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Abstract: The discrete geodesic flow on Nagao lattice quotient of the space of bi-infinite geodesics in
regular trees can be viewed as the right diagonal action on the double quotient of PGL2

(
Fq((t−1))

)
by PGL2

(
Fq[t]

)
and PGL2(Fq[[t−1]]). We investigate the measure-theoretic entropy of the discrete

geodesic flow with respect to invariant probability measures.
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1. Introduction

Let (X,B, µ) be a probability space and let T : X → X be a measurable map. We
say that T is measure-preserving if µ(T−1 A) = µ(A) for every A ∈ B. In this case we
say that (X,B, µ, T) is a measure-preserving system. To a measure-preserving system is
associated a numerical invariant called measure-theoretic entropy (see Section 2 for the
precise definition). Since it is preserved by measurable isomorphism, it can be used in
order to distinguish special measures like Haar measure from other invariant measures.

One of the most important dynamical systems in homogeneous dynamics is the
geodesic flow on the quotient PSL(2,Z)\T1H of the unit tangent bundle T1H of hyperbolic
plane by modular group. It is an Anosov flow on a three-dimensional non-compact
manifold and has wide application on the theory of Diophantine approximation and
analytic number theory. Using the Mobius transformation of PSL(2,R) on H, it may be
identified with Tat : X → X on X = SL(2,Z)\SL(2,R)/SO(2) given by x 7→ xat with

at =

(
e

t
2 0

0 e−
t
2

)
.

Unlike in the case of unipotent flow (right multiplication by one-parameter unipotent
group), there is a great variety of invariant probability measures and orbit closures of Tat

on X. Furthermore, according to Sullivan [1], its supremum of measure theoretic entropy is
equal to 1, which is the measure-theoretic entropy of the Haar measure.

Meanwhile, the discrete version of the geodesic flow is also explored by several
authors ([2–4]). They considered the behavior of discrete geodesic flow system on and its
application on Diophantine approximation over a positive characteristic field of formal
series. Following these literatures, we investigate the measure-theoretic entropy of the
discrete geodesic flow on positive characteristic setting in this paper. More precisely, we
compute the measure-theoretic entropy of the right translation by diagonal elements on
the non-compact quotient PGL(2,Fq[t])\GT q+1 of the space of bi-infinite geodesics GT q+1
of (q + 1)-regular tree by modular group. It also may be viewed as a diagonal action on the
positive characteristic homogeneous space PGL2

(
Fq[t]

)
\PGL2

(
Fq((t−1))

)
/PGL2

(
Fq[[t−1]]

)
.

(See Section 3 for the action of the group on the tree.)
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In the sequel, let G = PGL2
(
Fq((t−1))

)
, Γ = PGL2

(
Fq[t]

)
, a be the diagonal element[(

t 0
0 1

)]
in G and T = PGL2

(
Fq[[t−1]]

)
. We denote by φa : Γ\G/T → Γ\G/T the right translation

map given by x 7→ xa.
As in the real case, there are a lot of φa-invariant probability measures µ on Γ\G/T. In

this article, we describe these invariant probability measure µ with respect to a family of
measures on Fq((t−1)) and discuss a formula of the measure-theoretic entropy hµ(φa) of φa
with respect to µ. We give the main theorem of the paper.

Theorem 1. Let φa : Γ\G/T → Γ\G/T be the right translation map given as above. For each
i ≥ 1, let Ei = {α ∈ Fq((t−1)) : deg(α) = i}. If µ is the φa-invariant measure on Γ\G/T, then
there are measures µi on Ei and a function fµ : {α ∈ Fq((t−1)) : deg(α) ≥ 1} → R such that the
following holds.

1.
∞

∑
i=1

2iµi(Ei) = 1.

2. hµ(φa) =
∞

∑
i=1

∫
Ei

fµ(α)dµi(α).

It is well known that the Haar measure (the unique G-invariant probability measure)
m is the measure of maximal entropy for φa on Γ\G/T (see Reference [5]). For the Haar
measure m on Γ\G/T, we can explicitly compute mi and fm of the Theorem 1. Namely, we
have (see Section 5)

mi(Ei) =
(q− 1)2

2
q−i−1 and fm(α) = 2 deg(α) log q.

