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Abstract: In the area of brain-computer interfaces (BCI), the detection of P300 is a very important
technique and has a lot of applications. Although this problem has been studied for decades, it is still
a tough problem in electroencephalography (EEG) signal processing owing to its high dimension
features and low signal-to-noise ratio (SNR). Recently, neural networks, like conventional neural
networks (CNN), has shown excellent performance on many applications. However, standard
convolutional neural networks suffer from performance degradation on dealing with noisy data or
data with too many redundant information. In this paper, we proposed a novel convolutional neural
network with variational information bottleneck for P300 detection. Wiht the CNN architecture and
information bottleneck, the proposed network termed P300-VIB-Net could remove the redundant
information in data effectively. The experimental results on BCI competition data sets show that
P300-VIB-Net achieves cutting-edge character recognition performance. Furthermore, the proposed
model is capable of restricting the flow of irrelevant information adaptively in the network from
perspective of information theory. The experimental results show that P300-VIB-Net is a promising
tool for P300 detection.

Keywords: variational information bottleneck; convolutional neural network; P300 signal detection

1. Introduction

Brain-computer interface (BCI) provides a way for people to interact with the envi-
ronment without any muscle activities, especially for people with amyotrophic lateral
sclerosis, spinal cord injuries or other severe motor disabilities [1]. Event-related potentials
(ERP), which is one of the important electroencephalography (EEG) signals, reflects neural
activities after events. As a component of ERP, P300 is named after that positive potentials
peaks occurs at about 300 ms after event-related stimuli [2]. P300 is widely used in BCI
applications, like character recognition [3] and video surveillance [4].

Although P300 has been studied for long time, the detection of P300 is still challenge-
able in the case of low signal-to-noise ratio (SNR) due to unrelated neural activities and
artifacts [5]. Lots of approaches were proposed for P300 detection [6–9]. Recently, the ma-
chine learning based methods achieved excellent performance on P300 detection [10–12].
For the traditional machine learning methods, feature extraction and classification are two
of the key techniques. Principal component analysis [13], wavelet transform technique [14]
were used for effective feature extraction. Support vector machine (SVM) is always used as
a powerful classifier in P300 detection. In BCI Competition III [14], 17 SVM were ensem-
bled for P300 detection and achieved the best performance. Group-sparse Bayesian linear
discriminant analysis (gsBLDA) reached comparable classification accuracy, which treated
signals of different channels as different groups [15].
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Besides the traditional machine learning based methods, recently, deep learning
models with different kinds of techniques had achieved great performance in many areas
including the detection of ERP signal. A classic convolution neural network (CNN) for
the detection of P300 waves was first proposed in Reference [16], that contains the spatial
filter and temporal filter layers to well extract the spatial-temporal information of P300
signals. To make the CNN more robust, batch normalization and dropout were integrated
into the proposed CNN, the resulting CNN is less sensitive to overfitting [17]. To further
develop network which could find ERP components from data automatically, Restricted
Boltzmann Machine (RBM) was utilized in ERP-Net [5]. The ERP-NET could discover all
the ERP patterns contained in EEG signals. In addition, a spatial-temporal discriminative
Restricted Boltzmann Machine (ST-DRBM) was further proposed [18] to learn spatial
and temporal features separately and characterize the scalp distribution and temporal
diversification. ST-DRBM has higher performance for ERP detection and it provides
physiologically explainable results.

To further improve the robustness of network in P300 detection, in this paper, we pro-
pose a novel convolutional neural network based on variational information bottleneck.
The proposed network, which is named as P300-VIB-Net, could reduce irrelevant informa-
tion adaptively from the data. Hence, it is more robust against noise as well as irrelevant
information. The contributions of this paper are summarized as: (1) A novel neural network
architecture, P300-VIB-Net, is proposed for P300 detection. It combines the CNN as well
as variational information bottleneck to make the network more robust against irrelevant
information; (2) P300-VIB-Net reaches the state-of-art performance in P300 speller experi-
ments; (3) We provide an explanation from the perspective of information theory on how
the variational information bottleneck works with CNN. This also provides new insights
on regularization technique.

