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Abstract: The approximated non-linear least squares (ALS) tunes or calibrates the computer model
by minimizing the squared error between the computer output and real observations by using an
emulator such as a Gaussian process (GP) model. A potential defect of the ALS method is that the
emulator is constructed once and it is no longer re-built. An iterative method is proposed in this study
to address this difficulty. In the proposed method, the tuning parameters of the simulation model are
calculated by the conditional expectation (E-step), whereas the GP parameters are updated by the
maximum likelihood estimation (M-step). These EM-steps are alternately repeated until convergence
by using both computer and experimental data. For comparative purposes, another iterative method
(the max-min algorithm) and a likelihood-based method are considered. Five toy models are tested
for a comparative analysis of these methods. According to the toy model study, both the variance
and bias of the estimates obtained from the proposed EM algorithm are smaller than those from the
existing calibration methods. Finally, the application to a nuclear fusion simulator is demonstrated.

Keywords: best linear unbiased predictor; code tuning; iterative algorithm; Latin-hypercube design;
mean squared error; metamodel; numerical optimization; surrogate

1. Introduction

Modern researchers have attempted to develop and use simulation code instead
of excessively expensive or infeasible physical experiments in many fields. Advanced
computer technology has made it possible to realize very complicated simulations. In most
cases, the simulation code contains several unknown parameters (or universal constants).
A classic method for determining the universal constants in computer models is non-linear
least squares estimation (NLSE). It makes the sum of the squared error between the real
observations and the computer responses as minimum. The NLSE, however, will become
too computationally expensive or infeasible in terms of time when the computer model
is time-consuming to run. In such cases, a statistical emulator can be used to determine
the universal constants in the computer model so that the simulator or emulator can
represent the real experiments effectively well. This process is known as “code tuning” or
“calibration” [1–4].

Code tuning is defined as the procedure of enhancing the consistency between code
responses and experimental data via determining the parameters inside the simulation
code [5]. A differentiation can be made between tuning parameters and calibration param-
eters [3]. However, we use these two terms (calibration and code tuning) interchangeably.

Our work focuses on calibration in a frequentist manner [6–8], rather than a Bayesian ap-
proach [2,9,10]. A Bayesian calibration with a bias correction was introduced by Kennedy
and O’Hagan [2]. Contributions to this topic include the related works of sequential
tuning [11], multivariate computer outputs [12], identifiability [13,14], multi-fidelity [9],
good designs for calibration [10], GP models for big data [7], and various metamodeling
applications [8,15,16].
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Calibration has often been performed within a framework, in the literature, in which
the code suffers from a systematic bias or discrepancy for any parameter values. This shows
a view that the mathematical equations inside the simulator may not perfectly describe
the real world [2,12]. This framework may be more realistic, but it is beyond the range of
this study. Thus, presentation in this study is focused on a statistical method that does
not include the simulation discrepancy [1]. It would be, however, possible to extend our
framework when the shape of the bias were available.

Cox et al. [1] studied an approximated NLSE in the form of approximated nonlinear
least squares (ALS) for calibration. They utilized the Gaussian process (GP) as an emulator
(or a surrogate or metamodel) of the complex simulator. The ALS first builds the GP model
from the computer data. Then, it regards the built GP model as if it were true simulator.
This surrogation makes the NLSE computationally feasible. We adopt the GP model as an
emulator of the complex simulator, in this study. The GP model has been used successfully
in constructing a regression model for complex data [17–21] and in analyzing computer
experiments [22–25].

A drawback of the ALS is that the emulator (a GP model) is constructed once from the
computer data only and it is not re-modeled after that. To address this defect, Seo et al. [4]
considered an iterative modification of the ALS, which they referred it as the “max-min”
algorithm. The max-min algorithm improves the calibration accuracy and acquires stable
results. In this study, we propose another iterative method based on the expectation-
maximization (EM) algorithm. We anticipate that this new method is more effective
than existing approaches, including the ALS, max-min algorithm, and likelihood-based
calibration. The proposed method is compared with existing calibration methods using
five toy-models, in which the true values are known a priori.

This report is arranged as follows: a GP model for simulation experiments is described
in Section 2. Existing methods including the ALS, max-min algorithm, and likelihood-
based calibration are briefly introduced in Section 3. EM-based calibration is presented in
Section 4. In Section 5, a toy model study is described. The application to a nuclear fusion
simulator is presented in Section 6. Discussions are outlined in Section 7, followed by a
summary in Section 8. Further details including technical specifications are provided in the
Appendix. Certain contents of this study are inevitably similar to those of Reference [4,6]
because the problem setting of these studies was very similar.

2. GP Model for Computer Experiments

Sacks et al. [22] proposed the adoption of the GP model for the analysis of deterministic
computer experiments. The GP model can be expressed as follows, for the response Y(t)
at site t:

Y(t) =
p

∑
i=1

βi fi(t) + Z(t), (1)

where βis are unknown regression coefficients, { fi(·)} is a set of known functions, and Z(·)
is the GP (random variables) with mean zero and covariances σ2

ZR(t). In the above equation,
the first term indicates a regression function and the second part (Z(t)) stands for the
departure from the assumed regression function. The stochastic process term allows
the predictions (5) to interpolate the deterministic responses. For ti = {ti1, ...tid} and
tj = {tj1, ...tjd}, the covariance between Z(ti) and Z(tj) is denoted by

Cov(Z(ti), Z(tj)) = V(ti, tj) = σ2
ZR(ti, tj), (2)

where σ2
Z is the variance of Z(·) and R(ti, tj) is a correlation function. We select the Gaussian

correlation family [26]:

R(ti, tj) = exp

(
−

d

∑
k=1

θk(tik − tjk)
2

)
, (3)
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where θ′ks are non-negative parameters. We define v′(t0) and f ′(t0) as

v′(t0) = [V(t0, t1), ..., V(t0, tn)], f ′(t0) = [ f1(t0), ..., fp(t0)]. (4)

In this case, v′(t0) is a correlation vector between the observed (or training) sites and
a prediction site t0, and f ′(t0) is a design (or functional) vector of t0.