From the above description, we achieve the measure-theoretic entropy of φa with respect
to m.

Corollary 1. Let φa : Γ\G/T → Γ\G/T be as above. Then, we have

sup
µ

hµ(φa) = log q

and the measure of maximal entropy is the unique G-invariant probability measure. Here, supremum
runs over the set of φa-invariant probability measures on Γ\G/T.

This article is organized as follows. In Section 2, we review elementary definition and
some properties of measure-theoretic entropy in view of ergodic theory and dynamical
systems. We study some arithmetic and geometry of Fq((t−1)) in Section 3. There we
mainly present the brief theory of simple continued fraction of Fq((t−1)) and describe the
Bruhat-Tits tree of PGL

(
2,Fq((t−1))

)
. In Section 4, we investigate the dynamical system

(Γ\G/T,B, φa), describing φa on the Γ-quotient of the space of parametrized bi-infinite
geodesics over the Bruhat-Tits tree of G by a suspension map of a shift map. Finally, we
prove Theorem 1 and Corollary 1 in Section 5.

2. Preliminaries on Entropy

We start with the summary of some elementary definitions and properties of measure-
theoretic entropy, mainly following Reference [6]. We review the entopy of a partition and
that of a measure-preserving transformation.
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2.1. Entropy of a Partition

Let us begin with some definitions. A probability vector (p1, p2, p3, . . .) is a vector with

0 ≤ pi ≤ 1 for each i ≥ 1 and
∞
∑

i=1
pi = 1. Given a probability vector p = (p1, p2, p3, . . .), let

H(p) = H(p1, p2, p3, . . .) = −
∞

∑
i=1

pi log pi.

Here, 0 log 0 is defined to be 0. A partition of a probability space (X,B, µ) is a finite or
countably infinite collection of disjoint measurable subsets ξ = {A1, A2, . . .} of X whose
union is X. The entropy Hµ(ξ) of a partition ξ = {Ai}i∈I with respect to a measure µ is
defined by

Hµ(ξ) = H(µ(A1), µ(A2), . . .) = −∑
i∈I

µ(Ai) log µ(Ai) ∈ [0, ∞].

If ξ and η are partitions, then the conditional entropy of ξ given η is defined to be

Hµ(ξ|η) =
∞

∑
j=1

µ(Bj)H

(
µ(A1 ∩ Bj)

µ(Bj)
,

µ(A1 ∩ Bj)

µ(Bj)
, . . .

)
,

which may be viewed as a weighted average of entropies of the partition ξ conditioned on
individual atoms Bj ∈ η.

The information function of a partition ξ is defined by

Iµ(ξ)(x) = − log µ([x]ξ)

where [x]ξ ∈ ξ is the partition element with x ∈ [x]ξ . If η is another partition, then the
conditional information function of ξ given η is defined by

Iµ(ξ|η)(x) = − log
µ([x]ξ∨η)

µ([x]η)
.

The following proposition summarizes some important properties of entropy and informa-
tion function.

Proposition 1 (Lemma 1.7 and Lemma 1.12 of Reference [6]). Let (X,B, µ, T) be a measure-
preserving system and let ξ, η be partitions. Then, we have

1. (Integration)

Hµ(ξ) =
∫

X
Iµ(ξ)dµ and Hµ(ξ|η) =

∫
X

Iµ(ξ|η)dµ

2. (Additivity)

Hµ(ξ ∨ η) = Hµ(η) + Hµ(ξ|η) and Iµ(ξ ∨ η) = Iµ(η) + Iµ(ξ|η)

3. (Invariance)

Hµ(ξ|η) = Hµ(T−1ξ|T−1η) and Iµ(ξ|η) ◦ T = Iµ(T−1ξ|T−1η).

Proof. These follows directly from the definitions. For convenience of the reader, we prove
the third statement of the proposition. Since T−1[Tx]η = [x]T−1η for all x ∈ X, we have

Iµ(ξ|η)(Tx) = − log
µ([Tx]ξ ∩ [Tx]η)

µ([Tx]η)
= − log

µ([x]T−1ξ ∩ [x]T−1η)

µ([x]T−1η)
= Iµ(T−1ξ|T−1η)(x),
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which completes the proof.

