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Abstract: This paper presents objective priors for robust Bayesian estimation against outliers based
on divergences. The minimum γ-divergence estimator is well-known to work well in estimation
against heavy contamination. The robust Bayesian methods by using quasi-posterior distributions
based on divergences have been also proposed in recent years. In the objective Bayesian framework,
the selection of default prior distributions under such quasi-posterior distributions is an important
problem. In this study, we provide some properties of reference and moment matching priors under
the quasi-posterior distribution based on the γ-divergence. In particular, we show that the proposed
priors are approximately robust under the condition on the contamination distribution without
assuming any conditions on the contamination ratio. Some simulation studies are also presented.

Keywords: divergence; moment matching prior; reference prior; robust estimation

1. Introduction

The problem of the robust parameter estimation against outliers has a long history.
For example, Huber and Ronchetti [1] provided an excellent review of the classical robust
estimation theory. It is well-known that the maximum likelihood estimator (MLE) is
not robust against outliers because it is obtained by minimizing the Kullback–Leibler
(KL) divergence between the true and empirical distributions. To overcome this problem,
we may use other (robust) divergences instead of the KL divergence. The robust parameter
estimation based on divergences has been one of the central topics in modern robust
statistics (e.g., [2]). Such a method was firstly proposed by [3], who referred to it as the
minimum density power divergence estimator. Reference [4] also proposed the “type 0
divergence”, which is a modified version of the density power divergence, and Reference [5]
showed that it has good robustness properties. The type 0 divergence is also known as the
γ-divergence, and statistical methods based on the γ-divergence have been presented by
many authors (e.g., [6–8]).

In Bayesian statistics, the robustness against outliers is also an important issue,
and divergence-based Bayesian methods have been proposed in recent years. Such methods
are known as quasi-Bayes (or general Bayes) methods in some studies, and the correspond-
ing posterior distributions are called quasi-posterior (or general posterior) distributions.
To overcome the model misspecification problem (see [9]), the quasi-posterior distribu-
tions are based on a general loss function rather than the usual log-likelihood function.
In general, such general loss functions may not depend on an assumed statistical model.
However, in this study, we use loss functions that depend on the assumed model be-
cause we are interested in the robust estimation problem against outliers, that is the
model is not misspecified, but the data generating distribution is wrong. In other words,
we use divergences or scoring rules as a loss function for the quasi-posterior distribu-
tion (see also [10–14]). For example, Reference [10] used the Hellinger divergence. Refer-
ence [11] used the density power divergence. References [12,14] used the γ-divergence.
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In particular, the quasi-posterior distribution based on the γ-divergence was referred to as
the γ-posterior in [12], and they showed that the γ-posterior has good robustness properties
to overcome the problems in [11].

Although the selection of priors is an important issue in Bayesian statistics, we often
have no prior information in some practical situations. In such cases, we may use priors
called default or objective priors, and we should select an appropriate objective prior in
a given context. In particular, we consider the reference and moment matching priors in
this paper. The reference prior was firstly proposed by [15], and the moment matching
prior was proposed by [16]. However, such objective priors generally depend on an
unknown data generating distribution when we cannot assume that the contamination
ratio is approximately zero. For example, if we assume the ε-contamination model (see,
e.g., [1]) as a data generating distribution, many objective priors depend on the unknown
contamination ratio and unknown contamination distribution because these objective
priors involve the expectations under the data generating distribution. Although [17]
derived some kinds of reference priors under the quasi-posterior distributions based on
some kinds of scoring rules, they only discussed the robustness of such reference priors
when the contamination ratio ε is approximately zero. Furthermore, their simulation
studies largely depended on the assumption for the contamination ratio. In other words,
they indirectly assumed that the contamination ratio ε is approximately zero. The current
study derives the moment matching priors under the quasi-posterior distribution in a
similar way as [16], and we show that the reference and moment matching priors based
on the γ-divergence do not approximately depend on such unknown quantities under a
certain assumption for the contamination distribution even if the contamination ratio is
not small.