When the correlation function R(·, ·) is assigned and the observations y at sites t are
given, the best linear unbiased predictor (BLUP) of Y(t0) is [26]

Ŷ(t0) = [v′(t0), f ′(t0)]

[
V F
F′ 0

]−1[ y
0

]
= f ′(t0)β̂ + v′(t0)V−1(y− Fβ̂), (5)

where V = V(t, t) is an n× n covariance metrix, F = [ f j(ti)]1≤i≤n,1≤j≤p is an n× p design
matrix, and β̂ = (F′V−1F)−1F′V−1y is the GLSE (generalized least squares estimator) of β.
Furthermore, the hyper-parameters in V are generally unknown, and hence, we usually
estimate the hyper-parameters using the MLE (maximum likelihood estimation) from the
observations y. These estimates are subsequently plugged into (5), causing (5) to become the
so-called empirical BLUP (EBLUP) of Y(t0) [26]. We used the “DiceKriging” [27] package of
the R program. A brief description of the MLE calculation is provided in Appendix A.

We can build the prediction models differently according to the combination of θ′s
and β′s in (1) and (3). We construct the following two models, in this study:

Y(x) = β0 + β1t1 + ... + βdtd + Z(t) + ε, (6)

Model 1: with common θ, Model 2: with d different θ′s.

In the above, “common θ” indicates that d number of θ′s are constrained to be a
common θc so that θ1 = θ2 = · · · = θd := θc. The final error term (ε) is for the randomness
or measurement error in the real experiments. The error term is not applied to the com-
puter responses because only a deterministic computer model is considered in this study.
Other models such as the one from variable selection algorithms [28–30] are of course
usable. We recommend References [26,31] for further details on the GP model.

3. Existing Calibration Methods
3.1. Data Structure and Notations

The experimental data and computer data are subscrived by “E” and “C”, respectively,
and the combined (both) data are denoted by “B”. Let τ be a vector of calibration parameters
with the dimension q and T represent the input variables of the simulator corresponding to
τ. We denote X for the experimental input variables with the dimension p. In addition, let
nC, nE be the sample sizes and nB = nC + nE. More details are presented in Appendix B.

3.2. ALS Method

In this subsection, we briefly describe the ALS method considered in Reference [1].
If the simulation code is computationally costly to run, it is very difficult to optimize
numerically a certain quantity from the code directly in terms of time. In this case, the ALS
employs the GP model as a surrogate or an emulator of the computer code. The ALS first
estimates the GP parameters using the MLE for the simulation data. Thereafter, it regards
the built GP model as if it were true simulator. The ALS determines τ̂ by minimizing the
following approximated residual sum of squares (ARSS):

ARSS(τ) =
nE

∑
i=1

[
yE,i − Ŷ(τ, xE,i)

]2, (7)

where Ŷ(τ, xE) is the EBLUP of Y(x0), as in (5).
The advantage of the ALS method is that it does not need additional runs of the

simulator to calculate ARSS(τ) after a GP surrogate has been constructed from a computer
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dataset. Because there is no explicit minimizer in ARSS(τ), we employ the quasi-Newton
iteration in the “optim” package of the R program.

A potential disadvantage of the ALS method is that the emulator (a GP model) is con-
structed once from the simulation data and it is no longer re-built. To address this defect,
an iterative method of the ALS, namely the max-min algorithm, was considered by Seo et al.
Reference [4].

3.3. Max-Min Algorithm

The tuning constants and GP parameters are alternately estimated by ALS method
and the MLE, in the max-min algorithm. This method utilizes both experimental and
computer data repeatedly until convergence. The steps are outlined as follows:

Step 1: Find the MLE of the GP parameters θ̂′s, β̂′s, and σ̂2
Z in Equations (2) and (6) using

the simulation data (TS = (τS, xS) and yS) only.
Step 2: Determine τ̂, which minimizes the ARSS(τ) in (7) with the estimates θ̂′s, β̂′s,
and σ̂2

Z from Step 1.
Step 3: [maximization] Find the MLE of the GP parameters θ̂′s, β̂′s, and σ̂2

Z using the

combined data (TB and yB), where TB =

(
T∗E
TS

)
, yB =

(
yE
yS

)
, T∗E = {t∗E,1, ..., t∗E,nE

}′,

and t∗E,i
′ = (τ̂, xE,i).

Step 4: [minimization] Determine τ̂, which minimizes the ARSS(τ) in (7) with the esti-
mates θ̂′s, β̂′s, and σ̂2

Z from Step 3.
Step 5: Repeat Step 3 and Step 4 until convergence, such as ∑

q
i=1 |τ̂

old
i − τ̂new

i | /
|τ̂old

i | < ε.

