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Abstract: In this paper, we focus on the critical periods in the economy that are characterized by
unusual and large fluctuations in macroeconomic indicators, like those measuring inflation and
unemployment. We analyze U.S. data for 70 years from 1948 until 2018. To capture their fluctuation
essence, we concentrate on the non-Gaussianity of their distributions. We investigate how the
non-Gaussianity of these variables affects the coupling structure of them. We distinguish “regular”
from “rare” events, in calculating the correlation coefficient, emphasizing that both cases might lead
to a different response of the economy. Through the “multifractal random wall” model, one can
see that the non-Gaussianity depends on time scales. The non-Gaussianity of unemployment is
noticeable only for periods shorter than one year; for longer periods, the fluctuation distribution
tends to a Gaussian behavior. In contrast, the non-Gaussianities of inflation fluctuations persist for all
time scales. We observe through the “bivariate multifractal random walk” that despite the inflation
features, the non-Gaussianity of the coupled structure is finite for scales less than one year, drops for
periods larger than one year, and becomes small for scales greater than two years. This means that the
footprint of the monetary policies intentionally influencing the inflation and unemployment couple
is observed only for time horizons smaller than two years. Finally, to improve some understanding
of the effect of rare events, we calculate high moments of the variables’ increments for various q
orders and various time scales. The results show that coupling with high moments sharply increases
during crises.

Keywords: non-Gaussianity; bivariate multifractal random walk; inflation; unemployment; com-
plex systems

1. Introduction

Unemployment and inflation are two important economic features; their relation is
highly meaningful for policymakers. It is common knowledge of experts that the possible
relation that holds between these two variables has been a key controversial issue among
different schools of economic thought.

Indeed, historically, this controversy flared up with the observation of Alban W.
Phillips’ report on a negative relationship between unemployment and the growth of
wages from 1861 until 1957 in the United Kingdom [1]. Such a negative relation was named
after him, i.e., the Phillips curve [2].
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A few months after the publication of A.W. Phillips, Robert Solow, and Paul Samuel-
son published related findings. They observed a similar negative correlation between
unemployment and inflation in the United States [3]. These findings begot an illusion
that policymakers can permanently decrease unemployment at the cost of high inflation.
Warnings about such a policy however were made by the new classical economists such
as Milton Friedman and Edmund Phelps [2,4–6]. They argued that if, in the long run,
policymakers increase the volume of money, agents realize the policy and increase prices.
As a consequence of these situations, price growth would not be accompanied by a decline
in unemployment, as wished.

In the 1970s, the prediction by these new classical economists came true. A long-
lasting period of stagnation started during which expansionary monetary policies failed to
downturn unemployment; a positive relationship between unemployment and inflation
emerged during a decade [7].

Currently, in the mainstream, one believes that the growth of money cannot boost
the economy and decrease unemployment if one imposes a sustained and permanent
inflation policy. If policymakers aim to let the money volume increase permanently, agents
become so accustomed that the government policies become ineffective in the long run.
Nevertheless, the Federal Reserve looks at the volume of money and at the interest rate
as apparatuses, even levers, to influence the economy in the short run. In other words,
policymakers at the Federal Reserve believe that unexpected changes in the volume of
money influence economic conditions in the short run. However, an interesting question
pertains to the time scale that distinguishes the short run from the long run relationship
between inflation and unemployment.

Thus, the true relation between unemployment and inflation and especially the causal-
ity direction between them are still serious controversial issues in economics; see for
example [8–19] and the references therein. The debate especially finds a crucial meaning if
policymakers aim to impose expansionary monetary policies to boost production during
recessions. There is no need to observe that this controversy is a quite pertinent dilemma
at the time of writing (during the COVID-19 pandemic) [20,21].

Yet, few works have considered the so-called theoretical complexity of these variables.
This gap thereby leads to the research questions of this paper, as in [22,23].

On the other hand, complexity economics has attracted a great deal of attention in
recent years [24–35]. Indeed, the economy can be considered as a huge network of hetero-
geneous agents who interact with each other and with their environment [34,36–43]. It
is reasonable to expect that inflation and unemployment, as outcomes of these complex
systems, inherent complexity theory features. This suggests considering a thorough analy-
sis of these variables along with advanced techniques available in the complexity theory
approach, itself found to be of interest in many applications [44–47].