2.2. Entropy of a Measure-Preserving Transformation

The third observation of Proposition 1 enables us to define the notion of entropy of a
measure-preserving transformation (rather than a partition). We note that the sequence
(an) defined by

an = Hµ(ξ ∨ T−1ξ ∨ · · · ∨ T−(n−1)ξ)

is sub-additive. Hence, by Fekete’s lemma (Lemma 1.13 of Reference [6]), it follows that
lim

n→∞
an exists. The entropy of T with respect to ξ is defined by

hµ(T, ξ) = lim
n→∞

1
n

Hµ

(
n−1
∨

i=1
T−iξ

)
and the entropy of T is defined by

hµ(T) = sup
ξ : Hµ(ξ)<∞

hµ(T, ξ).

If ξ is a countable partition with finite entropy, then

hµ(T, ξ) = lim
n→∞

Hµ

(
ξ|

n
∨

i=1
T−iξ

)
.

Hence, the definition involves a supremum over the set of all finite partitions. The next
theorem gives a sufficient condition on a partition to allow to work with a single partition.

Theorem 2 (Kolmogorov-Sinai, Theorem 1.21 of Reference [6]). If T is invertible and ξ is a
partition with finite entropy that is a generator under T in the sense that

∞
∨

n=−∞
T−nξ = B,

then hµ(T) = hµ(T, ξ).

Thus, it transfers the difficulty inherent in computing measure-theoretic entropy to
the problem of finding a generating partition.

3. Continued Fraction of Fq
(
(t−1)

)
and the Tree of PGL2

In this section, we discuss arithmetic and geometry of a field of formal series Fq((t−1))
over a finite field Fq. In particular, we review simple continued fraction expansion of
Fq((t−1)) and the Bruhat-Tits tree of PGL

(
2,Fq((t−1))

)
. We refer to Reference [7] and

Reference [4] for more details of the theory of continued fraction of a field of formal series.

3.1. Continued Fraction of a Field of Formal Series

Given an arbitrary field F with an absolute value | · |, we define the finite simple
continued fraction [a0; a1, . . . , an] as

[a0; a1, . . . , an] = a0 +
1

a1 +
1

. . . +
1
an

∈ F

for a0 ∈ F and a1, . . . , an ∈ F−{0}. We define the infinite simple continued fraction [a0; a1, . . .],
if exists, by

[a0; a1, a2, . . .] = lim
n→∞

[a0; a1, . . . , an]
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where the limit is taken with respect to the absolute value | · |.
Let K be the field Fq((t−1)) of Laurent series in t−1 over a finite field Fq and Z be the

subring Fq[t], of polynomials in t over Fq, of K. Given an element α =
−∞

∑
i=n

aiti of K with

an 6= 0, let us define

deg(α) = n, [α] = a0 + a1t + · · ·+ antn, {α} = a−1t−1 + a−2t−2 + · · ·

the degree, the polynomial part and fractional part of α, respectively. Then, K is a normed
field with the associated absolute value given by∣∣∣∣ αβ

∣∣∣∣ = qdeg(α)−deg(β), |0| = 0.

We further denote by O the local ring Fq[[t−1]] of K which consists of power series in t−1

over Fq. More precisely, let

O = {α ∈ K : deg(α) ≤ 0}.

Contrary to the usual absolute value on Q, the norm | · | on K is non-Archimedean, that is,

|α− β| ≤ max{|α|, |β|}

holds for every α, β ∈ K and in particular equality holds if |α| 6= |β|.
While there is no general algorithm to compute the sum, difference or product of

continued fractions, we state a useful lemma on an absolute value of difference of two
continued fractions.

Lemma 1 (Lemma 1.2.21 of Reference [7]). For

α = [a0; a1, a2, . . .] and β = [b0; b1, b2, . . .]

with α 6= β, let i be the integer such that an = bn for n = 0, 1, . . . , i− 1 and ai 6= bi. If i = 0, then
|α− β| = |a0 − b0|. If i ≥ 1, then

|α− β| = |ai − bi|
q2di |aibi|

where di = deg(a1) + · · ·+ deg(ai−1).

