with a length N. These two time series can be divided into templates of length m for:
um(i) = {x i, xi+1, . . . , xi+m−1}, 1 ≤ i ≤ N − m + 1 and vm(j) = {y j, yj+1, . . . ,
yj+m−1}, 1 ≤ j ≤ N − m + 1. Accordingly, two template spaces Tx and Ty can be
defined as follows:

Tx =


x1 x2 · · · xm

x2 x3 . . . xm−1

...
...

. . .
...

xN−m+1 xN−m+2 · · · xN

Ty =


y1 y2 · · · ym

y2 y3 . . . ym−1

...
...

. . .
...

yN−m+1 yN−m+2 · · · yN

 (3)

The number of similarities between um(i) and vm(j) is defined as nm
i (r), which can be

expressed as follows:
nm

i (r) =∑N−m
j=1 d[um(i), vm(j)] (4)

where d[um(i), vm(j)] is the maximum distance between the two templates i and j. If the
maximum distance is within r, which is a predetermined threshold, nm

i (r) can be calculated:
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d[um(i), vm(j)] = max{|x(i + k)− y(j + k)|: 0 ≤ k ≤ m − 1} (5)

d[um(i), vm(j)] ≤ r, 1 ≤ j ≤ N − m (6)

The probability of similarity between the templates can be calculated as follows:

Um
i (r)(v ‖ u) =

nm(r)
(N − m)

(7)

Subsequently, the average probability of similarity between the templates of length m
can be calculated as follows:

Um(r)(v ‖ u) =
1

(N − m) ∑N−m
i=1 Um

i (r)(v ‖ u) (8)

where Um(r)(v ‖ u) represents the degree of synchrony between the two pattern spaces.
The same steps are executed to calculate the model space of length m + 1 by using the
following equation:

CSE(m, r, N) = − ln
{

Um+1(r)(v ‖ u)
Um(r)(v ‖ u)

}
(9)

SampEn values can be calculated for all coarse-grained time series. The mean of τ
SampEn values represents the CMSE value, as expressed in the following equation:

CMSE(x, τ, m, r) =
1
τ ∑τ

k=1 SampEn
(

y(τ)k , m, r
)

(10)

On the basis of the concept of CMSE, Yin et al. [17] proposed composite multiscale
cross-SampEn (CMSCE), which can be defined as follows:

CMSCE(x, y, τ, m, r) =
1
τ ∑τ

k=1 SampEn
(

x(τ)k , y(τ)k , m, r
)

(11)

The CMSCE values can be derived for the two time series. The derived values can
then be plotted as a function of the scale factor ( f (τ)= SE).

2.2. DI Measure

Studies in the field of bioinformatics have reported that the area of the MSE curve
can be used as an index to quantify complexity [20–22]. Accordingly, the present study
used a damage index (DI) proposed as a measure for identifying damaged floors on a
structure [23,24]. This index is expected to reduce the probability of human errors in the
monitoring of damaged floors. Two sets of CMSCE curves were plotted to represent healthy
and damaged structures. For a structure with F floors, the following matrices can be used
to derive the CMSCE curves for damaged and undamaged floors:

CMSCEundamaged =


H1
H2
...

HF

 CMSCEdamaged =


D1
D2
...

DF

 (12)

where H and D represent healthy and damaged structural conditions, respectively. Fur-
thermore, the numerical subscripts for H and D represent the floors of the structures under
analysis.

Therefore, H1, for example, represents the cross-SampEn results for signals obtained
between the foundation and the first floor of the structure under healthy conditions,
and it can be expressed as follows:H1 =

{
CSH11

E , CSH12
E , CSH13

E , · · · , CSH1τ
E

}
, where CSH1τ

E
represents the cross-SampEn of time series obtained from the first floor at the scale factor τ
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under healthy structure conditions. Accordingly, the cross-SampEn of each damaged floor
can be expressed as follows: DF =

{
CSDF1

E , CSDF2
E , CSDF3

E , · · · , CSDFτ
E

}
, where F is the

floor number and CSD1τ
E represents the cross-SampEn of the time series obtained from the

first floor at the scale factor τ under damaged structure conditions.
The DI can be derived using the following equation:

DIF = ∑τ

q=1

(
CS

DFq
E − CS

HFq
E

)
(13)

The DI of each floor can be calculated by subtracting the entropy value of the damaged
structure from the reference entropy value of the healthy structure on the same floor and
then adding the values up. Previous research has demonstrated that the damage level and
condition of a three-dimensional multibay structure can be detected by CMSCE analysis
correctly. A positive DI value indicates that the floor is damaged, whereas a negative DI
value indicates that the floor is undamaged [25].

