
entropy

Article

Entropy-Based Approach in Selection Exact
String-Matching Algorithms

Ivan Markić 1,* , Maja Štula 2 , Marija Zorić 3 and Darko Stipaničev 2

����������
�������

Citation: Markić, I.; Štula, M.; Zorić,

M.; Stipaničev, D. Entropy-Based

Approach in Selection Exact

String-Matching Algorithms. Entropy

2021, 23, 31. https://doi.org/

10.3390/e23010031

Received: 14 November 2020

Accepted: 22 December 2020

Published: 28 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland. This

article is an open access article distributed

under the terms and conditions of the

Creative Commons Attribution (CC BY)

license (https://creativecommons.org/

licenses/by/4.0/).

1 Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split,
21000 Split, Croatia

2 Department of Electronics and Computing, Faculty of Electrical Engineering,
Mechanical Engineering and Naval Architecture, University of Split, 21000 Split, Croatia;
maja.stula@fesb.hr (M.Š.); darko.stipanicev@fesb.hr (D.S.)

3 IT Department, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture,
University of Split, 21000 Split, Croatia; marijuki@fesb.hr

* Correspondence: ivan.markic@outlook.com; Tel.: +385-(91)-9272123

Abstract: The string-matching paradigm is applied in every computer science and science branch
in general. The existence of a plethora of string-matching algorithms makes it hard to choose
the best one for any particular case. Expressing, measuring, and testing algorithm efficiency is
a challenging task with many potential pitfalls. Algorithm efficiency can be measured based on
the usage of different resources. In software engineering, algorithmic productivity is a property
of an algorithm execution identified with the computational resources the algorithm consumes.
Resource usage in algorithm execution could be determined, and for maximum efficiency, the goal
is to minimize resource usage. Guided by the fact that standard measures of algorithm efficiency,
such as execution time, directly depend on the number of executed actions. Without touching
the problematics of computer power consumption or memory, which also depends on the algorithm
type and the techniques used in algorithm development, we have developed a methodology which
enables the researchers to choose an efficient algorithm for a specific domain. String searching
algorithms efficiency is usually observed independently from the domain texts being searched.
This research paper aims to present the idea that algorithm efficiency depends on the properties of
searched string and properties of the texts being searched, accompanied by the theoretical analysis
of the proposed approach. In the proposed methodology, algorithm efficiency is expressed through
character comparison count metrics. The character comparison count metrics is a formal quantitative
measure independent of algorithm implementation subtleties and computer platform differences.
The model is developed for a particular problem domain by using appropriate domain data (patterns
and texts) and provides for a specific domain the ranking of algorithms according to the patterns’
entropy. The proposed approach is limited to on-line exact string-matching problems based on
information entropy for a search pattern. Meticulous empirical testing depicts the methodology
implementation and purports soundness of the methodology.

Keywords: exact string-matching; algorithm efficiency; algorithm performance; entropy; comparison;
testing framework

1. Introduction

String-matching processes are included in applications in many areas, like applications
for information retrieval, information analysis, computational biology, multiple variations
of practical software implementations in all operating systems, etc. String-matching forms
the basis for other computer science fields, and it is one of the most researched areas in
theory as well as in practice. An increasing amount and availability of textual data require
the development of new approaches and tools to search useful information more effectively
from such a large amount of data. Different string-matching algorithms perform better or

Entropy 2021, 23, 31. https://doi.org/10.3390/e23010031 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-3744-0731
https://orcid.org/0000-0003-3954-7049
https://doi.org/10.3390/e23010031
https://doi.org/10.3390/e23010031
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23010031
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/23/1/31?type=check_update&version=3

Entropy 2021, 23, 31 2 of 19

worse, depending on the application domain, making it hard to choose the best one for any
particular case [1–5].

The main reason for analyzing an algorithm is to discover its features and com-
pare them with other algorithms in a similar environment. When features are the focus,
the mostly and primarily used parts are time and space resources and researchers want
to know how long the implementation of a particular algorithm will run on a specific
computer and how much space it will require. The implementation quality and compiler
properties, computer architecture, etc., have huge effects on performance. Establishing
differences between an algorithm and its implementation features can be challenging [6,7].

An algorithm is efficient if its resource consumption in the process of execution is
below some acceptable or desirable level. The algorithm will end execution on an avail-
able computer in a reasonable amount of time, or space in efficiently acceptable contexts.
Multiple factors can affect an algorithm’s efficiency, such as algorithm implementation,
accuracy requirements, and lack of computational power. A few frameworks exist for
testing string matching algorithms [8]. Hume and Sunday presented a framework for
testing string matching algorithms in 1991. It was developed in the C programming
language, and it has been used in the 90′. [9] Faro presented the String Matching Algo-
rithm Research Tool (SMART) framework in 2010 and its improved version six years later.
SMART is a framework designed to develop, test, compare, and evaluate string matching
algorithms [3].

This paper introduces a model-building methodology for selecting the most efficient
string search algorithm, based on a pattern entropy while expressing the algorithm’s
efficiency using platform independent metrics. According to their efficiency, the devel-
oped methodology for ranking algorithms considers properties of the searched string and
properties of the texts that are being searched. This methodology does not depend on
algorithm implementation, computer architecture, programming languages specifics, and
it provides a way to investigate algorithm strengths and weaknesses. More information
about the formal metric definition is described in Section 3.1.3. The paper covers only
the fundamental algorithms. Selected algorithms are the basis for the most state-of-the-art
algorithms, which belong to the classical approach. More information is described in
Section 3.2.2. We also analyzed different approaches, metrics for measuring algorithms’
efficiency, and algorithm types.

The paper is organized as follows: The basic concepts of string-matching are de-
scribed in Section 2. Entropy, formal metrics, and related work are described in Section 3
along with the proposed methodology. Experimental results with string search algorithms
evaluation models developed according to the proposed methodology are presented in
Section 4. Section 5 presents the validation results for the developed models and a discus-
sion. Section 6 concludes this paper.

2. String-Matching

String-matching consists of finding all occurrences of a given string in a text. String-
matching algorithms are grouped into exact and approximate string-matching algorithms.
Exact string-matching does not allow any tolerance, while approximate string-matching
allows some tolerance. Further, exact string-matching algorithms are divided into two
groups: single pattern matching and multiple pattern matching. These two categories
are also divided into software and hardware-based methods. The software-based string-
matching algorithms can be divided into character comparison, hashing, bit-parallel, and
hybrid approaches. This research focuses on on-line software-based exact string-matching
using a character comparison approach. On-line searching means that there is no built data
structures in the text. The character-based approach is known as a classical approach that
compares characters to solve string-matching problems [10,11].

The character-based approach has two key stages: matching and shift phases. The prin-
ciple behind algorithms for string comparison covers text scanning with the window of size
m, commonly referred to as the sliding window mechanism (or search window). In the pro-

Entropy 2021, 23, 31 3 of 19

cess of comparing the main text T [1 . . . n] and a pattern P [1 . . . m], where m ≤ n, the aim
is to find all occurrences, if any, of the exact pattern P in the text T (Figure 1). The result
of comparing patterns with text is information that they match if they are equal or they
mismatch. The length of both windows must be of equal in length, during the comparison
phase. First, one must align the window and the text’s left end and then compare the charac-
ters from the window with the pattern’s characters. After an exact matching (or mismatch)
of pattern with the text, the window is moved to the right. The same procedure repeats
until the right end of the window has reached the right end of the text [11–15].

Entropy 2021, 23, x 3 of 18

of size 𝑚, commonly referred to as the sliding window mechanism (or search window).
In the process of comparing the main text T [1…n] and a pattern P[1…m], where m ≤ n,
the aim is to find all occurrences, if any, of the exact pattern 𝑃 in the text 𝑇 (Figure 1.). The
result of comparing patterns with text is information that they match if they are equal or
they mismatch. The length of both windows must be of equal in length, during the com-
parison phase. First, one must align the window and the text’s left end and then compare
the characters from the window with the pattern’s characters. After an exact matching (or
mismatch) of pattern with the text, the window is moved to the right. The same procedure
repeats until the right end of the window has reached the right end of the text [11–15].

Figure 1. Exact string matching.

3. Methodology
3.1. Methodology Description

A state of the art survey shows a lack of platform-independent methodology, which
will help choose an algorithm for searching a specific string pattern. The proposed ap-
proach for evaluating exact string pattern matching algorithms is formalized in a meth-
odology consisting of six steps, shown in Figure 2, to build a model applicable to data sets
and algorithms in a given domain.

Figure 2. Methodology for building model based on the entropy approach for string search algo-
rithms selection.

The first step of the proposed methodology, shown in Figure 2, is selecting repre-
sentative texts for domain model building. In the second step, the algorithms are selected.
Selected algorithms are limited only to the ones that wanted to be considered. After se-
lecting representative texts for domain model building and algorithms, the searching
phase for representative patterns starts in the third step. Representative patterns can be
text substrings or the can be randomly created from the domain alphabet. The searching
phase means that all representative patterns are searched with algorithms selected in the
second step. Search results are collected and expressed in specific metrics. In the fourth
step, patterns entropy is calculated. In the fifth step, entropy discretization is applied. En-
tropy results are discretized and divided into groups by frequency distribution [16,17].

G C A T C G C A G A G A G T A T A C A G T A C G

G C A G A G A G

Search window
Text

Pattern

Figure 1. Exact string matching.

3. Methodology
3.1. Methodology Description

A state of the art survey shows a lack of platform-independent methodology, which
will help choose an algorithm for searching a specific string pattern. The proposed approach
for evaluating exact string pattern matching algorithms is formalized in a methodology
consisting of six steps, shown in Figure 2, to build a model applicable to data sets and
algorithms in a given domain.

Entropy 2021, 23, x 3 of 18

of size 𝑚, commonly referred to as the sliding window mechanism (or search window).
In the process of comparing the main text T [1…n] and a pattern P[1…m], where m ≤ n,
the aim is to find all occurrences, if any, of the exact pattern 𝑃 in the text 𝑇 (Figure 1.). The
result of comparing patterns with text is information that they match if they are equal or
they mismatch. The length of both windows must be of equal in length, during the com-
parison phase. First, one must align the window and the text’s left end and then compare
the characters from the window with the pattern’s characters. After an exact matching (or
mismatch) of pattern with the text, the window is moved to the right. The same procedure
repeats until the right end of the window has reached the right end of the text [11–15].