Looking at unemployment and inflation indices as simple variables forces one to
ignore some rich knowledge about their complexity. It has been shown for example that
economic indicators and their coupling have nice scaling and present multifractal fea-
tures [22,48–52]. Scaling analysis has proven successful to address a wide range of phenom-
ena in nature; see for example [53–58]. Economic indices are not an exception [49,50,59–62].
Moreover, these multiscaling features can be also described through an entropy function
and free energy as introduced for multifractals [63–65].

In this work, to grab scaling features of unemployment and inflation, and to ana-
lyze the role of large fluctuations, we focus on the non-Gaussianities in their probability
density functions (PDF). For illustration, we focus on monthly records of inflation and
unemployment rates, provided by the U.S. Inflation Calculator [66] and U.S. Bureau of
Labor Statistics [67], for the period lasting from January 1948 until October 2018 [68].

Figure 1a illustrates such monthly data during the period. The mean (standard devia-
tion) % values of inflation and unemployment for this term are 3.51(2.93) and 5.76(1.64),
respectively. The correlation coefficient between unemployment and inflation for the whole
data depicted in Figure 1 is less than ∼0.05, which is not statistically meaningful.



Entropy 2021, 23, 42 3 of 11

Figure 1b shows two areas for the data points: “regular” and “rare” events. Regular
events are those events that are inside an ellipse centered on the mean value coordinates of
both data with a “chord” of three standard deviations (3σ) in each possible direction in the
plane. In other words, we consider that the rare events are those events that are at least 3σ
away from the mean value.

If we exclude regular events and focus on the tail of the distribution illustrated in
Figure 1b, then the correlation coefficient is '−0.24. This means that the response of the
economy to rare events might be different from regular events.
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Figure 1. Unemployment vs. inflation. Each point represents the unemployment vs. inflation rate.
The inflation rate is the year-on-year consumer price index (CPI) reported monthly for the period
ranging from January 1948 till October 2018; (a) All data points, 850. (b) Regular events (greenish
blue points, 702 points) and the rare events (dark blue, 148 points) via an ellipse. The center of this
ellipse has to coordinate the mean value of each data. Each chord of the ellipse in whatever direction
is three times the standard deviation of the data in that direction. This means that points outside the
ellipse are three standard deviations away from the mean value. Source: U.S. Inflation Calculator [66]
and Bureau of Labor Statistics [67].

2. Methods
2.1. Multifractal Random Walk (MRW)

In essence, the Multifractal Random Walk (MRW) is used to analyze time series
stems from turbulent cascade models [69]. MRW is a model to study multifractality based
on the non-Gaussianity of the PDF. The model generates a non-Gaussian time series of
fluctuations through protecting two-time series, a Gaussian and a log-normal, such that the
non-Gaussian parameter is the standard deviation of the log-normal signal. One can show
that in an MRW, the non-Gaussianity parameter is related to multifractality features [56,70].

Thus, MRW processes are useful for representing the non-Gaussian behavior of time
series. Practically, the temporal fluctuations increment of a process at scale s, δsx(t) =
x(t + s)− x(t), are modeled by the product of a normal and a log-normal process:

δsx(t) = εs(t)eωs(t), (1)

where εs(t) and ωs(t) are normal processes with zero mean and standard deviations equal
to σ(s) and λ(s), respectively.

Based on Equation (1), we can write a probability density function for δsx(t) as:

Ps(δsx) =
∫ ∞

0
Gs(ln σ(s))

1
σ(s)

Fs

(
δsx

σ(s)

)
d(ln σ(s)), (2)

where:

Gs(ln σ(s)) =
1√

2πλ(s)
exp

[
− (ln σ(s) + λ2(s))2

2λ2(s)

]
, (3)
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and:

Fs

(
δsx

σ(s)

)
=

1√
2π

exp
[
− δsx2

2σ2(s)

]
. (4)

Since λ2(s) is the variance of the log-normal part of the process. This parameter is the
key representative measure of the non-Gaussianity of the process; if λ2(s)→ 0, the PDF
of δsx(t) converges to a Gaussian distribution. An estimation of λ2(s) versus a scale s is
our way of presenting the effect of large fluctuations over different time scales. Further-
more, for showing the effects of the rare events (in the PDF tails), high order moments of
fluctuations of order q, denoted by mq, can be calculated:

mq(δsx) = 〈|(δsx)|q〉 =
[∫
|δsx|qPs(δsx)d(δsx)

] 1
q
. (5)

A large value of mq implies a significant role of rare events. If this is found to be independent
of q, the process is called monofractal; otherwise, it is called a multifractal [56].