The rest of this paper is organized as follows. In Section 2, we review robust Bayesian
estimation based on divergences referring to some previous studies. We derive moment
matching priors based on the quasi-posterior distribution using an asymptotic expansion
of the quasi-posterior distribution given by [17] in Section 3. Furthermore, we show that
the reference and moment matching priors based on the γ-posterior do not depend on
the contamination ratio and the contamination distribution. In Section 4, we compare the
empirical bias and mean squared error of posterior means through some simulation studies.
Some discussion about the selection of tuning parameters is also provided.

2. Robust Bayesian Estimation Using Divergences

In this section, we review the framework of robust estimation in the seminal pa-
per by Fujisawa and Eguchi [5], and we introduce the robust Bayesian estimation using
divergences. Let X1, . . . , Xn be independent and identically distributed (iid) random vari-
ables according to a distribution G with the probability density function g on Ω, and let
Xn = (X1, . . . , Xn). We assume the parametric model fθ = f (x, θ) (θ ∈ Θ ⊂ Rp) and
consider the estimation problem for θ.

Then, the γ-divergence between two probability densities g and f is defined by:

Dγ(g, fθ) =
1

γ(γ + 1)
log

∫
Ω

g(x)1+γdx

− 1
γ

log
∫

Ω
g(x) fθ(x)γdx +

1
γ + 1

log
∫

Ω
fθ(x)1+γdx,

where γ > 0 is a tuning parameter on robustness. We also define the γ-cross-entropy as:

dγ(g, fθ) = −
1
γ

log
∫

Ω
g(x) fθ(x)γdx +

1
γ + 1

log
∫

Ω
fθ(x)1+γdx

(see [4,5]).
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2.1. Framework of Robustness

Fujisawa and Eguchi [5] introduced a new framework of robustness, which is different
from the classical one. When some of the data values are regarded as outliers, we need a
robust estimation procedure. Typically, an observation that takes a large value is regarded
as an outlier. Under this convention, many robust parameter estimation procedures have
been proposed to reduce the bias caused by an outlier. An influence function is one
of the methods to measure the sensitivity of models against outliers. It is known that
the bias of an estimator is approximately proportional to the influence function when
the contamination ratio ε is small. However, when ε is not small, the bias cannot be
approximately proportional to the influence function. Reference [5] showed that the
likelihood function based on the γ-divergence gives a sufficiently small bias under heavy
contamination. Suppose that observations are generated from a mixture distribution
g(x) = (1− ε) f (x) + εδ(x), where f (x) is the underlying density, δ(x) is another density
function, and ε is the contamination ratio. In Section 3, we assume that the condition:

ν f =

{∫
Ω

δ(x) f (x)γ0 dx
}1/γ0

≈ 0 (1)

holds for a constant γ0 > 0 (see [5]). When x0 is generated from δ(x), we call x0 the
outlier. We note that we do not assume that the contamination ratio ε is sufficiently small.
This condition means that the contamination distribution δ(x) mostly lies on the tail of
the underlying density f (x). In other words, for an outlier x0, it holds that f (x0) ≈ 0.
We note that the condition (1) is also a basis to prove the robustness against outliers for
the minimum γ-divergence estimator in [5]. Furthermore, Reference [18] provided some
theoretical results for the γ-divergence, and related works in the frequentist setting have
been also developed (e.g., [6–8], and so on).

In the rest of this section, we give a brief review of the general Bayesian updating and
introduce some previous works that are closely related to this paper.