In Steps 1 and 3, a GP model is constructed for the prediction. Steps 2 and 4 are the
same in minimizing ARSS(τ), but Step 2 utilizes computer data only in the prediction
Ŷ(xE), whereas Step 4 uses both data. In Step 3, τ̂ is the estimate obtained from the
previous step. Steps 1 and 3 are the same in terms of seaching the MLE, but Step 1 utilizes
computer data only, whereas Step 3 utilizes both data. Quasi-Newton numerical algorithms
are employed for the optimizations in Steps 2–4.

Seo et al. [4] demonstrated the max-min method works better than the ALS. One
defect of this method is that it needs more computing time than the ALS. Further details
on this algorithm, including the stopping rule, can be found in [4].

3.4. Likelihood-Based Calibration

Cox et al. [1] considered the full likelihood function using the combined data for
all parameters, including the calibration parameters τ; variance parameter σ2

εE and GP
parameters θ, β, and σ2. Thus, all parameters are estimated simultaneously by the MLE
method. This method is called as the full MLE, and it is applied to a GP model. The minus
two times profile log likelihood function of all parameters is, without constants,

− 2 log L(τ, ψB; y
B

, XB) = nB log σ̂2
B + log |VB|, (8)

where
σ̂2

B = (y
B
− FB β̂

B
)tV−1

B (y
B
− FB β̂

B
)/nB, (9)

β̂
B

= (FB
tV−1

B FB)
−1FB

tV−1
B y

B
, (10)

in which ψB = (θB, β
B

, σ2
B, γE) with β̂

B
and σ̂2

B inserted, and γE = σ2
εE/σ2.

Cox et al. [1] considered other likelihood-based approaches. One method is the
so-called separated MLE (SMLE). This maximizes the conditional likelihood of the ex-
perimental data given the simulation data. In this case, the GP parameters θ, β, and σ2

are determined by the marginal MLE from the computer data. These estimates are then
inserted into in obtaining the conditional MLE. This result is subsequently maximized
with respect to τ and γE, to acquire estimates of the above parameters. Advantages
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of likelihood-based methods for calibration are that they simultaneously or condition-
ally utilize the combined data, and so enrich the calibration methods. The SMLE was
demonstrated to be superior to the full MLE in Reference [1]. Thus, in this study, we com-
pare the SMLE with the proposed method. Further details of the SMLE are presented in
Appendix C.

4. Proposed Method: EM-Based Calibration

An EM algorithm is an iterative method for determining the MLE or maximum
a posteriori (MAP) estimates of parameters in statistical models [32], where the model
usually depends on the unobserved latent variables. One example of the unobserved latent
variables is the calibration parameters in computer experiments. The EM iteration alternates
between an expectation (E) step and a maximization (M) step. The E-step calculates
the expected value of the log likelihood at the current parameter estimates provided
from the M-step. The M-step computes the parameters by maximizing the expected
log likelihood determined in the E-step. These parameter estimates are subsequently
employed to determine the distribution of the latent variables (or calibration parameters)
in the following E-step [32].

The EM algorithm was described and given its name in 1977 in a paper by Demp-
ster et al. [33]. Since then, the EM algorithm has been applied to many research areas,
including computational statistics, machine learning, computer vision, hidden Markov
models, item response theory, and computed tomography. See References [34–36] for
further information on the EM algorithm and its applications.

To date, the EM algorithm has not been applied to the calibration problem of complex
computer code. Because the tuning parameters in real experiments can be treated as
unobserved latent variables, an EM algorithm may be appropriate to obtain the distribution
of the tuning parameters. The steps of the proposed method for a given GP model are
presented as follows:

Initialization: Provide initial values (τ̂) for τ from prior information on τ.
M-step: Determine the MLE (ψ̂) of the GP parameters from the combined data in which τ̂
are inserted into the experimental data.
E-step: Set τ̂ as the conditional expectation of τ given the estimates (ψ̂ from the M-step) of
the GP parameters obtained under the combined data.
Iterate: E- and M-steps until convergence.

In the k-th iteration of the E-step, the conditional expectation of τ is actually the
expectation of the posterior of τ:

E(τ∗(k)|y; x, Ψ(k)) =
∫

τ f (τ|y; x, Ψ(k)) dτ

=
∫

τ
f (τ, y; x, Ψ(k))

f (y; x, Ψ(k))
dτ

=
∫

τ
f (y|τ; x, Ψ(k))p(τ; x, Ψ(k))∫
f (τ; x, Ψ(k))p(τ; x, Ψ(k)) dτ

dτ

=
∫

τ
G× p(τ; x, Ψ(k))∫
G× p(τ; x, Ψ(k))dτ

dτ

=⇒ τ∗(k+1),

(11)

where G = f (y
B
|τ; xB, ψ̂(k)) = pdf (probability density function) of MN(FB β̂(k), σ̂2(k)VB

(k)),

ψ(k) = (θ(k), β(k), σ2(k)γ
2(k)
E ), and p(τ; xB, ψ̂(k)) is a prior (pdf) of τ. Note that FB and VB

are functions of τ. A numerical integration method by Reference [37] in the R package
“cubature” [38] was used for the calculation of (11). We set a uniform distribution as the
prior of τ. Other priors can easily be incorporated.
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A slightly modified likelihood function from (8) is employed to calculate the MLE in
the M-step: −2 log L(ψB; y

B
, XB, τ̂), where τ̂ is obtained from the E-step. The M-step is

basically the same as Step 3 in the max-min algorithm. The major difference between the
two algorithms is that the max-min minimizes the ARSS, whereas the EM calculates the
conditional expectation. One defect of the EM method is that it requires more computing
time than the ALS or Kennedy–O’Hagan (KOH) method [2].