2.2. Joint Multifractal Approach: The Bi-MRW Method

Muzy et al. [71,72] proposed the Bivariate Multifractal Random Walk (Bi-MRW)
method for analyzing two coupled non-Gaussian stochastic processes (x(t) = {x1(t), x2(t)})
simultaneously, when the increments of each time series are supposed to be generated by
the product of normal and log-normal processes:

δsx(t) = (δsx1(t), δsx2(t)) =
(

ε
(s)
1 (t)eω

(s)
1 (t), ε

(s)
2 (t)eω

(s)
2 (t)

)
, (6)

in which (ε
(s)
1 , ε

(s)
2 ) and (ω

(s)
1 , ω

(s)
2 ) have a joint normal PDF with zero mean.

Practically, (ε(s)1 , ε
(s)
2 ) have a covariance matrix:

Σ(s) ≡
(

σ2
1 (s) Σ(s)

Σ(s) σ2
2 (s)

)
(7)

where Σ(s) = ρε(s)σ1(s)σ2(s) [71].
The covariance matrix of (ω(s)

1 , ω
(s)
2 ) is denoted by Λ(s) and called a “multifractal

matrix” [71]; it is given by:

Λ(s) ≡
(

λ2
1(s) Λ(s)

Λ(s) λ2
2(s)

)
, (8)

where Λ(s) = ρω(s)λ1(s)λ2(s) and ρω(s) is the “multifractal correlation coefficient”.
The PDFs of (ε(s)1 , ε

(s)
2 ), and (ω

(s)
1 , ω

(s)
2 ) have the following form:

Fs(ε
(s)
1 , ε

(s)
2 ) =

1

2π
√

Det(Σ(s))
exp


−

εT
(s) · Σ−1

(s) · ε(s)
2


 (9)

Gs(ω
(s)
1 , ω

(s)
2 ) =

1

2π
√

Det(Λ(s))
exp


−

ωT
(s) ·Λ−1

(s) · !(s)
2


 (10)

Therefore, the joint PDF of the fluctuations increment vector (δsx1, δsx2) is given by:

Ps(δsx1, δsx2) =
∫

d(ln σ1(s))
∫

d(ln σ2(s))Gs(ln σ1(s), ln σ2(s))
1

σ1(s)
1

σ2(s)
F
(

δsx1

σ1(s)
,

δsx2

σ2(s)

)
. (11)
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It follows from the above definitions of Gs(ln σ1(s), ln σ2(s)) and Fs

(
δsx1
σ1(s)

, δsx2
σ2(s)

)
that:

Gs(ln σ1(s), ln σ2(s)) = 1
2π
√

λ2
1(s)λ

2
2(s)−Λ2(s)

exp
[
− λ2

2(s)[ln σ1(s)+λ2
1(s)]

2
+λ2

1(s)[ln σ2(s)+λ2
2(s)]

2−2Λ(s)[ln σ1(s)+λ2
1(s)][ln σ2(s)+λ2

2(s)]
2(λ2

1(s)λ
2
2(s)−Λ2(s))

]
(12)

and:

Fs

(
δsx1
σ1(s)

, δsx2
σ2(s)

)
= 1

2π
√

σ2
1 (s)σ

2
2 (s)−Σ2(s)

exp
[
− [σ2(s)δsx1]

2+[σ1(s)δsx2]
2−2Σ(s)δsx1δsx2

2(σ2
1 (s)σ

2
2 (s)−Σ2(s))

]
. (13)

It can be observed that Ps(δsx1, δsx2) becomes equal to Ps(δsx1)Ps(δsx2) when Λ(s)
and Σ(s) tend to zero.

The q-th order moment of fluctuation increments for such two processes at scale s can
be written as:

mjoint
q (δsx1, δsx2) = 〈|(δsx1)|q|(δsx2)|q〉 =

[∫ ∫
|δsx1|q|δsx2|qPs(δsx1, δsx2)d(δsx1)d(δsx2)

] 1
q
. (14)

3. Results

The non-Gaussian parameter λ2(s) and the joint multifractal coefficient Λ(s) at scale s
are obtained from the integral form of cascading rules in Equations (2) and (11). The best
values, for λ2(s) and Λ(s) at scale s, are found from the global minimum of the chi-squared,
χ2 [73,74]:

χ2(Λ(s); Σ(s)) = ∑
δsx

[
Pdata(δsx)− Ptheory(δsx; Λ(s), Σ(s))

]2

σ2
data(δsx) + σ2

theory(δsx; Λ(s), Σ(s))
, (15)

where Pdata(δsx) is the joint PDF computed from data, while Ptheory(δsx; Λ(s), Σ(s)) is the
theoretical joint PDF proposed in Equation (11). By definition, σ2

data(δsx) and σ2
theory(δsx;

Λ(s), Σ(s)) are the mean standard deviation of Pdata(δsx) and of Ptheory(δsx; Λ(s), Σ(s)),
respectively.