2.2. General Bayesian Updating

We consider the same framework as [9,13]. We are interested in θ = θ(G) (θ ∈ Θ ⊆
Rp), and we define a loss function `θ(x) := `(θ, x). Further, let θ∗ = arg minθ∈Θ EG
`θ(X) be the target parameter. We define the risk function by EG`θ(X), and its empirical
risk is defined by Rn(θ) = (1/n)∑n

i=1 `θ(Xi). For the prior distribution π(θ), the quasi-
posterior density is defined by:

πn,ω(θ) ∝ exp{−ωnRn(θ)}π(θ),

where ω > 0 is a tuning parameter called the learning rate. We note that the quasi-posterior
is also called the general posterior or Gibbs posterior. In this paper, we fix ω = 1 for the
same reason as [13]. For example, if we set `µ(x) = |x− µ|, we can estimate the median of
the distribution without assuming the statistical model. However, we consider the model-
dependent loss function, which is based on statistical divergence (or the scoring rule) in
this study (see also [11–14]). The unified framework of inference using the quasi-posterior
distribution was discussed by [9].

2.3. Assumptions and Previous Works

Let d(·, ·) be a cross-entropy induced by a divergence, and let { fθ : θ ∈ Θ} be a
statistical model. In general, the quasi-posterior distribution based on the cross-entropy is
defined by:

π(d)(θ|Xn) ∝ exp{−nd(ḡ, fθ)}π(θ) = exp

{
n

∑
i=1

q(d)(Xi; θ)

}
π(θ), (2)
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where d(ḡ, fθ) is the empirically estimated cross-entropy and ḡ is the empirical density
function. In robust statistics based on divergences, we may use the cross-entropy induced
by a robust divergence (e.g., [3–5]). In this paper, we mainly use the γ-cross-entropy
proposed by [4,5]. Recently, Reference [12] proposed the γ-posterior based on the monotone
transformation of the γ-cross-entropy:

d̃γ(g, fθ) = −
1
γ
{exp(−γdγ(g, fθ))− 1} = − 1

γ

∫
Ω g(x) fθ(x)γdx(∫

Ω fθ(x)1+γdx
)γ/(1+γ)

+
1
γ

for γ > 0. The γ-posterior is defined by taking d(ḡ, fθ) = d̃γ(ḡ, fθ) in (2). On the other
hand, Reference [11] proposed the R(α)-posterior based on the density power cross-entropy:

dα(g, fθ) = −
1
α

∫
g f α

θ dx +
1

1 + α
log

∫
Ω

f 1+α
θ dx

for α > 0. The R(α)-posterior is defined by taking d(ḡ, fθ) = dα(ḡ, fθ) in (2). Note that cross-
entropies dα(·, ·) and d̃γ(·, ·) converge to the negative log-likelihood function as α→ 0 and
γ → 0, respectively. Hence, we can establish that they are some kind of generalization
of the negative log-likelihood function. It is known that the posterior mean based on the
R(α)-posterior works well for the estimation of a location parameter in the presence of
outliers. However, this is known to be unstable in the case of the estimation for a scale
parameter (see [12]). Nakagawa and Hashimoto [12] showed that the posterior mean under
the γ-posterior has a small bias under heavy contamination for both location and scale
parameters in some simulation studies.

Let θg := arg minθ∈Θ d(g, fθ) be the target parameter. We now assume the following
regularity conditions on the density function fθ(x) = f (x; θ) (θ ∈ Θ ⊂ Rp). We use indices
to denote derivatives of D̄(θ) = d(ḡ, fθ) with respect to the components of the parameter
θ. For example, D̄ijk(θ) = ∂i∂j∂kD̄(θ) and D̄ijk`(θ) = ∂i∂j∂k∂`D̄(θ) for i, j, k, ` = 1, . . . , p.

(A1) The support of the density function does not depend on unknown parameter θ,
and fθ is fifth-order differentiable with respect to θ in neighborhood U of θg.