Figure 1. Exact string matching.

3. Methodology
3.1. Methodology Description

A state of the art survey shows a lack of platform-independent methodology, which
will help choose an algorithm for searching a specific string pattern. The proposed ap-
proach for evaluating exact string pattern matching algorithms is formalized in a meth-
odology consisting of six steps, shown in Figure 2, to build a model applicable to data sets
and algorithms in a given domain.

Figure 2. Methodology for building model based on the entropy approach for string search algo-
rithms selection.

The first step of the proposed methodology, shown in Figure 2, is selecting repre-
sentative texts for domain model building. In the second step, the algorithms are selected.
Selected algorithms are limited only to the ones that wanted to be considered. After se-
lecting representative texts for domain model building and algorithms, the searching
phase for representative patterns starts in the third step. Representative patterns can be
text substrings or the can be randomly created from the domain alphabet. The searching
phase means that all representative patterns are searched with algorithms selected in the
second step. Search results are collected and expressed in specific metrics. In the fourth
step, patterns entropy is calculated. In the fifth step, entropy discretization is applied. En-
tropy results are discretized and divided into groups by frequency distribution [16,17].

G C A T C G C A G A G A G T A T A C A G T A C G

G C A G A G A G

Search window
Text

Pattern

Figure 2. Methodology for building model based on the entropy approach for string search
algorithms selection.

The first step of the proposed methodology, shown in Figure 2, is selecting represen-
tative texts for domain model building. In the second step, the algorithms are selected.
Selected algorithms are limited only to the ones that wanted to be considered. After
selecting representative texts for domain model building and algorithms, the searching
phase for representative patterns starts in the third step. Representative patterns can be
text substrings or the can be randomly created from the domain alphabet. The search-
ing phase means that all representative patterns are searched with algorithms selected in
the second step. Search results are collected and expressed in specific metrics. In the fourth
step, patterns entropy is calculated. In the fifth step, entropy discretization is applied.
Entropy results are discretized and divided into groups by frequency distribution [16,17].

Entropy 2021, 23, 31 4 of 19

The last step is to classify algorithms in the built model and present the obtained algorithms’
ranking according to the proposed approach.

3.1.1. Representative Patterns Sample Size

The sample size of representative patterns is determined by Equation (1) for finite
population [18–20]:

n′ =
n

1 + z2×p(1−p)
ε2 N

(1)

where n is the sample size, z is the z-score, ε is the margin of error, N is the population size,
and p is the population proportion. The commonly used confidence levels are 90%, 95%, and
99%. Each has its corresponding z-scores provided by tables based on the chosen confidence
level (confidence level 0.95 used in the experiment with z-score 1.65). The margin of error
means the maximum distance for the sample estimate to deviate from the real value.
A population proportion describes a percentage of the value associated with a survey.
In theory, we are dealing with an unlimited population since patterns and texts can have
an unlimited number of characters. However, in practice, we have to limit populations to a
finite number [14,16].

The maximum number of classes in the discretization phase is determined by Equation (2)
(n is the total number of observations in the data) [16,17]:

number o f classes = C = 2× 3
√

n (2)

Also, the range of the data should be calculated by finding minimum and maximum
values. The range will be used to determine the class interval or class width. The following
Equation (3) is used [16,17]:

h =
max(values)−min(values)

C
(3)

3.1.2. Entropy

Shannon entropy is a widely used concept in information theory to convey the amount
of information contained in a message. Entropy is a standard measure for the state of order,
or better, a disorder of symbols in a sequence. The entropy of a sequence of characters
describes the complexity, compressibility, amount of information [21–25].

Suppose that events A1, A2, . . . , An is defined, and they make a complete set. The fol-

lowing expression is valid
n
∑

i=1
pi = 1, where pi = p(Ai). Finite system α holds all events Ai, i

= 1, 2, . . . , n with probability pi’s corresponding values. The following form will denote
system α (Equation (4)) [22]:

α =

(
A1
p1

A2
p2

. . .
An
pn

)
(4)

The states of a system α will denote events Ai, i = 1, 2, . . . , n. System α is a discrete
system with a finite set of states. Every finite system describes some state of uncertainty
because it is impossible to know which state is the system in a specific time. The goal is to
express quantitatively such uncertainty in some way. It means that a particular function,
which will join a specific number to system α, should be defined. In that way, the system
will have a measure for its uncertainty [22].

The function which quantitatively measures an uncertainty of a system is called
Entropy of system, and it is defined with the following Equation (5) [22,26]:

H(p1, p2, . . . , pn) = −
n

∑
i=1

pilogpi (5)

Entropy 2021, 23, 31 5 of 19

The entropy of a system is denoted with H(α). If pi = 0, it follows that pi log pi = 0.
The information theory logarithm base is usually 2, and an entropy unit is called a bit
(binary digit). The entropy is zero only if one of the probabilities pi = 1, . . . , n is equal 1, and
others are 0. In that case, there is no uncertainty since it is possible to predict the system’s
state precisely. In any other case, entropy is a positive number [22,26].

If the system α contains test results, a degree of uncertainty before a test is executed is
equal to the entropy of the system α. When the test is executed, the degree of uncertainty is
zero. The amount of information after test execution is larger if the uncertainty was bigger
before the test. The information given after the test, denoted with ϑα, is equal to the entropy
of the system α (Equation (6)) [22,27]:

ϑα = H(α) = −
n

∑
i=1

pi log pi =
n

∑
i=1

pi(− log pi) (6)

Another measure from information theory is Kolmogorov complexity. Although
Kolmogorov complexity looks similar to Shannon entropy, they are conceptually different
measures. Shannon entropy interprets the smallest number of bits required for the optimal
string encoding. Kolmogorov complexity is the minimum number of bits (or the minimum
length) from which a particular string can effectively be reconstructed [28–30]:

3.1.3. Formal Metric Description

The metrics and the quality attributes that are used for string searching algorithms
analysis imply several issues, like the quality of framework (occurs when a quality model
does not define a metric), lack of an ontology (occurs when the architectural concepts need
quantification), lack of an adequate formalism (when metrics are defined with a formalism
that requires a strong mathematical background what causes less metric usability), lack of
computational support (occurs when metrics do not produce tools for metrics collection),
lack of flexibility (occurs when metrics collection tools are not available in open-source
format what causes less ability to modify them) and lack of validation (occurs when cross-
validation is not performed). All these issues complicate determining which properties
and measures would be useful in selecting metrics and results presentation [31].

Two main approaches exist for expressing the speed of an algorithm. The first ap-
proach is formal, analyzing algorithm complexity through algorithm time efficiency (or
time complexity, the time required). The second approach is empirical, analyzing partic-
ular computer resources usage through space and time efficiency (or space complexity,
the memory required). Objective and informative metrics should accompany each ap-
proach [2,31–35].

Algorithmic efficiency analysis shows the amount of work that an algorithm will
need for execution, and algorithm performance is a feature of hardware that shows how
fast the algorithm execution will be done. Formal metrics are usually used for efficiency
analysis. A commonly used metric from the formal approach is Big O notation or Landau’s
symbol, representing the complexity of an algorithm shown as a function of the input size
describing the upper bound for the search time in the worst case. Empirical metrics, like
algorithm execution run time usually presented in milliseconds, processor and memory
usage, temporary disk usage, long term disk usage, power consumption, etc., are usually
used for algorithm performance analysis. The runtime execution metric is difficult to
describe analytically, so empirical evaluation is needed through the experiments using
execution runtime metrics [4,9,11,14,36–42].

The proposed methodology focuses on evaluating the speed of algorithms using
the character comparisons (CC) metric. CC metric is the number of compared characters
of the pattern with the characters of text. Character comparison metric is a measure
that is independent of programming language, computational resources, and operating
systems, which means that it is platform-independent like formal approaches. However,
besides the time complexity, the CC metric covers space complexity in some segments, like

Entropy 2021, 23, 31 6 of 19

the execution run time, and can be programmatically implemented and used like empirical
approaches. Thus, this metric is a formal and empirical approach combined [9].

3.2. Methodology Implementation

The application of the proposed methodology is presented in the paper for the two
domains. For the genome (DNA) domain proposed methodology is implemented and
depicted in Figure 3 and for the natural language domain is shown in Figure 4.

Entropy 2021, 23, x 6 of 18

execution run time, and can be programmatically implemented and used like empirical
approaches. Thus, this metric is a formal and empirical approach combined [9].

3.2. Methodology Implementation
The application of the proposed methodology is presented in the paper for the two

domains. For the genome (DNA) domain proposed methodology is implemented and de-
picted in Figure 3 and for the natural language domain is shown in Figure 4.

Figure 3. Methodology implementation for the DNA domain.

Figure 4. Methodology implementation for the natural language domain.

The results of entropy calculation (Figures 3 and 4) for each searched pattern are la-
beled PattEnt; the variable PattEnt is rounded and labeled PattEntRound; the meaning of
other variables are Algo–selected algorithm, m–length of the pattern, comp–number of
character comparisons per searched pattern. Groups based on the frequency distribution
are marked with PattEntClass. These designations are used in the following sections in
presenting methodology results. Obtained results are used for the algorithm’s ranking list.

Figure 3. Methodology implementation for the DNA domain.

Entropy 2021, 23, x 6 of 18

execution run time, and can be programmatically implemented and used like empirical
approaches. Thus, this metric is a formal and empirical approach combined [9].

3.2. Methodology Implementation
The application of the proposed methodology is presented in the paper for the two

domains. For the genome (DNA) domain proposed methodology is implemented and de-
picted in Figure 3 and for the natural language domain is shown in Figure 4.

Figure 3. Methodology implementation for the DNA domain.

Figure 4. Methodology implementation for the natural language domain.

The results of entropy calculation (Figures 3 and 4) for each searched pattern are la-
beled PattEnt; the variable PattEnt is rounded and labeled PattEntRound; the meaning of
other variables are Algo–selected algorithm, m–length of the pattern, comp–number of
character comparisons per searched pattern. Groups based on the frequency distribution
are marked with PattEntClass. These designations are used in the following sections in
presenting methodology results. Obtained results are used for the algorithm’s ranking list.

Figure 4. Methodology implementation for the natural language domain.