In each iteration of the E- and M-steps, parameters in the emulator and the combined
data are updated. We expect this updating procedure affects positively to the estimation of
the calibration parameter. The EM and max-min use the combined data for constructing
an emulator, whereas the ALS uses the computer data only. The addition of relevant data
generally enhances the prediction capacity of the emulator.

It is worth noting that the EM algorithm converges effectively, according to our
experience when executing it in the test function study. The median iteration number is
approximately 10 (the first and third quartiles are 6 and 28 iterations, respectively) based
on 10 trials for test function 1, as described in detail in the following section.

Table 1 presents a classification of the calibration methods based on the τ estimation,
emulator building, and outer iteration. It can be observed that the EM algorithm can be
viewed as an extension of the KOH method.

Table 1. A classification of the calibration methods based on τ estimation, emulator building, and the
number of outer iterations. Acronyms: NLSE = nonlinear least squares estimation, ALS = approximated
NLSE, MLE (A) = maximum likelihood estimation calculated from data A, FMLE = full MLE, SMLE
= separated MLE, Cond Expect (D) = conditional expectation based on data D, EM = expectation and
maximization algorithm, Max-min = max-min algorithm described in Section 3.3, KOH = Kenney-
O’Hagan method.

Method τ Estimation Emulator Building Outer Iterations

NLSE NLSE 1
ALS ALS (E) MLE (C) 1

FMLE MLE (C, E, ψB ) (all together) 1
SMLE MLE (C|E) MLE (C) 1

EM Cond Expect (C, E) MLE (C, E) many
Max-min ALS (E) MLE (C, E) many

KOH Cond Expect (E) MLE(C) 1

5. Test Function Study

In this section, we describe the application of the calibration methods to test functions
(or toy models) in which the true tuning parameters were known a priori. A set of five toy
models in different situations were arranged for a comparison of the methods. These test
functions are simple toy models, i.e., easy to compute. However, we treated these functions
as if they were time-consuming simulators.

The computer data and experimental data with sample sizes nC and nE, respectively,
were generated by

yC = Y(τC, xC), yE = Y(τ∗, xE) + e.

The five test functions along with nE = nC = 30 and with the true constants of τ are
described as follows:

Test function 1 : Y(τ, x) = τ1 exp(τ2 + x1) + τ1x2
2 − τ2x2

3

Computer data : T1 ∼ U(0, 5), T2 ∼ U(0, 4),

x1 ∼ U(−3, 3), x2 ∼ U(−3, 3), x3 ∼ U(0, 6)

Experimental data : τ1 = 2, τ2 = 2, σ2
E = 1.
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Test function 2 : Y(τ, x) = τ1 exp (τ2 + x1 + τ3) + τ1τ3x2
2 − τ2x2

3 − τ3 log (x4)

Computer data : T1 ∼ U(0, 5), T2 ∼ U(0, 4), T3 ∼ U(1, 5),

x1 ∼ U(−3, 4), x2 ∼ U(−3, 3), x3 ∼ U(0, 6), x4 ∼ U(1, 5)

Experimental data : τ1 = 2, τ2 = 1, τ3 = 3, σ2
E = 1.

Test function 3 : Y(τ, x) = τ1 exp(|x1 + x2|) + τ2(x4 + 1.2x5 + 1)/2.5 + τ3(τ2 + 2x3 + x4)

+ τ4(x1 + x3 − τ4x5 − x6) + 2 cos(6(x2 + x3 + x3))

Computer data : T1 ∼ U(0, 5), T2 ∼ U(0, 3), T3 ∼ U(0, 7), T4 ∼ U(0, 6),

x1 ∼ U(−2, 6), x2 ∼ U(−6, 6), x3 ∼ U(−5, 6), x4 ∼ U(−6, 6)

x5 ∼ U(−6, 4), x6 ∼ U(−6, 3)

Experimental data : τ1 = 2, τ2 = 1, τ3 = 4, τ4 = 3, σ2
E = 6.

Test function 4 : Y(τ, x) = τ1x2
1 + τ2x2 + τ3cos(x3π) + τ4sin(x4π)

Computer data : T1 ∼ U(0, 5), T2 ∼ U(0, 5), T3 ∼ U(0, 7), T4 ∼ U(0, 5)

x1 ∼ U(0, 3), x2 ∼ U(0, 3), x3 ∼ U(0, 2), x4 ∼ U(0, 2)

Experimental data : τ1 = 1, τ2 = 2, τ3 = 3, τ4 = 2, σ2
E = 4.

Test function 5 : Y(τ, x) = exp(τ2x1 + x2)/(3 + τ1) + τ2

√
(x4 + x5) + τ1(x3 + x6)

2

Computer data : T1 ∼ U(0, 5), T2 ∼ U(1, 5)

x1 ∼ U(−0.5, 0.5), x2 ∼ U(−0.5, 0.5), x3 ∼ U(−0.5, 0.5),

x4 ∼ U(0, 2) x5 ∼ U(0, 2), x6 ∼ U(0, 1)

Experimental data : τ1 = 2, τ2 = 2, σ2
E = 0.25.