2. Deep Learning Based on Variational Information Bottleneck

Deep neural networks can be explained in the information-theoretical framework [19]
by information bottleneck (IB) that aims to find the short code for input which maintains
the maximum information about output with mutual information [20]. The neural network
with variational information bottleneck (VIB) show less overfitting and adversarial robust-
ness [21]. Recently, variational discriminator bottleneck (VDB) with IB gets an important
improvement in imitation learning, adversarial inverse reinforcement learning, and gener-
ative adversarial network (GAN) [22]. Information dropout was generalized by dropout
based on IB, making better use of architectures with limited capacity [23]. In this section,
an introduction on IB is presented as follows.

2.1. Information Bottleneck Principle

Relevant information in input data x ∈ X is defined as the information that signal x
provides about output data y ∈ Y. Signal coding focuses on discovering the representation
Z of X, as known as code or hidden variables, keeping the most information about Y,
which is measured by mutual information I(Z, Y) between Z and Y

I(Z, Y) =
∫

z

∫
y

p(z, y) log
p(z, y)

p(y)p(z)
dydz. (1)

It is obvious that I(Z, Y) achieves the maximal value by taking the identity coding of
input data as Z = X. This identity encoding is not a useful representation of the processed
data. Hence, in practice, the constraint I(X, Z) ≤ Ic is imposed as the ‘bottleneck’, where Ic
is a constant, restricting the information from X to Z. This suggests the objective

max I(Z, Y) s.t. I(X, Z) ≤ Ic. (2)
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By introducing a Lagrange multiplier β, the above problem can be formulated as
minimizing the function below to get the ideal representation,

− I(Z, Y) + βI(X, Z). (3)

Minimizing the first term enhances the transfer of information from the intermediate coding
variable Z to output variable Y, while minimizing the second term limits the transfer of
information from the input variable X to the intermediate coding variable Z. We can find
a suitable β to preserve minimal information from X to Z and the information in Z is
sufficient to predict Y.

The information bottleneck principle discussed above defines an optimal representa-
tion and holds the most distinctive information about Y in X. However, the computation
about mutual information in information bottleneck principle is always hard except some
very restrictive cases. How to simplify the calculation of problem in (3) is always an
important problem in practice.

2.2. Variational Information Bottleneck

To solve the computational problem in IB, two significant improvements were pro-
posed in the variational information bottleneck [21]. Firstly, variational inference is applied
to build an upper bound of the function of IB. Secondly, the objective function can be opti-
mized by stochastic gradient descent with the reparameterization trick [24]. Deep neural
networks can be used for parameterization of distributions.

For I(Z, Y) defined in (1), since p(y|z) is difficult to obtain in practice, we use a varia-
tional approximation q(y|z) to approximate p(y|z). Since the Kullback-Leibler divergence
is non-negative, that is, KL(p(y|z)||q(y|z)) ≥ 0, we have∫

y
p(y|z) log p(y|z)dy ≥

∫
y

p(y|z) log q(y|z)dy. (4)

Therefore,

I(Z, Y) =
∫

z
p(z)

∫
y

p(y|z) log
p(y|z)
p(y)

dydz (5)

≥
∫

z
p(z)

∫
y

p(y|z) log
q(y|z)
p(y)

dydz (6)

=
∫

z

∫
y

p(z, y) log q(y|z)dydz + H(Y), (7)

where H(Y) = −
∫

z p(z) log p(z)dz is independent of the optimization, and it can be
neglected. Recall Markov assumption about joint distribution p(X, Y, Z) in Reference [21],
which is p(Z|X, Y) = p(Z|X), corresponding to the Markov chainY ↔ X ↔ Z, we have
p(z, y) =

∫
x p(x)p(y|x)p(z|x)dx. Consequently,

I(Z, Y) ≥
∫

z

∫
y

∫
x

p(x)p(y|x)p(z|x) log q(y|z)dxdydz. (8)

Similarly, we can get the upper bound I(X, Z) of the second term in (3), because of
KL(p(z)||a(z)) ≥ 0, where a(z) is the variational approximation of p(z), which is