3. Long-Term Monitoring of Practical Residential Buildings
3.1. Introduction of the Dexin Residential Building

To demonstrate the practical applicability of the proposed monitoring system, this
study selected a residential building—called the Dexin residential building (Figure 2)—
located in Hsinchu City, Taiwan. Constructed in October 1991, the building has a reinforced
concrete structure with 14 aboveground floors and 2 underground floors. The structure
was designed in accordance with the ACI-318-77 and UBC technical codes. The strength
of the concrete material used in the building is 280 kg/cm2, and the yield strength fy of
the steel bars is 4200 kg/cm2. Moreover, the girder section measures 50 cm × 70 cm, the
beam section measures 40 cm × 65 cm, and the ground beam section measures 100 cm ×
250 cm. This structure was one of the sites of the Taiwan Strong Motion Instrumentation
Program implemented by the Central Weather Bureau. During this program, 24 sensors
were deployed on the structure to record its response to earthquakes. Acceleration data
for each floor were measured using strong-motion seismometers (FBA-11) (Figure 3) with
several channels. Specifically, acceleration data were mainly recorded by the sensors in
channels 2, 8, 11, 14, 17, and 20 (X-axis) and channels 1, 7, 10, 13, 16, and 19 (Y-axis) on
the second basement floor (B2), first floor (1F), second floor (2F), third floor (3F), seventh
floor (7F), and fourteenth floor (14F), respectively. The orientation of each sensor and
elevation of Dexin Building is shown in Figure 4. Table 1 presents the channel numbers
for the measurements on each floor. The aging and potential destruction of the structure
due to natural disasters, such as earthquakes and typhoons, may threaten the lives and
properties of residents over time. Therefore, a long-term monitoring project was conducted
to analyze CMSCE data. Complete structural health diagnosis software was integrated into
the system.
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CH02 X B2 left floor (near elevator)
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3.2. CMSCE Labview User Interface

A human–machine interface to facilitate on-site processing and provide a real-time
visualization of the monitoring result was developed by LabVIEW. The interface integrated
the complex operation and visualized the building information, time history, CMSCE
curves, and DI graphs, thereby facilitating the task of monitoring the long-term health
condition of the building. The operating procedures of LabVIEW for CMSCE analysis
are outlined as follows. First, the event data and vibration orientation to be analyzed
were selected. Subsequently, the parameters required for CMSCE analysis were entered
into the program, including the sample dimension (m), threshold value (r), and sample
length. Because CMSCE analysis entails comparing the similarity of two time template
spaces, a healthy time template (denoted as a reference) must be determined. The interface
displayed a CMSCE diagram that comprised the curves (displayed in distinct colors) of
the cross-SampEn between time series generated from two adjacent floors. The curves
were plotted as a function of the scale factor (15 scales), thus enabling users to clearly
observe the entropy trends for various earthquake events. Bar graphs were also plotted
for the DI and visualized on the interface, enabling users to clearly identify the damaged
floors. Figure 5 illustrates the curves and graphs visualized by the LabVIEW interface. This
interface was divided into four parts, in the order of building introduction, time history
diagram, CMSCE curves, and the damage index.
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3.3. Evaluation of Long-Term Monitoring
3.3.1. CMSCE Diagram Analysis