(A2) The interchange of the order of integration with respect to x and differentiation as
θg is justified. The expectations:

Eg[∂i∂j∂kq(d)(X1; θg)] and Eg[∂i∂j∂k∂`q(d)(X1; θg)]

are all finite, and Mijk`s(x) exists such that:

sup
θ∈U

∣∣∣∂i∂j∂k∂`∂sq(d)(x; θ)
∣∣∣ ≤ Mijk`s(x)

and Eg

[
Mijk`s(X1)

]
< ∞ for all i, j, k, `, s = 1, . . . , p, where ∂i = ∂/∂θi and ∂ =

∂/∂θ, while Eg(·) is the expectation of X with respect to a probability density
function g.

(A3) For any δ > 0, with probability one :

sup
‖θ−θg‖>δ

{
d(ḡ, fθg)− d(ḡ, fθ)

}
< −ε

for some ε > 0 and for all sufficiently large n.

The matrices I(d)(θ) and J(d)(θ) are defined by:

I(d)(θ) = Eg

[
∂q(d)(X1; θ)∂>q(d)(X1; θ)

]
,

J(d)(θ) = −Eg

[
∂∂>q(d)(X1; θ)

]
,
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respectively. We also assume that I(d)(θ) and J(d)(θ) are positive definite matrices. Under
these conditions, References [11,12] discussed several asymptotic properties of the quasi-
posterior distributions and the corresponding posterior means.

In terms of the higher order asymptotic theory, Giummolè et al. [17] derived the
asymptotic expansion of such quasi-posterior distributions. We now introduce the notation
that will be used in the rest of the paper. Reference [17] presented the following theorem.

Theorem 1 (Giummolè et al. [17]). Under the conditions (A1)–(A3), we assume that θ̂
(d)
n is

a consistent solution of ∂d(ḡ, fθ) = 0 and θ̂
(d)
n

p−→ θg as n → ∞. Then, for any prior density
function π(θ) that is third-order differentiable and positive at θg, it holds that:

π∗(d)(tn|Xn) = φ
(

tn; J̃−1
)(

1 + n−1/2 A1(tn) + n−1 A2(tn)
)
+ Op(n−3/2), (3)

where π∗(d)(tn|Xn) is the quasi-posterior density function of the normalized random variable
tn = (t1, . . . , tp)> =

√
n(θ− θ̂

(d)
n ) given Xn, φ(·; A) is the density function of a p-variate

normal distribution with a zero mean vector and covariance matrix A, J̃ = J(d)(θ̂(d)n ), J̃−1 = ( J̃ij),
and:

A1(tn) =
p

∑
i=1

∂iπ(θ̂
(d)
n )

π(θ̂
(d)
n )

ti +
1
6 ∑

i,j,k
D̄ijk(θ̂

(d)
n )titjtk,

A2(tn) =∑
i,j

1
2

∂i∂jπ(θ̂
(d)
n )

π(θ̂
(d)
n )

(titj − J̃ij)− ∑
i,j,k,`

1
6

∂iπ(θ̂
(d)
n )

π(θ̂
(d)
n )

D̄jk`(θ̂
(d)
n )
(

titjtkt` − 3 J̃ij J̃k`
)

− ∑
i,j,k,`

1
24

D̄ijk`(θ̂
(d)
n )
(

titjtkt` − 3 J̃ij J̃k`
)

+ ∑
i,j,k,h,g, f

1
72

D̄ijkD̄hg f (2titjtkthtgt f − 15 J̃ij J̃kh J̃g f ).

Proof. The proof is given in the Appendix A of [17].

As previously mentioned, quasi-posterior distributions depend on the cross-entropy
induced by a divergence and a prior distribution. If we have some information about
unknown parameters θ, we can use a prior distribution that takes such prior information
into account. However, in the absence of prior information, we often use prior distributions
known as default or objective priors. Reference [17] proposed the reference prior for
quasi-posterior distributions, which is a type of objective prior (see [15]). The reference
prior πR is obtained by asymptotically maximizing the expected KL divergence between
prior and posterior distributions. As a generalization of the reference prior, Reference [19]
discussed such priors under a general divergence measure known as the α-divergence
(see also [20,21]). The reference prior under the α-divergence is given by asymptotically
maximizing the expected α-divergence:

H(π) = E[D(α)(π(d)(θ|Xn), π(θ))],

where D(α) is the α-divergence defined as:

D(α)(π(d)(θ|Xn), π(θ)) =
1

α(1− α)

∫
Θ

{
1−

(
π(θ)

π(d)(θ|Xn)

)}α

π(d)(θ|Xn)dθ

which corresponds to the KL divergence as α→ 0, the Hellinger divergence for α = 1/2,
and the χ2-divergence for α = −1. Reference [17] derived reference priors with the α-
divergence under the quasi-posterior based on some kinds of proper scoring rules such as
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the Tsallis scoring rule and the Hyvärinen scoring rule. We note that the former rule is the
same as the density power score of [3] with minor notational modifications.

Theorem 2 (Giummolè et al. [17]). When |α| < 1, the reference prior that asymptotically
maximizes the expected α-divergence between the quasi-posterior and prior distributions is given by:

πR(θ) ∝ det(J(d)(θ))1/2.

The result of Theorem 2 is similar to that of [19,20]. Objective priors such as the
above theorem are useful because they can be determined by the data generating model.
However, such priors do not have a statistical guarantee when the model is misspecified
such as Huber’s ε-contamination model. In other words, the reference prior in Theorem 2
depends on data generating distribution g because of J(d)(θ) = −Eg

[
∂∂>q(d)(X1; θ)

]
,

where g(x) = (1− ε) fθ(x) + εδ(x) when the contamination ratio ε is not small such as for
heavy contamination cases. We now consider some objective priors under the γ-posterior,
which is robust against such unknown quantities, in the next section.

3. Main Results

In this section, we show our main results. Our contributions are as follows. We derive
moment matching priors for quasi-posterior distributions (Theorem 3). We prove that the
proposed priors are robust under the condition on the tail of the contamination distribution
(Theorem 4).

3.1. Moment Matching Priors

The moment matching priors proposed by [16] are priors that match the posterior
mean and MLE up to the higher order (see also [22]). In this section, we attempt to
extend the results of [16] to the context of quasi-posterior distributions. Our goal is
to identify a prior such that the difference between the quasi-posterior mean θ̃

(d)
n and

frequentist minimum divergence estimator θ̂
(d)
n converges to zero up to the order of o(n−1).

From Theorem 1, we have the following theorem.

Theorem 3. Let θ̃
(d)
n = (θ̃1, . . . , θ̃p), θ̂

(d)
n = (θ̂1, . . . , θ̂p), and tn = (t1, . . . , tp)> =

√
n(θ−

θ̂
(d)
n ). Under the same assumptions as Theorem 1, it holds that:

n
(

θ̃
(d)
` − θ̂

(d)
`

) p−→
p

∑
i=1

∂iπ(θg)

π(θg)
Ji` +

1
6 ∑

i,j,k
g(d)ijk (θg)

(
Jij Jk` + Jik J j` + Ji` J jk

)

as n→ ∞, where J = J(d)(θg), J−1 = (Jij), and g(d)ijk (θ) = Eg

[
∂i∂j∂kq(d)(X1; θ)

]
. Furthermore,

if we set a prior that satisfies:

∂`π(θ)

π(θ)
+

1
2 ∑

i,j
g(d)ij` (θ)Jij(θ) = 0 (4)

for all ` = 1, . . . , p, then it holds that:

n
(

θ̃
(d)
` − θ̂

(d)
`

) p−→ 0

for ` = 1, . . . , p as n→ ∞, where {J(d)(θ)}−1 = (Jij(θ)).