∫
z

p(z) log p(z)dz ≥
∫

z
p(z) log a(z)dz. (9)

Therefore,
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I(X, Z)=
∫

z

∫
x

p(z, x) log
p(x, z)

p(x)p(z)
dxdz (10)

=
∫

z

∫
x

p(z|x)p(x) log
p(z|x)
p(z)

dxdz (11)

≤
∫

x
p(x)KL(p(z|x)||a(z))dx. (12)

Input

Conv, 64 × 1, 16

Conv, 1 × 20, 16

Flatten

Dense, 128

VIB, 128

Dropout, Sigmoid

Dense, 128

L0

L1

L2

L3

L4

L5

L6

Figure 1. Details of network architecture. Pivotal information of each layer is shown in solid boxes.
Crucial part of the proposed model is shown in dashed box.

Using empirical data distribution p(x, y) = 1
N ∑N

n=1 δxn(x)δyn(y), where N is the
number of samples, we can write the upper bound as

1
N

N

∑
n=1

[−
∫

z
p(z|xn) log q(yn|z)dz

+βKL(p(z|xn)||a(z))]. (13)

The first term is in the form of a cross-entropy loss function. The second term can be
regarded as a regularization term. a(z) is the distribution we assume, usually a standard
normal distribution. p(z|x) is an encoder, which transforms X into Z. Suppose the encoder
is of the form p(z|x) = N(z| f µ

e (x), f Σ
e (x)), where fe is a neural network which outputs

both the mean µ and covariance matrix Σ, we can use reparameterization trick to generate
z = f (x, ε) which is a deterministic function of x and Guassian random variable ε. Since the
noise ε is independent of parameters of the model, it is easy to take gradients in the training
process. If our choice of p(z|x) and a(z) allows computation of an analytic Kullback-Leibler
divergence, we can get further simplified objective function in training.

2.3. P300-VIB-Net

In this paper, we proposed a new neural network for EEG classification. The pro-
posed network as shown in Figure 1 is based on VIB and classic convolutional network
architecture which is widely used in P300 detection problem. Parameters in the middle of
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convolution layers represents kernel size and parameter at the end of convolution layers is
the number of kernels. The first few layers L0, L1, L2, and L3 of the model are similar to
the layers of traditional convolutional network for P300 detection. L0 is the input layer.
The size of input data to L0 is the number of channels multiplied by the length of signals in
the time domain. L1 plays a role as a spatial filter to get the best combinations of signals
from all electrodes. L2 serves as a temporal filter as well as a sub-sampler, which extracts
the most important time-domain features. In L3, the feature map matrices, which are the
outputs of L2, are flattened into vectors and input to the following fully connected layers.

In L4, there are two different fully connected networks that take the output of L3 as
input to generate the mean and variance of encoder p(z|x) as

p(z|x)= N(z; µ, eσ̂) (14)

(µ, σ̂)= NeuralNetφ, (x) (15)

where NeuralNetφ(x) represents the layers L0-L1-L2-L3-L4, φ is parameters of the network
layers, µ and σ̂ correspond to the output of two fully connected networks in L4. In order to
guarantee the non-negativeness of covariance, the exponential of σ̂ is used to represent the
variance of z.

In L5, reparameterization tricks is applied for easy calculating of gradients. Firstly,
we produce ε by standard normal distribution function. Then, we generate z with µ, σ̂ and
ε as

ε∼ N(0, I) (16)

z= µ + eσ̂ � ε. (17)

In L6, in order to avoid overfitting, the dropout [25] is used. Dropout is a universally
used technique in deep learning, which makes the existence of any particular hidden
unit untrustworthy and cuts down the co-adaptation of neurons, alleviating overfitting
in neural networks at the cost of increased training time. By generating a binary vector
r whose elements follow Bernoulli distribution with p as the parameter representing the
means drop rate in dropout, we have the output as

r∼ Bernoulli(p) (18)

y= f (r ∗ z + b), (19)

where f is the sigmoid function f (x) = 1
1+e−x that represents the P300 signal detection prob-

ability.
In the P300-VIB-Net, p(z|x) is parameterized by L0-L1-L2-L3-L4-L5, which encodes X

into intermediate representation Z. We suppose that a(z) is N(0, I), q(y|z) is parameterized
by L6 as described in (19). After taking the analytical result of KL divergence as [24],
the loss function can be formulated as