When the measured peak ground acceleration (PGA) exceeded 4 gal (cm/s2), indicat-
ing an earthquake event, a trigger mechanism would activate the monitoring system to
collect data. Data regarding ambient vibration periods after the earthquake excitation were
recorded for CMSCE analysis. Since 1994, data on earthquake-induced accelerations of
the Dexin building have been recorded in a database. Earthquakes can be classified into
two categories, according to their intensity: minor and major earthquakes. Data regarding
minor earthquakes were recorded for long-term structural health monitoring (SHM) from
1994 to 2020 using the proposed system, and the last 12.5 s (2500 points) ambient vibra-
tion after an earthquake for each data set was used for CMSCE analysis. An earthquake
that occurred on 6 June 1994 was the first event during the 27 year monitoring period.
This data set was considered as the reference to represent the healthy condition, and the
corresponding structural characteristics were analyzed.

To analyze the main structural characteristics of the building, including the funda-
mental frequencies and modes, the fast Fourier transform (FFT) was used to transform
time series data from the time domain to the frequency domain. As the fundamental
frequency is proportional to

√
k, where k represents the global stiffness of the structure, the

analysis results were used as the preliminary index to determine whether the structure was
damaged due to earthquakes or human use. The FFT results for the reference condition are
illustrated in Figure 6b. The main frequencies of the structure were lower than 10 Hz. The
first fundamental frequencies in the X- and Y-axes were 1.644 Hz and 2.147 Hz, respectively.
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These FFT results indicate that the structure was stronger in the Y-axis than it was in the
X-axis. According to a previous study on CMSCE, the following parameters were set to ana-
lyze the health status of the structure: sample dimension (m) = 4; threshold value (r) = 0.08;
and sample length (L) = 2500 points. The analysis results are displayed in Figure 6c. As in-
dicated by the reference CMSCE diagram, the trends of the structural health characteristics
were uniformly distributed among the various floors, thereby demonstrating the feasibility
of applying the reference data for long-term monitoring.
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As mentioned, the monitoring database comprised data collected from 1994 to 2020.
The health and performance of the structure may have been affected by earthquakes or long-
term use. To demonstrate the long-term performance of the CMSCE-based SHM method,
this study applied a method to analyze the effect of a minor earthquake event that occurred
during this period. Thus, the effects of a total of 18 minor earthquake events were analyzed.
The ambient vibration time history measured after earthquake-induced excitation was
12.5 s (2500 points). This structural response was used for CMSCE analysis to evaluate
the long-term health condition of the building. Curves of entropy values measured along
the X- and Y-axes for the various years are presented in Figures 7 and 8. The X-axis is the
scale factor of coarse graining from 1 to 15, and the Y-axis is the cross-SampEn values of
each scale factor. Overall, the curves followed similar trends. The entropy values were
between 0 and 2; slight differences were observed between values for the various years.
The entropy values derived for the lower floors were higher than those derived for the
higher floors. For some years, when the scale factor was four, the entropy curves obtained
for higher floors did not follow the expected pattern. As the scale factor increased, the
entropy values derived for higher floors gradually exceeded those derived for other floors.
This phenomenon was also evident in the results obtained for the Y-axis.
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3.3.2. DI Analysis

The DI values were calculated for various sections of the building to quantify any
possible structural damage. Except for a few marginally positive DI values (<1), the
remaining values were negative throughout the 27 year monitoring period. This finding
reveals that the building was not damaged. For the cases involving positive DI values, the
damage was located on higher floors, such as 3F–7F or 7F–14F. According to the analysis
results, data sampled from higher floors were amplified, possibly leading to incorrect
diagnoses. Such false alarms can be avoided by adjusting the DI threshold. According
to the long-term trends of the CMSCE analysis results, the building was not damaged.
Figure 9 displays detailed graphs of the DI values obtained for both the X- and Y-axes.
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3.4. Earthquake Analysis

Earthquakes have caused severe loss of life and economic losses in the past three
decades. Therefore, to diagnose the health condition of the building, this study conducted
CMSCE analysis on the acceleration of the structure caused by two major earthquakes that
occurred near the monitoring site.