The non-Archimedean property of the norm | · | on K yields that a0 = b0, . . . , ai = bi if
and only if |α− β| < q−2di with the above notation. We conclude that the infinite simple
continued fraction expansion of a Laurent series is always unique.

3.2. Tree of PGL2

We recall the notion of Bruhat-Tits tree T of G in this subsection. See also Reference [5]
for the detail. Let W the maximal compact subgroup PGL2(O) of G. The vertices of T are
defined to be the elements of G/W. We note that right multiplication of elements in W
corresponds to an iteration of elementary O-column operations. Let us recall that there are
three types of elementary O-column operations.

1. A column within the matrix can be switched with another column.
2. Each column can be multiplied by an invertible element of O (hence by a non-zero

element of Fq).
3. A column can be replaced by the sum of that column and a O-multiple of another

column.
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Using these three types of operations, we can understand every vertex of T as[(
tn f (t)
0 1

)]
W

for some integer n (may be negative) and a rational function f (t) ∈ tn+1Z. Let

πn : tnZ→ tn+1Z, πn(antn + an+1tn+1 + · · · ) = an+1tn+1 + · · ·

be the projection map which forgets the tn term. Two vertices[(
tn1 f1(t)
0 1

)]
W and

[(
tn2 f2(t)
0 1

)]
W

are defined to be adjacent to each other (there is an edge between two vertices) if and only
if |n1 − n2| = 1 and f1 and f2 satisfy{

f2(t) = πn2( f1(t)), if n2 = n1 + 1
f2(t) = f1(t) + atn1 , if n2 = n1 − 1

for some a ∈ Fq. It follows that the degree (the number of edges attached to the vertex) of
each vertex of T is equal to q + 1. We also note that the visual boundary ∂∞T at infinity of
T can be identified with P1(K) = K ∪ {∞} (cf. Section 2 of Reference [8]). Let ∂∞T 3

dist be
the set

{(ω1, ω2, ω3) ∈ (∂∞T )3 : ωi 6= ωj for 1 ≤ i 6= j ≤ 3}

of distinct ordered triple points in ∂∞T . Since two by two projective general linear group
PGL(2, F) over a field F acts simply transitively on (P1(F))3

dist by Möbius transformation[
a b
c d

]
·ω =

aω + b
cω + d

,

we have a bijection Φ : G → ∂∞T 3
dist ' P1(K)3

dist given by

Φ(g) = g · (0, 1, ∞).

Let us finish this section with introducing notation for special vertices of T . Let xi be
the vertex of T defined by

xi =

[(
ti 0
0 1

)]
W.

Then, the sequence (xi)
∞
i=−∞ forms a bi-infinite parametrized geodesic on T , which we call

the standard geodesic of T . See Figure 1 which describes the vertices xi of T and an example
of ordered triple points (ω1, ω2, ω3).

· · · •
x−3

•
x−2

•
x−1

•
x0 •

x1 •
x2 •

x3· · ·

ω1 ω2 ω3

xi =

[(
ti 0
0 1

)]
W

Figure 1. Example: deg(ω1) = −3, deg(ω2) = −1 and deg(ω3) = 3.

4. Quotient by Nagao Lattice and a Partition of Γ\G/T

In this section, we look into the diagonal action φa on Γ\G/T in details. We show that
the right translation map by diagonal elements on Γ\G/T can be viewed as a suspension
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map of a shift space. From this, we may find a generating partition of (Γ\G/T, φa) with
Borel σ-algebra, which is useful when we compute the measure-theoretic entropy. The main
ingredient of the proof is the uniqueness of infinite simple continued fraction expansion on K.

4.1. Describing φa on Γ\G/T as a Suspension System

The group Γ acts on the set of vertices of T by γ · gW = γgW. Let us recall that there
are three types of elementary Z-row operations.

1. A row within the matrix can be switched with another row.
2. Each row can be multiplied by an invertible element of Z (hence by a non-zero element

of Fq).
3. A row can be replaced by the sum of that row and a Z-multiple of another row.