Loss =
1
N

N

∑
n=1
−

∫
z

p(z|xn) log q(yn|z)dz

− β

2

J

∑
j=1

[1 + log((σj)
2)− (µj)

2 − (σj)
2], (20)

where J is the size of hidden variable z, µj and σj are j-th elements to generate z. yn are
labels given in the datasets. The cross entropy of probabilities y and labels yn will be
calculated during the learning process to optimize (20).
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3. Experimental Results

In this section, the experimental results of the proposed network on P300 speller
paradigm will be presented. The proposed model, P300-VIB-Net, will be compared with
other state-of-art algorithms to show the effectiveness of the proposed method.

Figure 2. P300 speller interface in brain-computer interface (BCI) Competition III [26].

3.1. P300 Speller Paradigm

The occurrence of P300 is related to the human’s reaction to the stimulus. P300 is
relatively obvious and easy to observe among all ERP components. Thus, P300 is consid-
ered to reflect the process of receiving stimulation. Subjects usually are shown with
a random sequence of target and non-target stimuli based on the oddball paradigm.
Generally, the smaller the probability of the appearance of the target stimulus, the greater
the magnitude of P300, from which we can find the target that subjects focus on.

Data set II of BCI competition III which is widely used as a benchmark data set for P300
detection is used as the test data set. The P300 speller paradigm of data set II was described
in Reference [26]. It was based on the principle that flashing characters on the screen
that subjects focus on will stimulate the presence of P300. The stimulation graphical user
interface consists a 6× 6 matrix, including 36 characters, as shown in Figure 2. Subjects are
asked to focus on one character given in a prompter on top of the matrix. Every row and
every column of the matrix flash once at the rate of 5.7 Hz randomly in each epoch. There
are 2 of 12 intensifications that contain the target character at the intersection of the row
and the column. Therefore, the target character can be detected by distinguishing P300
and non-P300 signals of every flashing. In other words, the classification of 36 classes
is transformed into binary classification problem. 30 P300 and 150 non-P300 signals are
obtained after repeating 15 times for each character. There are 85 characters in the training
set and 100 characters in the test set of subject A and subject B.

3.2. Data Preprocessing

The 64 channel EEG data was collected with sampling rate 240 Hz. Data preprocessing
consists four steps. First of all, the time window is chosen as 0∼670 ms after flashing.
Each sample is of size 64× 160. Secondly, data is bandpass filtered by a 4-th order Cheby-
shev type I filter with bandwidth 0.1–20 Hz. Thirdly, every sample is normalized to be zero
mean and unit variance. Last but not the least, since data in training sets and test sets is
unbalanced, we duplicate the P300 signals 4 times to keep the data sets balance.
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3.3. Experiments of P300-VIB-Net

The network model used in experiments is shown in Figure 1. Compared to traditional
CNN network for P300 detection, the most significant modification is layers L4 and L5,
which are the kernel components of VIB network presented in the dashed box.

Table 1. Character recognition rate of different models.

Subjects Epochs
Models

CNN MCNN-1 E-SVM BN3 PST- ERP-Net SAE- CM-CW-CNN- Proposed[16] [16] [14] [17] DRBM [18] [5] ESVM [27] ESVM [28]

A

1 16 18 16 22 24 22 21 22 15
5 61 61 72 73 75 75 72 64 66
10 86 79 83 86 90 90 90 86 88
15 97 97 97 98 98 99 100 99 100

B

1 35 39 35 47 43 42 40 37 32
5 79 77 75 76 79 77 80 80 72
10 91 92 91 95 94 96 90 95 94
15 92 94 96 95 98 98 98 99 99