Optimal Latin hypercube designs [39,40] were used for sampling in the independent
variables for real experiments (xE) and for computer experiments (τS, xS). A total of 30
different designs for computer data were employed for each test function to take into
account uncertainty in the design, whereas the real experimental design was fixed.

As a result, the average of estimates and the standard deviations from 30 trials are
presented. The averaged Euclidean distance from the estimates to the true values was
computed to evaluate the performance of the methods. (In addition to the Euclidean
distance, one can consider an weighted distance such as the Mahalanobis distance [41]. It
may be more meaningful than the Euclidean distance in the sense that the Mahalanobis
distance takes into account the covariances among estimates of calibration parameters.
The weighted distance is not considered in this study, but may be useful in the future
study.) The root mean squared error (RMSE) of the estimates is also provided. The formula
for the RMSE is as follows:

RMSE(τ̂) =

√√√√Bias2(τ̂) +
q

∑
i=1

(std(τ̂i))2, (12)

where Bias(τ̂) is the averaged Euclidean distance to the true constants and std(τ̂i) is the
standard deviation of each estimate obtained from 30 replications.

Tables 2–6 present the results for each test function. The averaged Euclidean distance
from the estimates to the true constants and the RMSEs of the estimates are displayed
in each table. The standard deviations are the numbers in parentheses. In terms of the
RMSE, the proposed method offered superior results over the ALS, SMLE, and max-min
methods. In particular, the EM shows less bias and lower RMSE than the other methods.
We have this result again in Figures 1–5, which present the boxplots of the distance to
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the true value for each of the five test functions. In many cases, the medians of the EM
estimates were nearer to the true constants than those from the SMLE, ALS, and max-min
methods. The box lengths of the EM estimates were shorter than those obtained from the
other methods. It is notable that the max-min was more effective than the ALS and SMLE
in test functions 2–4. One plausible reason that the EM was superior to the max-min is that
the numerical integration for the conditional expectation in the EM may be more stable
than the numerical optimization of the ARSS in the max-min.

The computing times of the max-min and EM algorithms were much longer than
those of the ALS and SMLE (see Table 7). The times were obtained using a personal
computer with an Intel i5 CPU (3.6 GHz) and 16 Giga bytes of memory. Thus, we faced the
limitation in extending our test functions to a higher-dimensional calibration parameters
because of the heavy computing time in the max-min and EM algorithms. Numerical
integration method for more than 10 dimensions may not be practical in the EM algorithm.
In such high-dimensional cases, a Monte Carlo integration technique would be useful,
but it requires more computing time.

Table 2. Result for the test function 1 with true constants τ∗1 = 2, τ∗2 = 2. The values presented are the
averaged estimates of τ∗, the averaged Euclidean distance from the estimates to the true constants,
the root mean squared error (RMSE) of the estimates. The standard deviations are in parentheses.
The acronyms are same as Table 1. The number 1 or 2 following each method stands for the Gaussian
process Model 1 or Model 2.

Method Average of τ̂1 Average of τ̂2 Average Distance RMSE

ALS 1 1.609 (0.207) 1.773 (0.246) 0.527 (0.168) 0.617
ALS 2 1.448 (0.249) 1.602 (0.351) 0.749 (0.288) 0.864
SMLE 1 1.790 (0.245) 1.758 (0.275) 0.462 (0.147) 0.591
SMLE 2 2.228 (0.409) 1.465 (0.267) 0.703 (0.280) 0.856
Max-min 1 2.296 (0.135) 1.966 (0.224) 0.377 (0.109) 0.459
Max-min 2 2.382 (0.399) 2.151 (0.575) 0.718 (0.342) 1.003
EM 1 2.024 (0.212) 1.828 (0.204) 0.276 (0.197) 0.103
EM 2 2.098 (0.234) 2.894 (0.166) 0.264 (0.177) 0.390

Table 3. Same as Table 2 but for test function 2 with true values τ∗1 = 2, τ∗2 = 1, τ∗3 = 3.

Method Average of τ̂1 Average of τ̂2 Average of τ̂3
Average
Distance RMSE

ALS 1 1.801 (0.324) 1.349 (0.225) 3.301 (0.319) 0.598 (0.232) 0.784
ALS 2 1.715 (0.244) 1.107 (0.322) 3.034 (0.344) 0.570 (0.209) 0.779
SMLE 1 1.737 (0.565) 1.080 (0.527) 2.957 (0.519) 0.873 (0.398) 1.276
SMLE 2 1.912 (0.347) 0.901 (0.381) 2.853 (0.416) 0.585 (0.353) 0.884
Max-min 1 1.706 (0.293) 0.842 (0.127) 3.003 (0.435) 0.535 (0.327) 0.760
Max-min 2 1.768 (0.231) 1.106 (0.314) 3.054 (0.283) 0.511 (0.176) 0.702
EM 1 2.108 (0.238) 1.207 (0.116) 2.975 (1.164) 0.371 (0.109) 0.484
EM 2 2.163 (0.239) 1.261 (0.160) 2.980 (0.112) 0.414 (0.128) 0.516

Table 4. Same as Table 2 but for test function 3 with true values τ∗1 = 2, τ∗2 = 1, τ∗3 = 4, τ∗4 = 3.