In a similar way as in the previous section, we note that left multiplication of elements in Γ
corresponds to an iteration of elementary Z-row operations. Applying these operations,
we may write G as a union of double coset

G =
∞
∪

i=0
Γ
[(

ti 0
0 1

)]
W.

Therefore, the quotient graph Γ\T is a ray (see Figure 2) with vertices

[xi] = Γ
[(

ti 0
0 1

)]
W, i = 0, 1, 2, . . .

whose stabilizer in Γ is given by

StabΓ(x0) = Γ+
0 = PGL(2,Fq[t])

and

StabΓ(xi) = Γi =

{(
a b
0 d

)
∈ Γ : deg(b) ≤ i

}
.

•
[x0]

•
[x1]

•
[x2]

•
[x3]

•
[x4]

•
[x5]

• · · ·
[x6]

•
Γ+

0 •
Γ1 •

Γ2 •
Γ3 •

Γ4 •
Γ5 • · · ·

Γ6

Figure 2. Nagao ray of index q.

Let φa : Γ\G/T → Γ\G/T be the map given by φa(x) = xa. In Section 3 of Refer-
ence [8], the author identified Γ\G/T with

{(ω1, ω2, k) : ω1 ∈ t−1O, ω2 ∈ K−O, deg(ω1) ≤ k < deg(ω2)}.

Slightly modifying the argument, we may also identify Γ\G/T with

F = {(ω1, ω2, k) : ω1 ∈ t−1O, ω2 ∈ K−O, 0 ≤ k < 2 deg(ω2)}

and the map φa is equivariant with the map φ : F → F given by

φ(ω1, ω2, k) =

 (ω1, ω2, k + 1) if 0 ≤ k < 2 deg(ω2)− 1(
1

ω1 − [ω2]
,

1
ω2 − [ω2]

, 0
)

if k = 2 deg(ω2)− 1.

See Figure 3 for the case of (ω1, ω2, 3) with deg(ω1) = −1 and deg(ω2) = 2.
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· · · •
x−2

•
x−1

•
x0

•
x1

•
x2

•
origin

•

• · · ·

ω1 ω2

...
...

...

...

...

Figure 3. (ω1, ω2, k) with deg(ω1) = −1, deg(ω2) = 2, k = 3.

In other words, we have the following commutative diagram.

Γ\G/T
φa
//

Φ
��

Γ\G/T

Φ
��

F
φ

// F

.

This enables us to consider the system (Γ\G/T, φa) as a suspension map on t−1O× (K−O)
with the roof function r(ω1, ω2) = 2 deg(ω2).

4.2. Entropy Generating Partition of Γ\G/T

In this subsection, we give a generating partition of (Γ\G/T, φa). Let [0; a1, a2, . . .] be
the simple continued fraction of ω1. If ω1 is rational and has a finite continued fraction
[0; a1, . . . , an], then we write as

ω1 = [0; a1, . . . , an, ∞, ∞, . . .].

Hence, we may assume that the continued fraction [0; a1, a2, . . .] is always infinite. Similarly,
let [b0; b1, b2, . . .] be the infinite simple continued fraction of ω2.

In order to explain the basis of F , let us introduce a notation. Let

En1,n2
α,β,k = (α + t−n1O)× (β + t−n2O)× {k}.

The collection{
En1,n2

α,β,k : α ∈ t−1O, β ∈ K−O, n1 ≥ 1, n2 ≥ 1, 0 ≤ k < 2 deg(β)
}

of subsets of

{(ω1, ω2, k) : ω1 ∈ t−1O, ω2 ∈ K−O, 0 ≤ k < 2 deg(ω2)}

forms a basis for topology of F . See Figure 4 which describes E2,1
α,β,3 with deg(α) = −1 and

deg(β) = 2.
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Let L = Fq[t] ∪ {∞} − {Fq}. Using the infinite simple continued fraction of K, we
may write arbitrary elment (ω1, ω2) of t−1O × (K−O) as

(ω1, ω2) = (. . . , a2, a1, b0
↑

origin

, b1, b2, . . .) ∈ LZ

for
ω1 = [0; a1, a2, . . .] and ω2 = [b0; b1, b2, . . .].