The results of entropy calculation (Figures 3 and 4) for each searched pattern are
labeled PattEnt; the variable PattEnt is rounded and labeled PattEntRound; the meaning
of other variables are Algo–selected algorithm, m–length of the pattern, comp–number of
character comparisons per searched pattern. Groups based on the frequency distribution
are marked with PattEntClass. These designations are used in the following sections in

Entropy 2021, 23, 31 7 of 19

presenting methodology results. Obtained results are used for the algorithm’s ranking list.
That is the entropy-based model for selecting the most efficient algorithm for any pattern
searched in a particular domain. In the following sections, each step is described in detail.

3.2.1. Selection of Representative Texts for Domain Model Building

For the DNA domain, selected representative texts are the genome data of four
different species. For the natural language domain, selected representative texts are English
texts from the Canterbury Corpus [43]. The length of a DNA sequence expressed in base
pairs (bp) varies from a few thousand to several million and even billion bp. The DNA
character strings are formed with the 4-letter alphabet {A, C, G, T}. The length of texts
from the Canterbury Corpus is expressed in bytes and formed of the English alphabet
[a-z|A-Z|0–9|!|]. We used the bible subset as the text to be searched because it is more
representative of natural English text than the other convenient word lists, and it is publicly
released [2,21,44,45].

In detail, the following publicly available representative texts are used for model building:

• DNA sequences of nucleotides for the DNA domain

Entropy 2021, 23, x 7 of 18

That is the entropy-based model for selecting the most efficient algorithm for any pattern
searched in a particular domain. In the following sections, each step is described in detail.

3.2.1. Selection of Representative Texts for Domain Model Building
For the DNA domain, selected representative texts are the genome data of four dif-

ferent species. For the natural language domain, selected representative texts are English
texts from the Canterbury Corpus [43]. The length of a DNA sequence expressed in base
pairs (bp) varies from a few thousand to several million and even billion bp. The DNA
character strings are formed with the 4-letter alphabet {A, C, G, T}. The length of texts
from the Canterbury Corpus is expressed in bytes and formed of the English alphabet [a-
z|A-Z|0–9|!|]. We used the bible subset as the text to be searched because it is more rep-
resentative of natural English text than the other convenient word lists, and it is publicly
released [2,21,44,45].

In detail, the following publicly available representative texts are used for model
building:
• DNA sequences of nucleotides for the DNA domain

 Anabarilius graham (Kanglang fish; RJVU01051648.1 Anabarilius grahami isolate
AG-KIZ scaffold371_cov124, whole genome shotgun sequence, 14.747.523 bp
(base pairs), 14.3 Mb file size) [46]

 Chelonia mydas (green sea turtle; NW_006571126.1 Chelonia mydas unplaced ge-
nomic scaffold, CheMyd_1.0 scaffold1, whole genome shotgun sequence,
7.392.783 bp, 7.1 Mb) [47]

 Escherichia coli (NZ_LN874954.1 Escherichia coli strain LM33 isolate patient, whole
genome shotgun sequence, 49.02.341 bp, 4.8 Mb) [48]

 Macaca mulatta (Rhesus macaque monkey; ML143108.1 Macaca mulatta isolate
AG07107 chromosome 19 genomic scaffold ScNM3vo_33 × 44 M, whole genome
shotgun sequence, 24.310.526 bp, 24.3 Mb) [49]

• English texts for the natural language domain
 Bible (The King James Version, with a size of 4.047.392 bytes) [50]

3.2.2. Selection of Algorithms
Seven commonly used string matching algorithms have been chosen to be ranked

with the proposed model: brute force, nӓive (BF), Boyer-Moore (BM), Knuth Morris Pratt
(KMP), Apostolico-Crochemore (AC), quick search (QS), Morris Pratt (MP) and Horspool
(HOR) [12,39,51–56]. The selected algorithms belong to the group of software-based algo-
rithms that use exact string-matching techniques with a character comparison approach
(classical approach) [11]. All selected algorithms used in this experiment match their pub-
lished version [3,12,39], which might represent the better implementation of the original
algorithm [57]. Seven string search algorithms are selected as our baseline for model con-
struction. However, any exact string-matching algorithm that can be evaluated with char-
acter comparison metrics can be ranked with the proposed model.

3.2.3. Searching Results for Representative Patterns
For model development, design, and construction in step 3 of the model building

(Figure 2), we used 9.725 different patterns. For the DNA domain model, 7.682 patterns
are used, and 2.043 patterns of English text from the Canterbury Corpus are used for the
natural language domain. The length of patterns ranges from 2 characters to 32 characters.

4.269 patterns for the DNA domain and 1.685 patterns for the natural language do-
main (or more) are needed to accomplish a confidence level of 95%, that the real value is
within ±1% of the surveyed value (Equation (1)). With this confidence level, it can be con-
cluded that a model objectively reflects the modeled domain since a model is constructed
with an adequate sample size.

Anabarilius graham (Kanglang fish; RJVU01051648.1 Anabarilius grahami isolate
AG-KIZ scaffold371_cov124, whole genome shotgun sequence, 14.747.523 bp (base
pairs), 14.3 Mb file size) [46]

Entropy 2021, 23, x 7 of 18

That is the entropy-based model for selecting the most efficient algorithm for any pattern
searched in a particular domain. In the following sections, each step is described in detail.

3.2.1. Selection of Representative Texts for Domain Model Building
For the DNA domain, selected representative texts are the genome data of four dif-

ferent species. For the natural language domain, selected representative texts are English
texts from the Canterbury Corpus [43]. The length of a DNA sequence expressed in base
pairs (bp) varies from a few thousand to several million and even billion bp. The DNA
character strings are formed with the 4-letter alphabet {A, C, G, T}. The length of texts
from the Canterbury Corpus is expressed in bytes and formed of the English alphabet [a-
z|A-Z|0–9|!|]. We used the bible subset as the text to be searched because it is more rep-
resentative of natural English text than the other convenient word lists, and it is publicly
released [2,21,44,45].

In detail, the following publicly available representative texts are used for model
building:
• DNA sequences of nucleotides for the DNA domain

 Anabarilius graham (Kanglang fish; RJVU01051648.1 Anabarilius grahami isolate
AG-KIZ scaffold371_cov124, whole genome shotgun sequence, 14.747.523 bp
(base pairs), 14.3 Mb file size) [46]

 Chelonia mydas (green sea turtle; NW_006571126.1 Chelonia mydas unplaced ge-
nomic scaffold, CheMyd_1.0 scaffold1, whole genome shotgun sequence,
7.392.783 bp, 7.1 Mb) [47]

 Escherichia coli (NZ_LN874954.1 Escherichia coli strain LM33 isolate patient, whole
genome shotgun sequence, 49.02.341 bp, 4.8 Mb) [48]

 Macaca mulatta (Rhesus macaque monkey; ML143108.1 Macaca mulatta isolate
AG07107 chromosome 19 genomic scaffold ScNM3vo_33 × 44 M, whole genome
shotgun sequence, 24.310.526 bp, 24.3 Mb) [49]

• English texts for the natural language domain
 Bible (The King James Version, with a size of 4.047.392 bytes) [50]

3.2.2. Selection of Algorithms
Seven commonly used string matching algorithms have been chosen to be ranked

with the proposed model: brute force, nӓive (BF), Boyer-Moore (BM), Knuth Morris Pratt
(KMP), Apostolico-Crochemore (AC), quick search (QS), Morris Pratt (MP) and Horspool
(HOR) [12,39,51–56]. The selected algorithms belong to the group of software-based algo-
rithms that use exact string-matching techniques with a character comparison approach
(classical approach) [11]. All selected algorithms used in this experiment match their pub-
lished version [3,12,39], which might represent the better implementation of the original
algorithm [57]. Seven string search algorithms are selected as our baseline for model con-
struction. However, any exact string-matching algorithm that can be evaluated with char-
acter comparison metrics can be ranked with the proposed model.

3.2.3. Searching Results for Representative Patterns
For model development, design, and construction in step 3 of the model building

(Figure 2), we used 9.725 different patterns. For the DNA domain model, 7.682 patterns
are used, and 2.043 patterns of English text from the Canterbury Corpus are used for the
natural language domain. The length of patterns ranges from 2 characters to 32 characters.

4.269 patterns for the DNA domain and 1.685 patterns for the natural language do-
main (or more) are needed to accomplish a confidence level of 95%, that the real value is
within ±1% of the surveyed value (Equation (1)). With this confidence level, it can be con-
cluded that a model objectively reflects the modeled domain since a model is constructed
with an adequate sample size.

Chelonia mydas (green sea turtle; NW_006571126.1 Chelonia mydas unplaced ge-
nomic scaffold, CheMyd_1.0 scaffold1, whole genome shotgun sequence, 7.392.783
bp, 7.1 Mb) [47]

Entropy 2021, 23, x 7 of 18

That is the entropy-based model for selecting the most efficient algorithm for any pattern
searched in a particular domain. In the following sections, each step is described in detail.

3.2.1. Selection of Representative Texts for Domain Model Building
For the DNA domain, selected representative texts are the genome data of four dif-

ferent species. For the natural language domain, selected representative texts are English
texts from the Canterbury Corpus [43]. The length of a DNA sequence expressed in base
pairs (bp) varies from a few thousand to several million and even billion bp. The DNA
character strings are formed with the 4-letter alphabet {A, C, G, T}. The length of texts
from the Canterbury Corpus is expressed in bytes and formed of the English alphabet [a-
z|A-Z|0–9|!|]. We used the bible subset as the text to be searched because it is more rep-
resentative of natural English text than the other convenient word lists, and it is publicly
released [2,21,44,45].