The best value of Λ(s) for the theoretical joint PDF is obtained from the fit of the joint
PDF to the data:

χ2(Λ(s)) = ∑
δsx

∫
dΣ(s)




[
Pdata(δsx, s)− Ptheory(δsx; Λ(s), Σ(s))

]2

σ2
data(δsx, s) + σ2

theory(δsx; Λ(s), Σ(s))


, (16)

The parameter λ2(s) is depicted for inflation, λ2
1(s), and unemployment, λ2

2(s), in
Figure 2. It is seen that λ2

1(s) is large at all scales, whereas λ2
2(s) is large at scales smaller

than one year. Large values of λ2
1(s) imply that rare events occurring in the inflation rate

make its PDF non-Gaussian. For unemployment, λ2
2(s) tends to zero at scales larger than

one year. This scaling dependency of λ2
2(s) implies that the occurrence of rare events in

unemployment provides a non-Gaussian behavior at short time scales, but, after one year,
it tends to a Gaussian state.

Concerning the joint multifractal coefficient Λ(s) (see Figure 2), we observe that it
has its highest values for scales lower than one year. Thereafter, Λ(s) decreases relatively
fast and becomes rather small over the scales over two years. This is compatible with
some beliefs about the effect of inflation on the joint relation in the short run and its
ineffectiveness in the long run [75].
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Figure 2. λ2(s) as a measure of non-Gaussianity for unemployment and inflation index fluctuation
distribution and the coefficient Λ(s) for the joint distribution, for different time scales "s".
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Figure 2. λ2(s) as a measure of the non-Gaussianity for unemployment and inflation index fluctuation
distribution and the coefficient Λ(s) for the joint distribution, for different time scales “s”.

Next, to improve our understanding of the behavior of the rare events, we turn to
higher moments of the variables’ increments. We calculated the moments for various q
orders and various time scales s. Recall that high order moments are much more influenced
by the rare events in the tails of the PDF than by small fluctuations.

In Figure 3, color intensity plots of high q value moments are depicted for different
time scales s, for inflation or unemployment cases, i.e., mq(δsx), from Equation (5), as well
as for the joint distribution. It can be seen that the high moments of the unemployment
rates find their largest values for scales below six months. Beyond six months, the moments
drop rapidly. In contrast to the unemployment case, the value variation of high moments
for the inflation rates is relatively noticeable for all scales.

The right panel in Figure 3 illustrates that the behavior of the joint moment is more
similar to the inflation case: a noticeable reduction can be observed for scales above two
years. This means that large fluctuations in inflation and unemployment are more strongly
coupled above this time interval.

Inflation and unemployment are non-Gaussian series. We know that large events have
much more effects on higher moments. The magnitude and intensity of large events in
different moments have different effects. Furthermore, since the occurrence of these large
events has no specific pattern, we can see a rise and fall in different moments. Therefore,
the volatility in the moments is the outcome of these large and unexpected (or rare) events.
These rare events could be the effect of political and economic policies.

In the next step, the behavior of the high moments of inflation and unemployment are
investigated as time evolved between January 1948 and October 2018. A sliding window of
five years was chosen; the moments mq(δsx) were calculated for the one year scale (s = 1).
The five year window size was chosen since this window size is considered large enough
for calculating a meaningful average in such a problem, as in Equations (5) and (14).

Selecting a larger window would flatten the fluctuations, and as a result, the evolution
would not be well studied. Moreover, in [22], it was shown that these three variables have
different scaling behaviors below and above the five year scale.

In Figure 4, we depict the result for this sliding window. It can be seen, from the
red bands, that the joint relation sharply grew at critical periods in the modern history
of the U.S. economy, i.e., one can pin the volatile postwar period, the stagflation of the
1970s, the period of the Volcker deflationary program, in the 1980s, and the (recent) Great
Recession of 2008–2009.
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Moreover, the colors indicate that the inflation rate likely dominates the coupled
relation at the post-WWII time; in contrast, the unemployment rate seems to dominate the
joint relation in the other historical cases.