Let [an, . . . , a1, b0, b1, . . . , bm] the cylindrical set defined by{
(ci) ∈ LZ : c−i = ai for 1 ≤ i ≤ n, cj = bj for 0 ≤ j ≤ m

}
and hence we may again identify F with a subset of LZ × Z≥0. Let ξ be the partition of
Γ\G/T for which the ξ-atom [x]ξ of

x = ((. . . , an, . . . , a1, b0, b1, . . . , bm, . . .), k)

is given by [x]ξ = ([b0], k). Then

n
∨

i=1
φ−i

a ξ =

{
([b0, b1, . . . , bj], k) :

0 ≤ k < 2 deg(b0)
2(deg(b1) + · · ·+ deg(bj)) ≤ n

}
.

Lemma 2. The partition ξ is a generator of (Γ\G/T, φa,B) for the Borel σ-algebra B of Γ\G in
the sense that

n−1
∨

j=−(n−1)
φ
−j
a (ξ)→ B as n→ ∞.

Proof. This follows from the uniqueness of the simple continued fraction expansion of K
due to Lemma 1.

· · · •
x−2

•
x−1

•
x0

•
x1

•
x2

•
k = 3

•

• · · ·

α β

α + t−2O β + t−1O

Figure 4. E2,1
α,β,k with deg(α) = −1, deg(β) = 2, k = 3.
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5. Invariant Probability Measures and Entropy

In this section, we prove Theorem 1 and Corollary 1.

5.1. Description of µi and fµ

Let us prove the first statement of Theorem 1. We may characterize the φa-invariant
probability measures on Γ\G/T. Note that

µ([cn1 , . . . , c1, b0, b1, . . . , bn2 ], 0) = µ([cn1 , . . . , c1, b0, b1, . . . , bn2 ], k)

for any k and hence we get

µ([cn1 , . . . , c1, b0, b1, . . . , bn2 ], 0) = µ([cn1 , . . . , c1, b0, b1, . . . , bn2 ], 0).

By Lemma 1, we have

[ar, . . . , a1, b0, b1, . . . , bs] =
(

α + t−2 ∑ deg(ai)−1O
)
×
(

β + t−2 ∑ deg(bj)−1O
)

.

Since every open basis En1,n2
α,β,k of F is a union of cylindrical sets, a φa-invariant probabil-

ity measure µ is determined by the value of

µ([b0, b1, . . . , bs], 0).

We may consider F as a disjoint union

F =
∞
∪

i=1

2i−1
∪

k=0
{(ω1, ω2, k) : deg(ω2) = i}.

Let Ub0,b1,...,bn be the open subset of K defined by

{α ∈ K : α = [a0; a1, . . . , an, . . .], ai = bi for 0 ≤ i ≤ n}.

Let µi be the measure on Ei given by µi(Ub0,b1,...,bn) = µ([b0, b1, . . . , bn], 0) for deg(b0) = i.
Since

F = ∪
c∈L

2 deg(c)−1
∪

k=0
([c], k)

and µ(F ) = 1, we have
∞

∑
i=1

2iµi(Ei) = 1. (1)

Remark 1. In fact, the converse also holds. Given the measure µi on Ei satisfying the Condition 1,
let µ be the measure on F defined by

µ([cn, . . . , c1, b0, b1, . . . , bm], k) = µdeg(cn)(Ucn ,...,b0,b1,...,bm)

for any ci, bj ∈ L and 0 ≤ k < 2 deg(b0). Then, µ is a φa-invariant probability measure on F .

Lemma 3. The G-invariant probability measure m on Γ\G/T is given by

m(En1,n2
α,β,k ) =

q− 1
2qn1+n2+2 deg(β)−1

.

Proof. We note that there are (q− 1)qi polynomials of degree i. Since

F = ∪
b∈L

2 deg(b)−1
∪

k=0
E1,1

0,b,k
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and

∑
b∈L

2(q− 1)deg(b)
2q2 deg(b)+1

=
∞

∑
i=1

i(q− 1)2

qi+1 = 1,

the above definition implies that ‖m‖ = 1. We also note that gx0 = x0 for g ∈W. From the
definition, m is invariant under W. Indeed,

m(En1,n2
α,β,k ) = m(En1,n2

α′ ,β′ ,k)

for all α, α′ ∈ t−1O and β, β′ ∈ K−O with deg(β) = deg(β′), so the measures are allocated
with equal probability at each branch point. By Cartan decomposition G = WA+W, a
φa-invariant measure is G-invariant if and only if it is W-invariant. Thus, the measure m is
invariant under G.