In detail, the following publicly available representative texts are used for model
building:
• DNA sequences of nucleotides for the DNA domain

 Anabarilius graham (Kanglang fish; RJVU01051648.1 Anabarilius grahami isolate
AG-KIZ scaffold371_cov124, whole genome shotgun sequence, 14.747.523 bp
(base pairs), 14.3 Mb file size) [46]

 Chelonia mydas (green sea turtle; NW_006571126.1 Chelonia mydas unplaced ge-
nomic scaffold, CheMyd_1.0 scaffold1, whole genome shotgun sequence,
7.392.783 bp, 7.1 Mb) [47]

 Escherichia coli (NZ_LN874954.1 Escherichia coli strain LM33 isolate patient, whole
genome shotgun sequence, 49.02.341 bp, 4.8 Mb) [48]

 Macaca mulatta (Rhesus macaque monkey; ML143108.1 Macaca mulatta isolate
AG07107 chromosome 19 genomic scaffold ScNM3vo_33 × 44 M, whole genome
shotgun sequence, 24.310.526 bp, 24.3 Mb) [49]

• English texts for the natural language domain
 Bible (The King James Version, with a size of 4.047.392 bytes) [50]

3.2.2. Selection of Algorithms
Seven commonly used string matching algorithms have been chosen to be ranked

with the proposed model: brute force, nӓive (BF), Boyer-Moore (BM), Knuth Morris Pratt
(KMP), Apostolico-Crochemore (AC), quick search (QS), Morris Pratt (MP) and Horspool
(HOR) [12,39,51–56]. The selected algorithms belong to the group of software-based algo-
rithms that use exact string-matching techniques with a character comparison approach
(classical approach) [11]. All selected algorithms used in this experiment match their pub-
lished version [3,12,39], which might represent the better implementation of the original
algorithm [57]. Seven string search algorithms are selected as our baseline for model con-
struction. However, any exact string-matching algorithm that can be evaluated with char-
acter comparison metrics can be ranked with the proposed model.

3.2.3. Searching Results for Representative Patterns
For model development, design, and construction in step 3 of the model building

(Figure 2), we used 9.725 different patterns. For the DNA domain model, 7.682 patterns
are used, and 2.043 patterns of English text from the Canterbury Corpus are used for the
natural language domain. The length of patterns ranges from 2 characters to 32 characters.

4.269 patterns for the DNA domain and 1.685 patterns for the natural language do-
main (or more) are needed to accomplish a confidence level of 95%, that the real value is
within ±1% of the surveyed value (Equation (1)). With this confidence level, it can be con-
cluded that a model objectively reflects the modeled domain since a model is constructed
with an adequate sample size.

Escherichia coli (NZ_LN874954.1 Escherichia coli strain LM33 isolate patient, whole
genome shotgun sequence, 49.02.341 bp, 4.8 Mb) [48]

Entropy 2021, 23, x 7 of 18

That is the entropy-based model for selecting the most efficient algorithm for any pattern
searched in a particular domain. In the following sections, each step is described in detail.

3.2.1. Selection of Representative Texts for Domain Model Building
For the DNA domain, selected representative texts are the genome data of four dif-

ferent species. For the natural language domain, selected representative texts are English
texts from the Canterbury Corpus [43]. The length of a DNA sequence expressed in base
pairs (bp) varies from a few thousand to several million and even billion bp. The DNA
character strings are formed with the 4-letter alphabet {A, C, G, T}. The length of texts
from the Canterbury Corpus is expressed in bytes and formed of the English alphabet [a-
z|A-Z|0–9|!|]. We used the bible subset as the text to be searched because it is more rep-
resentative of natural English text than the other convenient word lists, and it is publicly
released [2,21,44,45].

In detail, the following publicly available representative texts are used for model
building:
• DNA sequences of nucleotides for the DNA domain

 Anabarilius graham (Kanglang fish; RJVU01051648.1 Anabarilius grahami isolate
AG-KIZ scaffold371_cov124, whole genome shotgun sequence, 14.747.523 bp
(base pairs), 14.3 Mb file size) [46]

 Chelonia mydas (green sea turtle; NW_006571126.1 Chelonia mydas unplaced ge-
nomic scaffold, CheMyd_1.0 scaffold1, whole genome shotgun sequence,
7.392.783 bp, 7.1 Mb) [47]

 Escherichia coli (NZ_LN874954.1 Escherichia coli strain LM33 isolate patient, whole
genome shotgun sequence, 49.02.341 bp, 4.8 Mb) [48]

 Macaca mulatta (Rhesus macaque monkey; ML143108.1 Macaca mulatta isolate
AG07107 chromosome 19 genomic scaffold ScNM3vo_33 × 44 M, whole genome
shotgun sequence, 24.310.526 bp, 24.3 Mb) [49]

• English texts for the natural language domain
 Bible (The King James Version, with a size of 4.047.392 bytes) [50]

3.2.2. Selection of Algorithms
Seven commonly used string matching algorithms have been chosen to be ranked

with the proposed model: brute force, nӓive (BF), Boyer-Moore (BM), Knuth Morris Pratt
(KMP), Apostolico-Crochemore (AC), quick search (QS), Morris Pratt (MP) and Horspool
(HOR) [12,39,51–56]. The selected algorithms belong to the group of software-based algo-
rithms that use exact string-matching techniques with a character comparison approach
(classical approach) [11]. All selected algorithms used in this experiment match their pub-
lished version [3,12,39], which might represent the better implementation of the original
algorithm [57]. Seven string search algorithms are selected as our baseline for model con-
struction. However, any exact string-matching algorithm that can be evaluated with char-
acter comparison metrics can be ranked with the proposed model.

3.2.3. Searching Results for Representative Patterns
For model development, design, and construction in step 3 of the model building

(Figure 2), we used 9.725 different patterns. For the DNA domain model, 7.682 patterns
are used, and 2.043 patterns of English text from the Canterbury Corpus are used for the
natural language domain. The length of patterns ranges from 2 characters to 32 characters.

4.269 patterns for the DNA domain and 1.685 patterns for the natural language do-
main (or more) are needed to accomplish a confidence level of 95%, that the real value is
within ±1% of the surveyed value (Equation (1)). With this confidence level, it can be con-
cluded that a model objectively reflects the modeled domain since a model is constructed
with an adequate sample size.

Macaca mulatta (Rhesus macaque monkey; ML143108.1 Macaca mulatta isolate
AG07107 chromosome 19 genomic scaffold ScNM3vo_33 × 44 M, whole genome
shotgun sequence, 24.310.526 bp, 24.3 Mb) [49]

• English texts for the natural language domain

Entropy 2021, 23, x 7 of 18

That is the entropy-based model for selecting the most efficient algorithm for any pattern
searched in a particular domain. In the following sections, each step is described in detail.

3.2.1. Selection of Representative Texts for Domain Model Building
For the DNA domain, selected representative texts are the genome data of four dif-

ferent species. For the natural language domain, selected representative texts are English
texts from the Canterbury Corpus [43]. The length of a DNA sequence expressed in base
pairs (bp) varies from a few thousand to several million and even billion bp. The DNA
character strings are formed with the 4-letter alphabet {A, C, G, T}. The length of texts
from the Canterbury Corpus is expressed in bytes and formed of the English alphabet [a-
z|A-Z|0–9|!|]. We used the bible subset as the text to be searched because it is more rep-
resentative of natural English text than the other convenient word lists, and it is publicly
released [2,21,44,45].

In detail, the following publicly available representative texts are used for model
building:
• DNA sequences of nucleotides for the DNA domain

 Anabarilius graham (Kanglang fish; RJVU01051648.1 Anabarilius grahami isolate
AG-KIZ scaffold371_cov124, whole genome shotgun sequence, 14.747.523 bp
(base pairs), 14.3 Mb file size) [46]

 Chelonia mydas (green sea turtle; NW_006571126.1 Chelonia mydas unplaced ge-
nomic scaffold, CheMyd_1.0 scaffold1, whole genome shotgun sequence,
7.392.783 bp, 7.1 Mb) [47]

 Escherichia coli (NZ_LN874954.1 Escherichia coli strain LM33 isolate patient, whole
genome shotgun sequence, 49.02.341 bp, 4.8 Mb) [48]

 Macaca mulatta (Rhesus macaque monkey; ML143108.1 Macaca mulatta isolate
AG07107 chromosome 19 genomic scaffold ScNM3vo_33 × 44 M, whole genome
shotgun sequence, 24.310.526 bp, 24.3 Mb) [49]

• English texts for the natural language domain
 Bible (The King James Version, with a size of 4.047.392 bytes) [50]

3.2.2. Selection of Algorithms
Seven commonly used string matching algorithms have been chosen to be ranked

with the proposed model: brute force, nӓive (BF), Boyer-Moore (BM), Knuth Morris Pratt
(KMP), Apostolico-Crochemore (AC), quick search (QS), Morris Pratt (MP) and Horspool
(HOR) [12,39,51–56]. The selected algorithms belong to the group of software-based algo-
rithms that use exact string-matching techniques with a character comparison approach
(classical approach) [11]. All selected algorithms used in this experiment match their pub-
lished version [3,12,39], which might represent the better implementation of the original
algorithm [57]. Seven string search algorithms are selected as our baseline for model con-
struction. However, any exact string-matching algorithm that can be evaluated with char-
acter comparison metrics can be ranked with the proposed model.

3.2.3. Searching Results for Representative Patterns
For model development, design, and construction in step 3 of the model building

(Figure 2), we used 9.725 different patterns. For the DNA domain model, 7.682 patterns
are used, and 2.043 patterns of English text from the Canterbury Corpus are used for the
natural language domain. The length of patterns ranges from 2 characters to 32 characters.

4.269 patterns for the DNA domain and 1.685 patterns for the natural language do-
main (or more) are needed to accomplish a confidence level of 95%, that the real value is
within ±1% of the surveyed value (Equation (1)). With this confidence level, it can be con-
cluded that a model objectively reflects the modeled domain since a model is constructed
with an adequate sample size.

Bible (The King James Version, with a size of 4.047.392 bytes) [50]

3.2.2. Selection of Algorithms

Seven commonly used string matching algorithms have been chosen to be ranked
with the proposed model: brute force, näive (BF), Boyer-Moore (BM), Knuth Morris Pratt
(KMP), Apostolico-Crochemore (AC), quick search (QS), Morris Pratt (MP) and Horspool
(HOR) [12,39,51–56]. The selected algorithms belong to the group of software-based
algorithms that use exact string-matching techniques with a character comparison approach
(classical approach) [11]. All selected algorithms used in this experiment match their
published version [3,12,39], which might represent the better implementation of the original
algorithm [57]. Seven string search algorithms are selected as our baseline for model
construction. However, any exact string-matching algorithm that can be evaluated with
character comparison metrics can be ranked with the proposed model.

3.2.3. Searching Results for Representative Patterns

For model development, design, and construction in step 3 of the model building
(Figure 2), we used 9.725 different patterns. For the DNA domain model, 7.682 patterns are
used, and 2.043 patterns of English text from the Canterbury Corpus are used for the natural
language domain. The length of patterns ranges from 2 characters to 32 characters.