Method Average of τ̂1 Average of τ̂2 Average of τ̂3 Average of τ̂4
Average
Distance RMSE

ALS 1 2.314 (0.408) 1.185 (0.335) 3.911 (0.578) 3.367 (0.571) 0.963 (0.514) 1.366
ALS 2 2.224 (0.587) 1.175 (0.341) 3.713 (0.865) 3.323 (0.793) 1.324 (0.547) 1.895
SMLE 1 1.923 (0.465) 1.316 (0.472) 3.713 (0.515) 3.309 (0.648) 1.080 (0.443) 1.513
SMLE 2 1.861 (0.446) 1.365 (0.643) 3.423 (0.749) 3.541 (0.655) 1.609 (0.347) 2.047
Max-min 1 2.060 (0.321) 1.166 (0.300) 3.626 (0.553) 3.315 (0.528) 0.902(0.463) 1.261
Max-min 2 2.039 (0.544) 1.469 (0.339) 3.753 (0.785) 2.845 (0.726) 1.208 (0.612) 1.736
EM 1 2.583 (0.198) 1.522 (0.119) 3.668 (0.250) 3.029 (0.254) 0.938 (0.139) 1.030
EM 2 2.480 (0.239) 1.403 (0.252) 3.681 (0.325) 3.024 (0.223) 0.859 (0.158) 1.007
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Table 5. Same as Table 2 but for test function 4 with true values τ∗1 = 1, τ∗2 = 2, τ∗3 = 3, τ∗4 = 2.

Method Average of τ̂1 Average of τ̂2 Average of τ̂3 Average of τ̂4
Average
Distance RMSE

ALS 1 0.935 (0.237) 1.753 (0.396) 3.304 (0.908) 1.951 (0.610) 1.025 (0.628) 1.568
ALS 2 0.874 (0.250) 1.852 (0.414) 2.765 (0.846) 1.729 (0.672) 1.149 (0.456) 1.650
SMLE 1 0.845 (0.291) 1.975 (0.758) 2.875 (0.532) 1.852 (0.607) 1.069 (0.437) 1.566
SMLE 2 1.008 (0.515) 1.895 (0.895) 2.740 (0.475) 1.816 (0.953) 1.398 (0.53) 2.038
Max-min 1 0.562 (0.261) 2.155 (0.472) 3.087 (0.549) 2.049 (0.560) 0.955 (0.291) 1.348
Max-min 2 0.600 (0.230) 2.319 (0.549) 3.114 (0.749) 2.104 (0.407) 1.095 (0.362) 1.510
EM 1 1.160 (0.198) 2.017 (0.296) 3.383 (0.190) 2.418 (0.169) 0.718 (0.134) 0.841
EM 2 0.921 (0.268) 1.863 (0.397) 3.379 (0.248) 2.498 (0.160) 0.797 (0.149) 0.976

Table 6. Same as Table 2 but for test function 5 with true values τ∗1 = 2, τ∗2 = 3.

Method Average of τ̂1 Average of τ̂2 Average Distance RMSE

ALS 1 1.796 (0.274) 2.076 (0.130) 0.361 (0.078) 0.471
ALS 2 1.745 (0.253) 2.060 (0.105) 0.365 (0.093) 0.456
SMLE 1 2.025 (0.307) 2.038 (0.116) 0.287 (0.157) 0.436
SMLE 2 2.157 (0.483) 2.041 (0.154) 0.436 (0.295) 0.667
Max-min 1 2.074 (0.374) 2.001 (0.100) 0.340 (0.192) 0.515
Max-min 2 1.889 (0.292) 2.045 (0.125) 0.298 (0.152) 0.436
EM 1 2.054 (0.140) 2.085 (0.098) 0.189 (0.054) 0.255
EM 2 2.030 (0.143) 2.102 (0.085) 0.172 (0.094) 0.239

0
.0

0
.5

1
.0

1
.5

ALS 1 ALS 2 SMLE 1 SMLE 2 Max−min 1Max−min 2 EM 1 EM 2

Figure 1. Boxplots of the Euclidean distances between true constants and estimated values from the
calibration methods for test function 1, calculated from 30 random trials. The number 1 or 2 following
each method stands for the Gaussian process Model 1 or Model 2. ALS: approximated nonlinear
least squares estimation, SMLE: separated maximum likelihood estimation, EM: expectation and
maximization algorithm, Max-min: max-min algorithm described in Section 3.3.
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Figure 2. Same as Figure 1 but for test function 2.
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Figure 3. Same as Figure 1 but for test function 3.
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Figure 4. Same as Figure 1 but for test function 4.



Entropy 2021, 23, 53 11 of 17

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ALS 1 ALS 2 SMLE 1 SMLE 2 Max−min 1Max−min 2 EM 1 EM 2

Figure 5. Same as Figure 1 but for test function 5.

Table 7. Averaged computing time in seconds for tuning methods with nE = nC = 30 from 30 trials
for each of test functions 2, 4, and 5.

Function No. of τ No. of X ALS SMLE Max-Min EM

Test 2 3 4 149 150 661 471
Test 4 4 6 185 295 1207 1300
Test 5 2 6 23 117 435 320

6. Application to Nuclear Fusion Simulator

We present, in this section, the application of the calibration methods to computer
code known as “Baldur” [42], which is a time-consuming simulator for the energy con-
finement time in a nuclear fusion device. It is called a “tokamak” in the Russian language.
The mathematical model is simply expressed as follows, for a known complex function f
calculated from the Baldur code:

y = f (τ1, τ2, τ3, τ4, x1, x2, x3, x4), (13)

where x1 is the input heating power, x2 is the toroidal plasma current, x3 is the line
average electron density, and x4 is the toroidal magnetic field. Calibration parameters
τ = (τ1, τ2, τ3, τ4) determine the energy transfer, where each parameter is respectively,
related to drift waves, rippling, resistive ballooning, and the critical value of ηi [42].