Figure 3. The color map of the inflation or unemployment moment mq(δsx) (from Equation (5)) and joint moment

mjoint
q (δsx1, δsx2) (from Equation (14)), for different values of q and different time scales s.

Figure 4. The moments mq(δsx) and mjoint
q (δsx1, δsx2) of order q are estimated at Scale 1 year from 1948 to 2018 for inflation

(left), unemployment (middle), and the pair of variables (right).

4. Conclusions

Inflation and unemployment are dependent variables with non-Gaussian PDFs. The scale
and intensity of this dependency and their coupling effects have been much debated.
The controversy finds its importance when the government aims to impose an expan-
sionary monetary policy over the economic crises. Many researchers have discussed the
relation between inflation and unemployment; recall Phillips [1], Friedman [4,5], and many
others [6,8–12].

In our work, we focus on the non-Gaussianity of the PDF for the fluctuations of
unemployment, inflation, and their coupling. Under the central limit theorem, one should
expect that a small fluctuation has a normal distribution. It is however expected that large
and rare changes present non-Gaussianity features. Such changes can occur either through
unusual market phenomena, such as bubbles and bursts, or through exogenous shocks
imposed by a government.

The Multifractal Random Walk (MRW) is known to be a suitable approach to detect
the non-Gaussianity of PDFs, through the variance of the log-normal process, i.e., the
parameter λ2(s), in Equations (3) and (4). Moreover, the Bivariate Multifractal Random
Walk (Bi-MRW) method is useful for analyzing two joint non-Gaussian stochastic processes
through the corresponding covariance of Λ(s), Equation (8).

By analyzing 70 years of U.S. data via these techniques, the non-Gaussianity of the
PDFs of unemployment and inflation and also that of their joint relation were detected.
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The non-Gaussianity parameter λ2(s) of the unemployment rate is smaller than that for
the inflation and that for the coupled relation Λ(s). It is observed that for scales larger
than one year, the behavior of this λ2(s) parameter for the unemployment tends toward
a “normal state”; on the contrary, for the inflation data, the non-Gaussianity parameter
persists for all studied scales. This means that unexpected fluctuations are observed in a
wide range of scales in the inflation phenomenon.

According to Mortensen and Pissarides [76], fluctuations in inflation being larger
than the fluctuations in unemployment (we quote) can be attributed to a large extent
to differences in policy towards employment protection legislation (which increases the
duration of unemployment and reduces the flow into unemployment) and the generosity
of the welfare state (which reduces job creation).

Classical economics is interested in long run equilibrium and long run prices. In this
school, economists rule out the important role of money value in economic conditions.
New Keynesian economics however emphasizes the role of sticky prices. They accept
that in the long run, prices are adopted based on the forces in the market. They however
claim that if a sudden growth of money value occurs, it takes time for prices to be adjusted
to the new values. Therefore, they expect the short-run effects to help policymakers to
impose effective stimulation either through a shock in money value or a shock in fiscal
stimulation. Interestingly, for policymakers, the non-Gaussianity of the joint relation
tends to zero for periods larger than one and up to two years. This means that large
and unexpected fluctuations in inflation, either endogenously caused in the market or
exogenously imposed by policymakers, have no footprint on the coupling for scales larger
than two years. A concrete statement needs further analysis. However, the time window
of one to two years might be the time window that divides the short-run and the long-run
effects in the market. In other words, for shocks in money volume through the effects of
inflation, we observe that the coupling does not inherit such fluctuations in scales above
the one to two year time window.

We pointed out that this behavior is further observable in the high-order moments of
these (three) variables. Moving the observation window over time, it is discovered that the
non-Gaussianities of the parameters λ2(s) and of their coupling Λ(s) substantially grow
over the critical (crises) periods of the economy.

In so doing, it seems that we convincingly show that the controversial issue in eco-
nomics [8–12] about the true relation between unemployment and inflation depends
greatly on the considered time scales. This means that policymakers should be flexible
and sharply minded, about (their) political horizons, in imposing expansionary monetary
policies given boosting production, whence employment, through consumption during
and after recessions. Notice that if one still accepts Mortensen and Pissarides’s claims [76],
one should wonder whether similar policies should be implemented in Europe and the
USA, as well as in other countries. Indeed, if large fluctuations in inflation with respect to
unemployment may be ascribed to different degrees of employment protection and the
generosity of the welfare state, then this argument may fit quite well some European stories,
as compared to the U.S. economy, but one could still argue that this is less convincing in
interpreting the joint dynamics of the two variables in the Unites States.
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