4.269 patterns for the DNA domain and 1.685 patterns for the natural language domain
(or more) are needed to accomplish a confidence level of 95%, that the real value is within
±1% of the surveyed value (Equation (1)). With this confidence level, it can be concluded
that a model objectively reflects the modeled domain since a model is constructed with an
adequate sample size.

Entropy 2021, 23, 31 8 of 19

3.2.4. Patterns Entropy Calculation

Searched patterns are grouped into classes according to their entropy. Entropy is
calculated using Equations (5) and (6). For example, for P = TCGTAACT, after count-
ing the number of characters in a pattern, A = 2, C = 2, G = 1, T = 3, the probabilities
respectively are:

P(A) = 2
8 = 0.25 P(C) = 2

8 = 0.25

P(G) = 1
8 = 0.125 P(T) = 3

8 = 0.375

Entropy = −
(2

8 × log2
2
8
)
−
(2

8 × log2
2
8
)
−
(

1
8 × log2

1
8

)
−
(3

8 × log2
3
8
)

Entropy = −(−0.5)− (−0.5)− (−0.375)− (−0.53064) = 1.90563906222957 ≈ 1.91

So for a pattern TCGTAACT calculated entropy is 1.90563906222957. Entropy for
the given pattern from the English text P = ”e name of the LORD. And the LORD” is accordingly
3.698391111. Entropies values are rounded to the two decimals (i.e., entropy for pattern
TCGTAACT is 1.91 and entropy for English text pattern in the above example is 3.7).

3.2.5. Entropies Discretization

The next phase is grouping data into classes or making frequency distribution. Cal-
culated entropies are discretized in classes created by frequency distribution, displaying
the number of observations or results in a sample or a given interval. Classes do not need
to be represented with the same number of patterns.

Table 1 is just a section of the overall patterns entropy classification for the DNA domain.

Table 1. Data discretization for the DNA domain.

Pattern PattEnt PattEntRound PattEntClass

AAAAAAAA 0.0000000000000 0.00 <0.22222

TTTTTTTTCTTTTTTT 0.3372900666170 0.34 0.22222–0.44444

AACAAAAA 0.5435644431996 0.54 0.44444–0.66667

AAAAAAACAAACAACA 0.6962122601251 0.70 0.66667–0.88889

TGGTAAAAAAAAAAAA 1.0612781244591 1.06 0.88889–1.11111

AAAAAGCG 1.2987949406954 1.30 1.11111–1.33333

CAAG 1.5000000000000 1.50 1.33333–1.55556

CCTACTAAACACCGTA 1.7640976555739 1.76 1.55556–1.77778

GCATACCTTTCGCAGC 1.9362781244591 1.94 ≥1.77778

For the DNA domain model the total number of observations in the data n = 91.
The observation data are distinct values of calculated entropies rounded up two decimals,
for DNA domain there are totally 91 items (0 | 0.34 | 0.53 | 0.54 | 0.70 | 0.81 | 0.90 | 0.95
| 0.99 | . . . | 1.96 | 1.97 | 1.98 | 1.99 | 2.00). The number of classes for the DNA domain,
applying Equation (2) is 9, width of classes after applying Equation (3) is 0.22. The Table 2
shows entropy classes after discretization with the number of patterns in each of them.

Entropy 2021, 23, 31 9 of 19

Table 2. Entropy classes after discretization for the DNA domain.

Class No. Entropy Class Number of Patterns

1 <0.22222 9

2 0.22222–0.44444 1

3 0.44444–0.66667 23

4 0.66667–0.88889 72

5 0.88889–1.11111 195

6 1.11111–1.33333 278

7 1.33333–1.55556 961

8 1.55556–1.77778 1.451

9 ≥1.77778 4.692

Total 7.682

Table 3 is just a section of the overall patterns entropy classification for the natural
language domain.

Table 3. Data discretization for the natural language domain.

Pattern PattEnt PattEntRound PattEntClass

Mm 0.0000000000000 0.00 <0.46004

We 1.0000000000000 1.00 0.92007–1.38011

Full 1.5000000000000 1.50 1.38011–1.84014

off from 2.1556390622295 2.16 1.84014–2.30018

ine enemies, eve 2.6556390622295 2.66 2.30018–2.76021

Joseph remembere 3.0243974703477 3.02 2.76021–3.22025

e: The LORD lift 3.5778195311147 3.58 3.22025–3.68028

they have, and deliver our lives 3.7508072359050 3.75 ≥3.68028

For the natural language domain, the total number of observations in the data n = 105.
The observation data for natural language domain are (0 | 1 | 1.5 | 2 | 2.16 | 2.25 | 2.41 |
2.5 | 2.62 | . . . | 3.83 | 3.84 | 3.86 | 3.87 | 3.88), totally 105 items. The number of classes
for the natural language domain, applying Equation (2) is 9, the width of classes after
applying Equation (3) is 0.46. The Table 4 shows entropy classes for the natural language
domain after discretization with the number of patterns in each of them.

Entropy classes containing a small number of patterns affect the model the least since
such patterns are rare and occur in less than 0.5% of cases. Examples of such patterns
are TTTTTTTTCTTTTTTT, AAAGAAA, and LL. When a pattern does not belong to any
entropy class, the relevant class is the first closest entropy class.

Entropy 2021, 23, 31 10 of 19

Table 4. Entropy classes after discretization for the natural language domain.

Class No. Entropy Class Number of Patterns

1 <0.46004 3

2 0.46004–0.92007 0

3 0.92007–1.38011 151

4 1.38011–1.84014 53

5 1.84014–2.30018 383

6 2.30018–2.76021 393

7 2.76021–3.22025 283

8 3.22025–3.68028 556

9 ≥3.68028 221

Total 2.043

4. Classification of Algorithms in the Built Model

The algorithm analysis results integrated into a model, provide a ranking list of
algorithms by their efficiency, measured with character comparison metrics, correlated
with the searched pattern entropy. More efficient algorithms perform fewer characters
comparison when finding a pattern in a text. The model proposes a more efficient algorithm
for string matching for a given pattern based on the entropy class to which the observed
pattern belongs.

The results presented in Tables 5 and 6 give a ranking list of the selected algorithms
grouped by the entropy class. The percentages shown in the result tables represent a
proportion of pattern searching results for a particular algorithm, which might be smaller
or greater than the remaining algorithms inside the quartile. For example, in Table 5, if
the searched pattern belongs to the entropy class 1 (number of representative patterns is 9),
55.88% of the searching results for a given entropy class with the QS algorithm are in the first
quartile, 14.71% are in the second quartile, 29.41% are in the third quartile (Figure 5). When
patterns are searched with the BM algorithm, 47.92% of the searching results expressed as
CC count is in the first quartile, 23.53% are in the second quartile, and 25% are in the third,
and 8.33% are in the fourth quartile. In this case, for a given pattern, the built model
suggests using the QS algorithm as the most efficient algorithm. The selected algorithm is
considered an optimal algorithm that will make fewer character comparisons (CC) than
others for most patterns being searched belonging to the entropy class 1.

Entropy classes in Table 5 are defined in Table 2.
In Table 5, for the entropy class 8 (number of representative patterns searched is 1451),

the model shows that the BM algorithm is the most efficient. In 61.95% of cases for patterns
in the entropy class 8, the BM algorithm made the least characters comparison versus
the other six algorithms evaluated with the model. In 24.38% cases, BM was second best;
in 13.68% cases was the third and never was the worse.

Entropy classes in Table 6 are defined in Table 4.
In Table 6, for example, for the entropy class 6 (number of representative patterns

searched is 393), the model shows that the QS algorithm is the most efficient. In 70.13%
of cases for patterns in the entropy class 6, the QS algorithm made the least characters
comparison versus the other six algorithms evaluated with the model. In 29.87% of
cases, QS was second best and never was the worse. For the entropy class 7 (number of
representative patterns searched is 283), the model shows that the most efficient is the BM
algorithm. In 65.02% of cases for patterns in the entropy class 7, the BM algorithm made
the least characters comparison versus the other six algorithms evaluated with the model.
In 34.98% of cases, BM was second best and never was the worse.

Entropy 2021, 23, 31 11 of 19

Table 5. Algorithms ranking model for DNA texts and patterns.

Entropy Class/
Algorithm 1 2 3 4 5 6 7 8 9

Quartile 1

AC 20.59% 0.00% 20.00% 12.61% 5.74% 8.99% 8.51% 5.43% 2.53%

BF 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

BM 47.92% 100.00% 56.67% 51.82% 57.20% 61.11% 58.26% 61.95% 62.83%

HOR 38.24% 0.00% 46.67% 49.55% 49.88% 51.06% 49.92% 53.92% 54.60%

KMP 14.71% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

MP 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

QS 55.88% 100.00% 53.33% 51.35% 55.36% 53.97% 54.08% 53.68% 54.85%

Quartile 2

AC 29.41% 100.00% 16.67% 35.14% 41.15% 31.22% 38.03% 36.47% 34.34%

BF 23.53% 0.00% 13.33% 22.97% 20.95% 18.52% 21.75% 21.58% 26.36%

BM 18.75% 0.00% 43.33% 28.38% 24.28% 29.63% 22.92% 24.38% 23.21%

HOR 20.59% 100.00% 30.00% 14.41% 20.95% 29.89% 22.54% 24.32% 18.41%

KMP 35.29% 0.00% 13.33% 26.58% 20.95% 18.52% 26.65% 21.58% 27.22%

MP 23.53% 0.00% 13.33% 22.97% 20.95% 18.52% 21.75% 21.58% 27.22%

QS 14.71% 0.00% 43.33% 23.42% 25.94% 28.57% 21.63% 25.08% 18.25%

Quartile 3

AC 23.53% 0.00% 53.33% 25.23% 29.18% 36.24% 26.54% 31.67% 31.41%

BF 26.47% 0.00% 16.67% 24.77% 27.43% 25.66% 24.56% 24.36% 26.01%

BM 25.00% 0.00% 0.00% 19.80% 16.05% 9.26% 18.82% 13.68% 13.95%

HOR 29.41% 0.00% 23.33% 35.59% 26.18% 19.05% 27.38% 21.77% 26.72%

KMP 23.53% 100.00% 43.33% 21.17% 34.66% 41.53% 29.63% 37.77% 25.15%

MP 26.47% 0.00% 33.33% 24.77% 27.43% 25.66% 24.56% 24.56% 25.15%

QS 29.41% 0.00% 3.33% 25.23% 15.96% 17.46% 24.28% 21.24% 26.65%

Quartile 4

AC 26.47% 0.00% 10.00% 27.03% 23.94% 23.54% 26.93% 26.43% 31.72%

BF 50.00% 100.00% 70.00% 52.25% 51.62% 55.82% 53.69% 54.06% 47.63%

BM 8.33% 0.00% 0.00% 0.00% 2.47% 0.00% 0.00% 0.00% 0.01%

HOR 11.76% 0.00% 0.00% 0.45% 2.99% 0.00% 0.17% 0.00% 0.27%

KMP 26.47% 0.00% 43.33% 52.25% 44.39% 39.95% 43.72% 40.65% 47.63%

MP 50.00% 100.00% 53.33% 52.25% 51.62% 55.82% 53.69% 53.87% 47.63%

QS 0.00% 0.00% 0.00% 0.00% 2.74% 0.00% 0.00% 0.00% 0.25%

Entropy 2021, 23, 31 12 of 19

Table 6. Algorithms ranking model for the natural language texts and patterns.