The experimental data consisted of x = {x1, x2, x3, x4} with sample size 42 from the
Poloidal Divertor Experiment (PDX) tokamak at Princeton. The computer data consisted
of (τ, x) with sample size 64 from the Baldur code. The details on data can be found in
References [1,42].

Table 8 presents the results of the τ estimation when using the ALS, SMLE, max-min,
and EM algorithms on the basis of GP Model 1 and Model 2 from the tokamak data. The
results were obtained using R program on a personal computer with an Intel i5 CPU
(3.6 GHz) and 16 Giga bytes of memory.
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Table 8. Estimates of the tuning parameters by various calibration methods from the nuclear fusion
data. The last column shows computing time in seconds for tuning methods. The acronyms are same
as Figure 1.

Method τ̂1 τ̂2 τ̂3 τ̂4 Computing Time

ALS 1 1.012 2.035 1.110 1.308 337
ALS 2 1.195 1.593 0.956 1.035 1017

SMLE 1 1.120 2.055 0.118 1.303 585
SMLE 2 1.290 1.342 1.204 1.157 1230

Max-min 1 0.670 1.125 0.468 1.826 1674
Max-min 2 0.732 2.592 1.311 1.034 8042

EM 1 −0.459 3.227 1.750 1.407 1481
EM 2 1.064 2.428 1.048 1.030 7717

Figure 6 depicts the residuals (yE − Ŷ(TE)) plotted according to the predicted values
Ŷ(TE) that were obtained by various methods using GP Model 1 and Model 2. The residual
plots from all methods exhibited linear trends. The trend for the EM algorithm was the
lowest among the methods.
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Figure 6. Residual plots for nuclear fusion data in which the simulation code was calibrated by various methods (ALS,
SMLE, Max-min, and EM) using Gaussian process Model 1 or Model 2. The X-axes represents the predicted values Ŷ(TE)

and the Y-axes represents the residuals (yE − Ŷ(TE)). The acronyms are same as Figure 1.
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7. Discussion

Certain basic limitations exist when calibrating computer models to real data. We have
experienced that the performance of the calibration methods was influenced significantly
by the designs of both the physical and computer experiments [43,44]. Thus, a sequential
designing approach must be very useful in practice [10,11,16]. Relevant experimental
designs under a sequential tuning will improve the calibration very well.

Iterative versions of calibration methods, including the KOH method, may be available.
For example, an iterative version of the SMLE method can be summarized as follows:

Step 1: Acquire τ̂ by maximizing the conditional likelihood function of τ on the E-data,
given (yC, ψ̂C).
Step 2: [maximization] Acquire ψ̂B by maximizing the likelihood from the both data,
in which τ̂ are inserted into the E-data.
Step 3: [maximization] Acquire τ̂ by maximizing the conditional likelihood function of τ
on the E-data, given (yC, ψ̂B).
Step 4: Iterate Steps 2 and 3 until convergence.

The estimates τ̂ may vary according to the selected emulator. Thus an importance
in calibration is the selection of the GP surrogate with some regression variables and GP
parameters. We only used simple models (6) in this study. If the optimal GP model is built
by the model selection algorithm, the result could be different.

8. Summary

The ALS method using a GP emulator is a basic calibration technique for complex com-
puter models. However, it exhibits the potential drawback that the emulator is constructed
once and it is no longer re-built. To overcome this defect, an iterative (EM) algorithm
has been proposed in this study. The calibration parameters of the simulation code are
calculated by the conditional expectation (E-step), whereas the GP parameters are updated
by maximum likelihood estimation (M-step). These EM steps are alternately repeated until
convergence by using both computer and experimental data.

We examined five test functions for a performance comparison. We confirmed that our
proposed method (the EM algorithm) provided better results than the SMLE, ALS, and max-
min methods in terms of the RMSE. The disadvantage of the proposed method is that it is
more time-consuming than the ALS, because the EM algorithm needs to optimize complex
functions and compute the conditional expectation using numerical integration based on
the combined data. Nonetheless, the EM method can provide improved calibration as well
as a superior emulator of the computer code compared to non-iterative methods, including
the ALS and SMLE.
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Abbreviations

NLSE non-linear least squares estimation
GP Gaussian process
ALS approximated NLSE
ARSS approximated residual sum of squares
E-data real experimental data
C-data computer data
B-data both of E-data and C-data
MLE maximum likelihood estimation
FMLE full MLE
SMLE separated MLE
EM expectation and maximization
E-step expectation step
M-step maximization step
pdf probability density function
Max-min maximization and minimization algorithm
KOH Kenney-O’Hagan method
RMSE root mean squared error

Appendix A. Maximum Likelihood Estimation in GP Model

Once the data have been obtained at the design sites {x1, ..., xn}, we employ the MLE
method to estimate the GP parameters. Because we assume that y(x) is a GP with mean Fβ

and covariance σ2 R for a design matrix F, the likelihood function of y is

L(y; θ, β, σ2, γC, x) =
(2πσ2)−n/2√

| V|
exp

(
−

(y− Fβ)tV−1(y− Fβ)

2 σ2

)
. (A1)

When the hyper-parameters θ and γC are specified, the MLEs of σ2 and β are

β̂ = (FtV−1F)−1FtV−1y, σ̂2 =
1
n
(y− Fβ̂)tV−1(y− Fβ̂). (A2)

Because there is not a closed-form solution from the likelihood equations, we used
a numerical optimization routine. The Cholesky decomposition V = UtU is used as a
major computation in calculating the likelihood function, where U is an upper triangular
Cholesky factor.