Avg

1 25.5 28.5 25.5 34.5 33.5 32 30.5 29.5 23.5
5 70 69 73.5 74.5 77 76 76 72 69
10 88.5 85.5 87 90.5 92 93 90 90.5 91
15 94.5 95.5 96.5 96.5 98 98.5 99 99 99.5

We can get the probability yi by P300-VIB-Net to determine whether the signal contains
P300 component when one row or one column flashes. We can get the coordinates of target
character by

ix = arg max
1≤i≤6

yi (21)

iy = arg max
7≤i≤12

yi, (22)

where i is the index of row or column range in [1, 12], yi represents the probability that the
signal is P300 while the ith row or column in the matrix is intensificated, ix and iy represent
the row and column index with most likely P300 signals. The target character is the one at
the intersection of ix-th row and iy-th column.

In Table 1, the character recognition rate of subject A and B with 1, 5, 10, and 15 epochs
are presented. The results of P300-VIB-Net and other models including E-SVM, CNN,
MCNN-1, BN3, ERP-Net, PST-DRBM, SAE-ESVM, CM-CW-CNN-ESVM, are presented
for comparison. There are two algorithms that combine traditional machine learning
and deep learning and achieve impressive recognition performance. Sparse autoencoder
(SAE) is used for deep feature extraction and ESVM is used for classification in SAE-
ESVM. While in CM-CW-CNN-ESVM, high-level features are extracted by CNN. After that,
Fisher ratio (F-ratio) is used to select these features to get optimal features. However,
when the number of repeat epochs is relatively small, BN3, PST-DRBM, and ERP-Net
achieve the best performance in terms of average character recognition rate. With increasing
number of repeat epochs, the character recognition rate of P300-VIB-Net becomes the
highest one.

3.4. The Role of VIB Term

As mentioned above, the VIB term represents the mutual information between the
input data and intermediate code. Minimizing the VIB term means restricting the infor-
mation from input data X to intermediate representation Z as well as output variable
Y. Maximization the cross-entropy between Z and Y will force the information flowing
from input to predict output. Therefore, when these two processes work simultaneously,
the whole loss makes the model focus only on information that is related to output in input
data. The resulting model is less disturbed by information that is not related to the output.
Hence, VIB could improve the generalization performance. This can be verified by finding
the relationship between β and character recognition rate.
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The results in Figures 3 and 4 are obtained by manually adjusting β to show the effects
of β on the character recognition rate. As shown in Figure 3, the most suitable value of β is
0.01, which make the network attains the best character recognition rate. When increasing β
larger than 0.01, the character recognition rate is gradually reduced. This can be explained
that with bigger β, more and more information including discriminative information
are blocked from input to intermediate code (feature). With extremely large value of β,
the information are totally blocked and the character recognition totally failed.
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Figure 3. Variation of character recognition rate of subject A and subject B with the changing β of
variational information bottleneck (VIB) regularization term.
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Figure 4. Variation of character recognition rate of subject A and subject B with the weight β changing
around optimal value.

To present a more clear illustration, the curve in the dashed box in Figure 3 is magnified
and shown in Figure 4. When we increase β from 0.0001 to 0.01, the character recognition
rate increases, which indicates that restriction of mutual information between input signals
X and code Z could improve the performance of character recognition by blocking label
irrelevant information from input data to feature vector. From these results, we could find
that whether the weight β is too large or too small, the classification performance will
seriously be degraded.
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4. Conclusions

Event-related potentials detection is an important problem in BCI research. The low
signal-to-noise ratio of EEG signal makes the detection of ERP challengeable. A novel
convolutional neural network based on VIB is proposed for P300 detection in this paper.
With VIB regularization term added to the traditional cross-entropy loss, the information
flowing from input data to intermediate code could be controlled and the label irrelevant
information is removed from intermediate variables (features). The experimental results
demonstrate that P300-VIB-Net could achieve state-of-art performance in the P300 speller
character recognition problem. VIB constraint in P300-VIB-Net enhances the generalization
performance of the model. On the other hand, the performance of P300-VIB-Net will
deteriorate when the amount of data is relatively small, because it’s difficult to estimate
information with small amount of data. In our future work, we will explore models based
on VIB with other problems in BCI.
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