Entropy Class/
Algorithm 1 2 3 4 5 6 7 8 9

Quartile 1

AC 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

BF 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

BM 66.67% 0.00% 40.56% 60.38% 57.18% 64.05% 65.02% 58.81% 66.06%

HOR 33.33% 0.00% 35.06% 30.19% 38.72% 41.01% 51.24% 56.47% 52.04%

KMP 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

MP 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

QS 100.00% 0.00% 100.00% 84.91% 79.23% 70.13% 59.01% 59.71% 57.01%

Quartile 2

AC 100.00% 0.00% 51.67% 50.94% 50.00% 50.13% 58.66% 50.18% 72.85%

BF 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

BM 33.33% 0.00% 59.44% 39.62% 42.82% 35.95% 34.98% 41.19% 33.94%

HOR 66.67% 0.00% 64.94% 69.81% 61.28% 58.99% 48.76% 43.53% 47.96%

KMP 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

MP 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

QS 0.00% 0.00% 0.00% 15.09% 20.77% 29.87% 40.99% 40.29% 42.99%

Quartile 3

AC 0.00% 0.00% 48.33% 49.06% 50.00% 49.87% 41.34% 49.82% 27.15%

BF 0.00% 0.00% 36.67% 33.96% 33.08% 32.41% 31.45% 33.45% 32.13%

BM 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

HOR 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

KMP 0.00% 0.00% 44.44% 49.06% 45.90% 46.58% 47.70% 46.04% 47.06%

MP 33.33% 0.00% 44.44% 41.51% 45.90% 46.08% 45.94% 45.50% 46.15%

QS 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Quartile 4

AC 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

BF 100.00% 0.00% 63.33% 66.04% 66.92% 67.59% 68.55% 66.55% 67.87%

BM 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

HOR 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

KMP 0.00% 0.00% 55.56% 50.94% 54.10% 53.42% 52.30% 53.96% 52.94%

MP 66.67% 0.00% 55.56% 58.49% 54.10% 53.92% 54.06% 54.50% 53.85%

QS 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Entropy 2021, 23, 31 13 of 19

Entropy 2021, 23, x 10 of 18

the searched pattern entropy. More efficient algorithms perform fewer characters com-
parison when finding a pattern in a text. The model proposes a more efficient algorithm
for string matching for a given pattern based on the entropy class to which the observed
pattern belongs.

The results presented in Tables 5 and 6 give a ranking list of the selected algorithms
grouped by the entropy class. The percentages shown in the result tables represent a pro-
portion of pattern searching results for a particular algorithm, which might be smaller or
greater than the remaining algorithms inside the quartile. For example, in Table 5, if the
searched pattern belongs to the entropy class 1 (number of representative patterns is 9),
55.88% of the searching results for a given entropy class with the QS algorithm are in the
first quartile, 14.71% are in the second quartile, 29.41% are in the third quartile (Figure 5).
When patterns are searched with the BM algorithm, 47.92% of the searching results ex-
pressed as CC count is in the first quartile, 23.53% are in the second quartile, and 25% are
in the third, and 8.33% are in the fourth quartile. In this case, for a given pattern, the built
model suggests using the QS algorithm as the most efficient algorithm. The selected algo-
rithm is considered an optimal algorithm that will make fewer character comparisons
(CC) than others for most patterns being searched belonging to the entropy class 1.

Entropy classes in Table 5 are defined in Table 2.

Figure 5. Algorithms ranking for entropy class 1.

Table 5. Algorithms ranking model for DNA texts and patterns.

Entropy Class/Algorithm 1 2 3 4 5 6 7 8 9
Quartile 1

AC 20.59% 0.00% 20.00% 12.61% 5.74% 8.99% 8.51% 5.43% 2.53%
BF 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
BM 47.92% 100.00% 56.67% 51.82% 57.20% 61.11% 58.26% 61.95% 62.83%

HOR 38.24% 0.00% 46.67% 49.55% 49.88% 51.06% 49.92% 53.92% 54.60%
KMP 14.71% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
MP 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
QS 55.88% 100.00% 53.33% 51.35% 55.36% 53.97% 54.08% 53.68% 54.85%

Quartile 2
AC 29.41% 100.00% 16.67% 35.14% 41.15% 31.22% 38.03% 36.47% 34.34%
BF 23.53% 0.00% 13.33% 22.97% 20.95% 18.52% 21.75% 21.58% 26.36%
BM 18.75% 0.00% 43.33% 28.38% 24.28% 29.63% 22.92% 24.38% 23.21%

HOR 20.59% 100.00% 30.00% 14.41% 20.95% 29.89% 22.54% 24.32% 18.41%
KMP 35.29% 0.00% 13.33% 26.58% 20.95% 18.52% 26.65% 21.58% 27.22%
MP 23.53% 0.00% 13.33% 22.97% 20.95% 18.52% 21.75% 21.58% 27.22%

Figure 5. Algorithms ranking for entropy class 1.

5. Methodology Validation and Discussion

For model validation, the seventh and ninth entropy classes (961 and 4692 patterns)
were selected for the DNA domain, and the sixth (393 patterns) and ninth classes (221 pat-
terns) were selected for the natural language domain. The model classes chosen for
validation have the highest number of representative patterns and are characteristic for
the specific domains.

The selected patterns for validation are not part of the patterns set with which
the model was created. For the DNA domain model, also a different text is chosen for
validation. The DNA domain model is validated with the DNA sequence Homo sapiens
isolate HG00514 chromosome 9 genomic scaffold HS_NIOH_CHR9_SCAFFOLD_1, whole
genome shotgun sequence, 43.213.237 bp, 39 Mb as the text [58]. The natural language
domain is validated with the natural language text set from the Canterbury Corpus. [43]

Before the model validation process, a check was made to see if the selected patterns
were sufficiently representative for model validation. The check was done with the central
limit theorem. The set of patterns used in the validation phase has a normal distribution
(Figure 6, Mean = 1.900, and Std. Dev = 0.064) as a set of patterns used in model building
(Figure 7, Mean = 1.901, and Std. Dev = 0.059), which means that patterns used to validate
the model represent a domain.

Other entropy classes of patterns discretized character comparisons also follow the nor-
mal distribution. The basis in the model validation phase is to verify if the test results differ
from the developed model results presented in Tables 5 and 6.

For comparing the two data sets (model results and test results), double-scaled Euclid
distance, and Pearson correlation coefficient were used.

Double-scaled Euclidian distance normalizes raw Euclidian distance into a range of 0–
1, where 1 represents the maximum discrepancy between the two variables. The first step in
comparing two datasets with double-scaled Euclidian methods is to compute the maximum
possible squared discrepancy (md) per variable i of v variables, where v is the number of
observed variables in the data set. The mdi = (Maximum for variable i-Minimum for variable
i)2, where 0 (0%) is used for minimum and 1 (100%) for maximum values for double-scaled
Euclid distance. The second step’s goal is to produce the scaled variable Euclidean distance,
where the sum of squared discrepancies per variable is divided by the maximum possible
discrepancy for that variable, Equation (7):

d1 =

√√√√ v

∑
i=1

(
(p1i − p2i)

2

mdi

)
(7)

Entropy 2021, 23, 31 14 of 19
Entropy 2021, 23, x 13 of 18

Figure 6. Patterns used in the validation phase for the entropy class 9 of the DNA domain.

Figure 7. Patterns used in model building for the entropy class 9 of the DNA domain.

Other entropy classes of patterns discretized character comparisons also follow the
normal distribution. The basis in the model validation phase is to verify if the test results
differ from the developed model results presented in Tables 5 and 6.

For comparing the two data sets (model results and test results), double-scaled Euclid
distance, and Pearson correlation coefficient were used.

Double-scaled Euclidian distance normalizes raw Euclidian distance into a range of
0–1, where 1 represents the maximum discrepancy between the two variables. The first
step in comparing two datasets with double-scaled Euclidian methods is to compute the
maximum possible squared discrepancy (md) per variable i of v variables, where v is the

Figure 6. Patterns used in the validation phase for the entropy class 9 of the DNA domain.

1

Figure 7. Patterns used in model building for the entropy class 9 of the DNA domain.

The final step is dividing scaled Euclidian distance with the root of v, where v is
the number of observed variables, Equation (8). Double-scaled Euclid distance easily turns
into a measure of similarity by subtracting it from 1.0. [16,59–62]:

d2 =

√
∑v

i=1

(
(p1i−p2i)

2

mdi

)
√

v
(8)

Entropy 2021, 23, 31 15 of 19

Table 7 shows the usage of the double-scaled Euclidian distance method for entropy
class 7 of DNA

Table 7. Example of usage double-scaled Euclidian distance on DNA entropy class 7.

i Built Model (p1) Validation (p2) Scaled Euclidean (d1)

1 0.58263 0.96667 0.14749

2 0.22916 0.03333 0.03835

. . .

28 0.43718 0.16667 0.07318

Applying Equation (8) on Table 7, column “Scaled Euclidean (d1)”, gives a double-
scaled Euclidian distance of 0.227. Subtracting double-scaled Euclidian Distance from
1 gives a similarity coefficient of 0.773 or 77%.

Table 8 shows the results of the calculated double-scaled Euclid distance and corre-
sponding similarity coefficient.

Table 8. Double-scaled Euclid distance for DNA and natural language classes.