Appendix B. Data Structure and Notations for Calibration

Appendix B.1. Notations

The following notations are used for the computer and experimental data with nC and
nE observations:

T: input variables T = (τ, x) of computer code with d dimensions
τ: q-dimensional calibration parameters
τC: q-dimensional input variables of computer code corresponding to calibration
parameters τ
xC: d-q dimensional independent variables in computer code
Y(τ, x) or yC: responses from simulator for input variables (τ, x)
xE: independent variables in real experiments with d-q dimensions
yE: observations in real experiments

The subscripts C and E indicate the computer and real experiments, respectively. If
the simulator mimics the real experimental data effectively well without discrepancy, we
use the following model to approximate yE:

yE = Y(τ, xE) + e, (A3)
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where e is independent and normally distributed random variable with mean zero and
variance σ2

E. Certain contents of this Appendix are similar to those in References [4,6].

Appendix B.2. Computer and Experimental Data

We have the data matrix of the independent variables XC and XE for the computer
and experimental data, respectively:

XE =


τ1 τ2 · · · τq xE11 xE21 · · · xEp1
τ1 τ2 · · · τq xE12 xE22 · · · xEp2
...

...
...

τ1 τ2 · · · τq xE1nE xE2nE · · · xEpnE

 (A4)

XC =


t11 t21 · · · tq1 xC11 xC21 · · · xCp1
t12 t22 · · · tq2 xC12 xC22 · · · xCp2
...

...
...

t1nC t2nC · · · tqnC xC1nC xC2nC · · · xCpnC

. (A5)

In the above, tij in XC represents the j-th value of the i-th T variable (Ti), whereas xEij
and xCij denote the j-th value of the i-th X variable of the experimental (XEi) and computer
(XCi) input. Furthermore, XE is a nE × (q + p) matrix and XC is a nC × (q + p) matrix.
Note that the first part of XE is composed of the unknown parameters τ1, · · · , τq, whereas
the corresponding part of XC comprises the input values (tij).

Appendix B.3. Combined Data

The following notations are introduced for the combined computer and experimen-
tal data:

XB =

(
XC
XE

)
, FB =

(
FC
FE

)
=

(
f (XC)

f (XE)

)
, y

B
=

(
y

C
y

E

)
. (A6)

XB is the design matrix of the independent variables. FB is defined as the functions of the
input variable values. y

B
is a vector of the combined responses. Note that T are the input

varaibles of the computer code. In this case, XC and FC contain T, whereas XE and FE are
the functions of the tuning parameters τ.

The GPM is subsequently applied to the computer and experimental data simultane-
ously. Let ψ = (τ, θ, γC, γE, σ2, β), where γC = σ2

εC/σ2 and γE = σ2
εE/σ2. Here, σ2

εC and
σ2

εE are the variances of the error term (ε) in the GP model for the computer and experi-
mental data, respectively. We set σ2

εC = 0, and thus, γC = 0, because only a deterministic
computer model is considered in this study. When necessary, β

C
and β

E
are used to denote

the regression coefficients for the computer and real experimental data. Thus, given the
independence and normality assumptions, we have

Law (y
B
|ψ) = N(FBβ

B
, VB), (A7)

where
β

B
= (β

C
, β

E
)t, (A8)

VB =

[
VCC VCE
VEC VEE

]
= σ2

[
R(XC, XC) R(XC, XE)
R(XE, XC) R(XE, XE)

]
+ σ2

[
γC I 0

0 γE I

]
, (A9)

in which R(XC, XE) represents a nC × nE correlation matrix computed between XC and
XE. VB is a nB × nB positive definite covariance matrix for the combined data, where
nB = nC + nE.
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Appendix C. Separated MLE for Calibration

For the details of the SMLE, we utilize the conditional distribution of the experimental
data given the computer data, which is normally distributed with a mean

µE|C = E[y
E
|y

C
; τ, ψ] = FEβ

E
+ +Vt

CE V−1
CC (y

C
− FCβ

C
) (A10)

and covariance

VE|C = Cov[y
E
|y

C
; τ, ψ] = VEE − Vt

CE V−1
CC VCE, (A11)

where the covariance matrices V are given as per (A9). In these formulae, we suppress the
parameter dependencies in µE = FEβ

E
, µC = FCβ

C
, VCE, VCC, and VEE. Thus, the minus

two times concentrated (without constants) log conditional likelihood function with β̂ and
σ̂2

E|C plugged in is

− 2 log L(τ, γE; XE, y
E
| y

C
, γ̂C, β̂

C
, θ̂, XC) = nE log σ̂2

E|C + log |VE|C|, (A12)

where
σ̂2

E|C = (y
E
− µ̂E|C)

t V−1
E|C (y

E
− µ̂E|C)/nE, (A13)

µ̂E|C = FE β̂
E
+ Vt

CE V−1
CC (y

C
− FC β̂

C
). (A14)
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