It also can be characterized by the value of cylindrical sets. Namely,

m([cn, . . . , b0, . . . , bn′ ], k) =
q− 1

2
q−2 deg(cn)−···−2 deg(c1)−2 deg(b0)−···−2 deg(bn′ )−1.

Let us define

fµ(β) = − lim
t→∞

log
µ([b0, b1, . . . , bt], 0)

µ([b1, . . . , bt], 0)
.

Example 1. We note that there are (q− 1)qi polynomials of degree i. From the definition of m in
Lemma 3, it follows that

mi(Ei) =
(q− 1)2

2
q−i−1 and fm(α) = 2 deg(α) log q.

5.2. Entropy of φa with Respect to µ and m

Now we prove the second part of Theorem 1. Let A =
∞
∨

n=0
φ−n

a ξ be the future condi-

tioning partition of Γ\G/T. We note that ξ is a generator of (Γ\G/T, φa,B) from Lemma 2.
Since [x]A 6= [x]

φ−1
a A if only if k = 2 deg(b0)− 1, the measure-theoretic entropy of φa with

respect to µ is given by

hµ(φa, ξ) = lim
n→∞

Hµ

(
ξ|

n
∨

i=1
φ−i

a ξ

)
=
∫

Γ\G/T
− log µ

φ−1
a A

x ([x]A)dµ(x)

=−
∫
F

lim
t→∞

log
µ([b0, b1, . . . , bt], 2 deg(b0)− 1)

µ([b1, . . . , bt], 0)
dµ(x)

=
∞

∑
i=1

∫
Ei

fµ(α)dµi(α).

Corollary 2. Let φa : Γ\G/T → Γ\G/T be the map x 7→ xa and m be the unique G-invariant
probability measure on Γ\G/T. Then, hm(φa) = log q.

Proof. Since fm(α) is constant (equal to log q2i) on each Ei, we have

hm(φa) =
∞

∑
i=1

i(q− 1)2

qi+1 log q = log q

from the above entropy formula.
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6. Discussion

From the above theorem, we may distinguish the Haar measure with other φa-
invariant probability measures. It would be very interesting to discuss the effective unique-
ness of the maximal measure m. Namely, we would like to answer to the following question:
For a compactly supported locally constant function f on PGL2

(
Fq[t]

)
\PGL2

(
Fq((t−1))

)
/

PGL2
(
Fq[[t−1]]

)
, is |m( f )− µ( f )| is essentially bounded by |hm(φa)− hµ(φa)|?

This type of question can be answered via achieving ‘Einsiedler inequality’. It is
known for a shift of finite type [9], diagonal action on p-adic and S-arithmetic homogeneous
spaces ([10,11]). In the positive characteristic setting, the main difficulty is that the associated
countable Markov shift does not have the ‘big images and preimages’ (BIP) property.

7. Conclusions

Measure-theoretic entropy is a numerical invariant associated to a measure-preserving
system. It is preserved by measurable isomorphism, and hence it can be used in order
to distinguish special measures from other invariant measures. Motivated by the case of
geodesic flow on modular surface PSL(2,Z)\H, we addressed a positive characteristic
homogeneous space.

We investigated arbitrary invariant probability measures of the discrete geodesic flow
φa : x 7→ xa on PGL2

(
Fq[t]

)
\PGL2

(
Fq((t−1))

)
/PGL2

(
Fq[[t−1]]

)
. Especially, we interpreted

these invariant probability measures µ with respect to a family of measures on a field
Fq((t−1)) of formal series. The formula of the mesure-theoretic entropy with respect
to general φa-invariant measure on PGL2

(
Fq[t]

)
\PGL2

(
Fq((t−1))

)
/PGL2

(
Fq[[t−1]]

)
is also

given. Moreover, we conclude that the entropy of φa with respect to the Haar measure m,
which is the measure of maximal entropy, is log q.
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