Model vs. Validation
Result for:

DNA Natural Language

Double-Scaled
Euclidean Distance

Similarity
Coefficient

Double-Scaled
Euclidean Distance

Similarity
Coefficient

Class 6 0.194 0.806 (80%)

Class 7 0.227 0.773 (77%)

Class 9 0.231 0.769 (77%) 0.145 0.855 (86%)

Converting double-scaled Euclidian distance to a context of similarity, it is possible
to conclude that the built model is similar to the validation results with a high degree
of similarity. The seventh and ninth classes from the built model for the DNA domain
have a similarity coefficient with their validation results of 77%. The high percentage of
similarity also has the sixth and ninth classes from the built model for the natural language
domain with their validation results of 80% and 86%. The results for validated classes
obtained in the validation process are extremely similar to the results from the built model.
A proportion of searched pattern character comparisons for a particular algorithm inside
the quartile is similar to the built model.

Pearson’s correlation coefficient is used to check the correlation between data from
the model and data from the validation phase. Pearson correlation coefficients per classes
are shown in Table 9.

Table 9. Pearson correlation coefficient for DNA and natural language classes.

Model vs. Validation Result for: DNA Natural Language

Class 6 0.848

Class 7 0.795

Class 9 0.685 0.905

The seventh and ninth classes from the built model for the DNA domain have a
linear Pearson’s correlation coefficient with their validation results. The sixth and ninth
classes from the natural language domain’s built model have a linear Pearson’s correlation
coefficient with their validation results. Pearson’s correlation coefficient shown in Figure 8
indicate that the values from the built model (x-axis, Model) and their corresponding
validation result (y-axis, validation) follow each other with a strong positive relationship.

Entropy 2021, 23, 31 16 of 19

Entropy 2021, 23, x 15 of 18

Pearson’s correlation coefficient is used to check the correlation between data from
the model and data from the validation phase. Pearson correlation coefficients per classes
are shown in Table 9.

Table 9. Pearson correlation coefficient for DNA and natural language classes.

Model vs. Validation Result for: DNA Natural Language
Class 6 0.848
Class 7 0.795
Class 9 0.685 0.905

The seventh and ninth classes from the built model for the DNA domain have a linear
Pearson’s correlation coefficient with their validation results. The sixth and ninth classes
from the natural language domain’s built model have a linear Pearson’s correlation coef-
ficient with their validation results. Pearson’s correlation coefficient shown in Figure 8
indicate that the values from the built model (x-axis, Model) and their corresponding val-
idation result (y-axis, validation) follow each other with a strong positive relationship.

Figure 8. Pearson’s linear correlation coefficient.

Using the double-scaled Euclidean distance in the validation process shows a strong
similarity between the built model and validation results. In addition to the similarity, a
strong positive relationship exists between classes selected from the built model and val-
idation results proven by Pearson’s correlation coefficient. Presented results show that it
is possible to use the proposed methodology to build a domain model for selecting an
optimal algorithm for the exact string matching. Except for optimal algorithm selection
for a specific domain, this methodology can be used to improve the efficiency of string-
matching algorithms in the context of performance, which is in correlation with empirical
measurements.

Figure 8. Pearson’s linear correlation coefficient.

Using the double-scaled Euclidean distance in the validation process shows a strong
similarity between the built model and validation results. In addition to the similarity,
a strong positive relationship exists between classes selected from the built model and
validation results proven by Pearson’s correlation coefficient. Presented results show that
it is possible to use the proposed methodology to build a domain model for selecting
an optimal algorithm for the exact string matching. Except for optimal algorithm selec-
tion for a specific domain, this methodology can be used to improve the efficiency of
string- matching algorithms in the context of performance, which is in correlation with
empirical measurements.

The data used to build and validate the model can be downloaded from the website [63].

6. Conclusions

Proposed methodology for ranking algorithms is based on properties of the searched
string and properties of the texts being searched. Searched strings are classified according
to the pattern entropy. This methodology is expressing algorithms efficiency using plat-
form independent metrics thus not depending on algorithm implementation, computer
architecture or programming languages characteristics. This work focuses on classical
software-based algorithms that use exact string-matching techniques with a character
comparison approach. For any other type of algorithms, this methodology cannot be used.
The used character comparisons metrics is platform-independent in the context of formal
approaches, but the number of comparisons directly affects the time needed for algorithm
execution and usage of computational resource. Studying the methodology, complexity,
and limitations of all available algorithms is a complicated and long-term task. The paper
discusses, in detail, available metrics for string searching algorithms properties evaluation
and proposing a methodology for building a domain model for selecting an optimal string
searching algorithm. The methodology is based on presenting exact string-matching results
to express algorithm efficiency regardless of query pattern length and dataset size. We

Entropy 2021, 23, 31 17 of 19

considered the number of compared characters of each algorithm expressed by the searched
string entropy for our baseline analysis. High degrees of similarity and a strong correlation
between the validation results and the built model data have been proven, making this
methodology a useful tool that can help researchers choose an efficient string- matching
algorithm according to the needs and choose a suitable programming environment for
developing new algorithms. Everything that is needed is a pattern from a specific domain
by which the model is built, and the model will suggest using the most optimal algorithm
for usage. The defined model finally selects the algorithm that will most likely run up
the least character comparison count in pattern matching. This research does not intend to
evaluate the algorithm logic and programming environment in any way; the main reason
for comparing the results of algorithms is the construction of the algorithm selection model.
The built model is straightforwardly extendable with other algorithms; all required is ade-
quate training data sets. Further research is directed to find additional string characteristics,
besides pattern entropy, that can enhance developed methodology precision for selecting
more efficient string search algorithms.

Supplementary Materials: The following are available online at https://www.mdpi.com/1099-430
0/23/1/31/s1.

Author Contributions: Conceptualization, I.M. and M.Š.; methodology, I.M.; software, I.M.; valida-
tion, I.M., M.Š. and M.Z.; formal analysis, I.M.; investigation, I.M.; resources, I.M.; data curation, I.M.;
writing—original draft preparation, I.M.; writing—review and editing, I.M., M.Š. and M.Z.; visualiza-
tion, I.M.; supervision, M.Š. and D.S.; project administration, I.M. and M.Š.; funding acquisition, D.S.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Data is contained within the supplementary materials.

Conflicts of Interest: The authors declare no conflict of interest.

References and Notes
1. Xiong, J. Essential Bioinformatics; Cambridge University Press: Cambridge, UK, 2006; ISBN 9780521600828.
2. Pizzi, C.; Ornamenti, M.; Spangaro, S.; Rombo, S.E.; Parida, L. Efficient algorithms for sequence analysis with entropic profiles.

IEEE/ACM Trans. Comput. Biol. Bioinform. 2018, 15, 117–128. [CrossRef] [PubMed]
3. Faro, S.; Lecroq, T.; Borz, S. The String Matching Algorithms Research Tool. Proc. Prague Stringol. Conf. 2016, 99–113.
4. Al-Khamaiseh, K.; Alshagarin, S. A Survey of String Matching Algorithms. J. Eng. Res. Appl. 2014, 4, 144–156.
5. SaiKrishna, V.; Rasool, P.A.; Khare, D.N. String Matching and its Application in Diversified Fields. IJCSI Int. J. Comput. Sci. Issues

2012, 9, 219–226.
6. Sedgewick, R.; Flajolet, P. An Introduction to the Analysis of Algorithms, 2nd ed.; Addison-Wesley/Pearson Education: Westford,

MA, USA, 2013; ISBN 9780321905758.
7. Michailidis, P.D.; Margaritis, K.G. On-line string matching algorithms: Survey and experimental results. Int. J. Comput. Math.

2001, 76, 411–434. [CrossRef]
8. Faro, S. Evaluation and improvement of fast algorithms for exact matching on genome sequences. In International Conference on

Algorithms for Computational Biology; Springer: Cham, Switzerland, 2016; Volume 9702, pp. 145–157. [CrossRef]
9. Hume, A.; Sunday, D. Fast string searching. Softw. Pract. Exp. 1991, 21, 1221–1248. [CrossRef]
10. Navarro, G.; Raffinot, M. Flexible Pattern Matching in Strings: Practical Online Search Algorithms for Texts and Biological

Sequences. Computer 2002, 35. [CrossRef]
11. Hakak, S.I.; Kamsin, A.; Shivakumara, P.; Gilkar, G.A.; Khan, W.Z.; Imran, M. Exact String Matching Algorithms: Survey, Issues,

and Future Research Directions. IEEE Access 2019, 7, 69614–69637. [CrossRef]
12. Gusfield, D. Algorithms on strings, trees, and sequences: Computer science and computational biology. Theory Pract. 1997, 28, 554.
13. Cormen, T.H.; Cormen, T.H. Introduction to Algorithms; MIT Press: Cambridge, MA, USA, 2001; ISBN 9780262032933.
14. Jiji, N.; Mahalakshmi, T. Survey of Exact String Matching Algorithm for Detecting Patterns in Protein Sequence. Adv. Comput. Sci.

Technol. 2017, 10, 2707–2720.
15. Singla, N.; Garg, D. String Matching Algorithms and their Applicability in various Applications. Int. J. Soft Comput. Eng. 2012, 1,

2231–2307.

https://www.mdpi.com/1099-4300/23/1/31/s1
https://www.mdpi.com/1099-4300/23/1/31/s1
http://dx.doi.org/10.1109/TCBB.2016.2620143
http://www.ncbi.nlm.nih.gov/pubmed/28113780
http://dx.doi.org/10.1080/00207160108805036
http://dx.doi.org/10.1007/978-3-319-38827-4_12
http://dx.doi.org/10.1002/spe.4380211105
http://dx.doi.org/10.1109/MC.2002.1033033
http://dx.doi.org/10.1109/ACCESS.2019.2914071

Entropy 2021, 23, 31 18 of 19

16. Myatt, G.J.; Johnson, W.P. Making Sense of Data I a Practical Guide to Exploratory Data Analysis and Data Mining, 2nd ed.; John Wiley
& Sons, Inc.: Somerset, NJ, USA, 2014; ISBN 9781118407417.

17. Manikandan, S. Frequency distribution. J. Pharmacol. Pharmacother. 2011, 2, 54. [CrossRef] [PubMed]
18. Bartlett, J.; Kotrlik, J.; Higgins, C. Organizational research: Determining appropriate sample size in survey research. Inf. Technol.