3.4.1. 430 Earthquake

The 430 Earthquake occurred on 30 April 2011. Its epicenter was located at 24.65◦ N
(latitude) and 121.81◦ E (longitude) in New Taipei City, and its depth of focus was approxi-
mately 76 km. The earthquake intensity was recorded to be 5.8 on the Richter scale. As
shown in Figure 10a, the PGA values measured from the ground were 5.34 gal and 6.12 gal
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in the X- and Y-axes, respectively. These values are equivalent to an earthquake of a level 2
intensity. The maximum acceleration measured on 14F was 11.63 in the X-axis and 11.5
in the Y-axis. The vibration period observed for the entire structure was approximately
10 s. FFT analysis revealed that the fundamental vibration frequencies of the building in
the two axes after the earthquake were 1.678 Hz and 2.141 Hz (Figure 10b), which were
only slightly different from the reference frequencies. Thus, only a marginal difference
was observed in the reference frequencies (1.64 Hz and 2.147 Hz). To further evaluate
whether the structure was damaged, CMSCE analysis was conducted on ambient vibration
data collected after the earthquake event. The CMSCE and DI results are illustrated in
Figure 10c,d. In general, the CMSCE curves exhibited only slight fluctuations. Furthermore,
the 7F*14F curve revealed a positive DI value of 1.2 in the Y-axis; DI values lower than 1
were ignored, according to the statistics inferred from Figure 9. This finding indicates that
the floors between the 7F and 14F may have been slightly damaged during the earthquake
and should thus be inspected.
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3.4.2. 613 Earthquake

The 613 Earthquake occurred on June 13, 2012 in Jianshi Township, Hsinchu County.
The earthquake intensity was recorded to be 4.9 on the Richter scale. The epicenter of the
earthquake was at 24.75◦ N (latitude) and 121.27◦ E (longitude), with a depth of focus of
approximately 6.7 km. This was the first earthquake with a magnitude of more than 4.5 in
the area in 58 years. The shallow depth of the earthquake rendered it favorable for SHM
evaluation. The time history of the structural vibration is displayed in Figure 11a. The
PGA values in the X- and Y-axes were 5.25 gal and 5.34 gal, respectively; these values are
equivalent to a level-2 earthquake. Moreover, the maximum acceleration response on the
14F were 12.28 gal and 13.11 gal. The fundamental vibration frequencies of the building in
both axes after the earthquake were identified using FFT analysis (Figure 11b). The first
fundamental frequencies in the X- and Y-axes were 1.661 Hz and 2.141 Hz, respectively,
which were almost the same as the reference frequencies. To detect the damage condition
and location, CMSCE analysis was executed using the same settings as those used for the
430 Earthquake. As illustrated in Figure 11c, high entropy values were obtained from the
analysis; the maximum entropy values in the X- and Y-axes were approximately 1.8 and 1.4,
respectively, which were higher than those observed for the 430 Earthquake. According to
the DI values, the conditions of the higher floors (3F*7F and 7F*14F) in the X-axis reached
critical levels. The 2F*3F, 3F*7F, and 7F*14F curves also revealed DI values higher than
1. These values indicate that the health condition of the higher floors of the residential
building should be examined.
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4. Conclusions 
Entropy analysis has been extensively used in various fields. In this study, a CMSCE 
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4. Conclusions

Entropy analysis has been extensively used in various fields. In this study, a CMSCE
system was applied to analyze the long-term structural health of a residential building
over a period of 27 years. CMSCE, which improves the reliability of CMSE, was adopted
as the core algorithm for SHM diagnosis software, implemented using LabVIEW. The
effectiveness of the system for long-term monitoring and earthquake analysis was verified.
A data set collected in 1994 was selected as the reference for the executed CMSCE analysis.
Entropy curves were plotted for 18 collected minor earthquake events, and the correspond-
ing DI values were plotted in graphs to demonstrate the long-term health condition of the
building. The DI graphs exhibited a stable trend, indicating the health condition of the
building. Moreover, two large earthquake events that occurred near the monitoring site
were analyzed. The results revealed that the entropy values increased slightly after the
major earthquakes. Positive DI values were derived for higher floors. These values could
provide an early and efficient warning of structural instability. The CMSCE-based SHM
system demonstrated high stability and practicability over a long monitoring period.
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