Learn. Perform. J. 2001, 19, 43.
19. Taherdoost, H. Determining Sample Size; How to Calculate Survey Sample Size. Int. J. Econ. Manag. Syst. 2017, 2, 237–239.
20. Israel, G.D. Determining Sample Size; University of Florida: Gainesville, FL, USA, 1992.
21. Mohammed, R. Information Analysis of DNA Sequences. arXiv 2010, arXiv:1010.4205, 1–22.
22. Schmitt, A.O.; Herzel, H. Estimating the entropy of DNA sequences. J. Theor. Biol. 1997, 188, 369–377. [CrossRef]
23. Ebeling, W.; Nicolis, G. Word frequency and entropy of symbolic sequences: A dynamical perspective. Chaos Solitons Fractals

1992, 2, 635–650. [CrossRef]
24. Herzel, H.; Ebeling, W.; Schmitt, A.O. Entropies of biosequences: The role of repeats. Phys. Rev. E 1994, 50, 5061–5071. [CrossRef]
25. Lesne, A.; Blanc, J.L.; Pezard, L. Entropy estimation of very short symbolic sequences. Phys. Rev. E 2009, 79, 1–10. [CrossRef]
26. Rhodes, P.C.; Garside, G.R. Use of maximum entropy method as a methodology for probabilistic reasoning. Knowl. Based Syst.

1995, 8, 249–258. [CrossRef]
27. Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
28. Muchnik, A.; Vereshchagin, N. Shannon entropy vs. kolmogorov complexity. In International Computer Science Symposium in

Russia; Springer: Berlin/Heidelberg, Germany, 2006; pp. 281–291. [CrossRef]
29. Grunwald, P.; Vitanyi, P. Shannon Information and Kolmogorov Complexity. 2004. Available online: https://arxiv.org/pdf/cs/

0410002.pdf (accessed on 4 May 2020).
30. Teixeira, A.; Matos, A.; Souto, A.; Antunes, L. Entropy Measures vs. Kolmogorov Complexity. Entropy 2011, 13, 595–611.

[CrossRef]
31. Goulão, M.; Brito e Abreu, F. Formal definition of metrics upon the CORBA component model. In Quality of Software Architectures

and Software Quality; Springer: Berlin/Heidelberg, Germany, 2005; pp. 88–105. [CrossRef]
32. Barabucci, G.; Ciancarini, P.; Di Iorio, A.; Vitali, F. Measuring the quality of diff algorithms: A formalization. Comput. Stand.

Interfaces 2016, 46, 52–65. [CrossRef]
33. Ivkovic, N.; Jakobovic, D.; Golub, M. Measuring Performance of Optimization Algorithms in Evolutionary Computation. Int. J.

Mach. Learn. Comput. 2016, 6, 167–171. [CrossRef]
34. Aho, A.V.; Hopcroft, J.E.; Ullman, J.D. The Design and Analysis of Computer Algorithms; Addison-Wesley Pub. Co.: Reading, MA,

USA, 1974; ISBN 9780201000290.
35. Hromkovič, J. Theoretical Computer Science: Introduction to Automata, Computability, Complexity, Algorithmics, Randomization,

Communication, and Cryptography; Springer: Berlin/Heidelberg, Germany, 2004; ISBN 3540140158.
36. Jain, P.; Pandey, S. Comparative Study on Text Pattern Matching for Heterogeneous System. Int. J. Comput. Sci. Eng. Technol. 2012,

3, 537–543.
37. Pandiselvam, P.; Marimuthu, T.; Lawrance, R. A comparative study on string matching algorithms of biological sequences. Int.

Conf. Intell. Comput. 2014, 2014, 1–5.
38. Faro, S.; Lecroq, T. The Exact Online String Matching Problem: A Review of the Most Recent Results. Acm Comput. Surv. 2013,

45, 13. [CrossRef]
39. Lecroq, T.; Charras, C. Handbook od Exact String Matching; Laboratoire d’Informatique de Rouen Université de Rouen: Rouen,

France, 2001.
40. Cover, T.M.; Thomas, J.A. Elements of Information Theory; John Wiley and Sons: Hoboken, NJ, USA, 2005; ISBN 9780471241959.
41. Kucak, D.; Djambic, G.; Fulanovic, B. An empirical study of algorithms performance in implementations of set in Java. In Pro-

ceedings of the 23rd DAAAM International Symposium on Intelligent Manufacturing and Automation 2012, Zadar, Croatia,
24–27 October 2012; Volume 1, pp. 565–568.

42. Alhendawi, K.M.; Baharudin, A.S. String Matching Algoritms (SMAs): Survey & Empirical Analysis. J. Comput. Sci. Manag. 2013,
2, 2637–2644.

43. The Canterbury Corpus. Available online: http://corpus.canterbury.ac.nz/ (accessed on 21 December 2020).
44. Compeau, P.; Pevzner, P. Bioinformatics Algorithms: An Active Learning Approach; Active Learning Publishers: La Jolla, CA, USA,

2015; Volume 1, ISBN 0990374602.
45. Markić, I.; Štula, M.; Jukić, M. Pattern Searching in Genome. Int. J. Adv. Comput. Technol. 2018, 10, 36–46.
46. Anabarilius grahami isolate AG-KIZ scaffold371_cov124, whole genome sh—Nucleotide—NCBI.
47. Chelonia mydas unplaced genomic scaffold, CheMyd_1.0 scaffold1, whole—Nucleotide—NCBI.
48. Escherichia coli strain LM33 isolate patient, whole genome shotgun seq—Nucleotide—NCBI.
49. Macaca mulatta isolate AG07107 chromosome 19 genomic scaffold ScNM3vo_—Nucleotide—NCBI.
50. The Canterbury Corpus—The King James Version of the Bible. Available online: https://corpus.canterbury.ac.nz/descriptions/.

(accessed on 13 February 2020).
51. Boyer, R.S.; Moore, J.S. A fast string searching algorithm. Commun. ACM 1977, 20, 762–772. [CrossRef]
52. Knuth, D.E.; Morris, J.H.; Pratt, V.R.; Morris, J.H., Jr.; Pratt, V.R. Fast Pattern Matching in Strings. SIAM J. Comput. 1977, 6, 323–350.

[CrossRef]

http://dx.doi.org/10.4103/0976-500X.77120
http://www.ncbi.nlm.nih.gov/pubmed/21701652
http://dx.doi.org/10.1006/jtbi.1997.0493
http://dx.doi.org/10.1016/0960-0779(92)90058-U
http://dx.doi.org/10.1103/PhysRevE.50.5061
http://dx.doi.org/10.1103/PhysRevE.79.046208
http://dx.doi.org/10.1016/0950-7051(95)98902-I
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1007/11753728_29
https://arxiv.org/pdf/cs/0410002.pdf
https://arxiv.org/pdf/cs/0410002.pdf
http://dx.doi.org/10.3390/e13030595
http://dx.doi.org/10.1007/11558569_8
http://dx.doi.org/10.1016/j.csi.2015.12.005
http://dx.doi.org/10.18178/ijmlc.2016.6.3.593
http://dx.doi.org/10.1145/2431211.2431212
http://corpus.canterbury.ac.nz/
https://corpus.canterbury.ac.nz/descriptions/.
http://dx.doi.org/10.1145/359842.359859
http://dx.doi.org/10.1137/0206024

Entropy 2021, 23, 31 19 of 19

53. Apostolico, A.; Crochemore, M. Optimal canonization of all substrings of a string. Inf. Comput. 1991, 95, 76–95. [CrossRef]
54. Sunday, D.M. A very fast substring search algorithm. Commun. ACM 1990, 33, 132–142. [CrossRef]
55. Horspool, R.N. Practical fast searching in strings. Softw. Pract. Exp. 1980, 10, 501–506. [CrossRef]
56. Hakak, S.; Kamsin, A.; Shivakumara, P.; Idris, M.Y.I.; Gilkar, G.A. A new split based searching for exact pattern matching for

natural texts. PLoS ONE 2018, 13, e0200912. [CrossRef]
57. Powers, D.M.W. Evaluation: From Precision, Recall and F-Factor to ROC, Informedness, Markedness & Correlation. Hum.

Commun. Sci. SummerFest 2007, 24. Available online: https://csem.flinders.edu.au/research/techreps/SIE07001.pdf (accessed on
22 March 2020).

58. National Center for Biotechnology Information. Available online: https://www.ncbi.nlm.nih.gov/ (accessed on 15 August 2019).
59. Wheelan, C. Naked Statistics: Stripping the Dread from the Data; WW Norton & Co.: New York, NY, USA, 2013; ISBN 978-0-39307-195-5.
60. Barrett, P. Euclidean Distance Raw, Normalized, and Double-Scaled Coefficients. 2005. Available online: https://www.pbarrett.

net/techpapers/euclid.pdf (accessed on 16 September 2020).
61. Anton, H. Elementary Linear Algebra, 11th ed.; Wiley: New York, NY, USA, 2019; ISBN 978-1-119-62569-8.
62. Rodgers, J.L.; Nicewander, W.A. Thirteen Ways to Look at the Correlation Coefficient. Am. Stat. 1988, 42, 59–66. [CrossRef]
63. Raw Data for Entropy Based Approach in Selection Exact String Matching Algorithms. Available online: https://www.dropbox.

com/t/kXKUZeIIVpw3hU5O (accessed on 3 November 2020).

http://dx.doi.org/10.1016/0890-5401(91)90016-U
http://dx.doi.org/10.1145/79173.79184
http://dx.doi.org/10.1002/spe.4380100608
http://dx.doi.org/10.1371/journal.pone.0200912
https://csem.flinders.edu.au/research/techreps/SIE07001.pdf
https://www.ncbi.nlm.nih.gov/
https://www.pbarrett.net/techpapers/euclid.pdf
https://www.pbarrett.net/techpapers/euclid.pdf
http://dx.doi.org/10.2307/2685263
https://www.dropbox.com/t/kXKUZeIIVpw3hU5O
https://www.dropbox.com/t/kXKUZeIIVpw3hU5O

	Introduction
	String-Matching
	Methodology
	Methodology Description
	Representative Patterns Sample Size
	Entropy
	Formal Metric Description

	Methodology Implementation
	Selection of Representative Texts for Domain Model Building
	Selection of Algorithms
	Searching Results for Representative Patterns
	Patterns Entropy Calculation
	Entropies Discretization

	Classification of Algorithms in the Built Model
	Methodology Validation and Discussion
	Conclusions
	References