Hereafter, the prior that satisfies Equation (4) up to the order of op(n−1) for all ` =
1, . . . , p is referred to as a moment matching prior, and we denote it by πM.
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Proof. From the asymptotic expansion of the posterior density (3), we have the asymptotic
expansion of the posterior mean for θ` as:

θ̃
(d)
` =

∫
Θ

θ`π
(d)(θ|Xn)dθ

= θ̂
(d)
` +

1√
n

∫
Rp

t`π∗(d)(tn|Xn)dtn

= θ̂
(d)
` +

1
n

∫
Rp

t`φ
(

tn; J̃−1
)

A1(tn)dtn + Op(n−3/2)

(5)

for ` = 1, . . . , p. The integral in the above equation is calculated by:

∫
Rp

t`A1(tn)φ
(

tn; J̃−1
)

dtn =
p

∑
i=1

∂iπ(θ̂
(d)
n )

π(θ̂
(d)
n )

∫
Rp

tit`φ
(

tn; J̃−1
)

dtn

+
1
6 ∑

i,j,k
D̄ijk(θ̂

(d)
n )

∫
Rp

titjtkt`φ
(

tn; J̃−1
)

dtn

=
p

∑
i=1

∂iπ(θ̂
(d)
n )

π(θ̂
(d)
n )

J̃i`

+
1
6 ∑

i,j,k
D̄ijk(θ̂

(d)
n )
(

J̃ij J̃k` + J̃ik J̃ j` + J̃i` J̃ jk
)
+ op(1).

(6)

From (5) and (6), we have:

θ̃
(d)
` − θ̂

(d)
` =

p

∑
i=1

∂iπ(θ̂
(d)
n )

π(θ̂
(d)
n )

J̃i` +
1

6n ∑
i,j,k

D̄ijk(θ̂
(d)
n )
(

J̃ij J̃k` + J̃ik J̃ j` + J̃i` J̃ jk
)
+ Op(n−3/2)

for ` = 1, . . . , p. By using the consistency of the estimator θ̂
(d)
n , we then have the following

asymptotic difference between θ̂
(d)
` and θ̂

(d)
` :

n
(

θ̃
(d)
` − θ̂

(d)
`

) p−→
p

∑
i=1

∂iπ(θg)

π(θg)
Ji` +

1
6 ∑

i,j,k
g(d)ijk (θg)

(
Jij Jk` + Jik J j` + Ji` J jk

)
as n→ ∞ for ` = 1, . . . , p.

In general, it is not easy to obtain the moment matching priors explicitly. Two examples
are given as follows.

Example 1. When p = 1, the moment matching prior is given by:

πM(θ) = C exp

{
−
∫ θ g(d)3 (t)

2J(d)(t)
dt

}

for a constant C, where g3 is a third derivation of g. This prior is very similar to that of [16], but the
quantities g(d)3 (t) and J(d)(t) are different from it.

Example 2. When p = 2, we put:

u`(θ1, θ2) = ∑
i,j

g(d)ij` (θ)Jij(θ) (` = 1, 2),
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where θ = (θ1, θ2)
>. If u`(θ1, θ2) only depends on θ` for all ` = 1, 2 and does not depend on other

parameters θk(k 6= `), we have:

u1(θ1, θ2) ≡ u1(θ1), u2(θ1, θ2) ≡ u2(θ2).

Then, we can solve the differential equation given by (4), and the moment matching prior is
obtained by

πM(θ1, θ2) ∝ exp
{
−1

2

∫ θ1
u1(t1)dt1

}
exp

{
−1

2

∫ θ2
u2(t2)dt2

}
.

3.2. Robustness of Objective Priors

For data that may be heavily contaminated, we cannot assume that the contamination
ratio ε is approximately zero. In general, reference and moment matching priors depend on
the contamination ratio and distribution. Therefore, we cannot directly use such objective
priors for the quasi-posterior distributions because the contamination ratio ε and the
contamination distribution δ(x) are unknown. In this subsection, we prove that priors
based on the γ-divergence are robust against these unknown quantities. In addition to (1),
we assume the following condition of the contamination distribution:

νθ =

{∫
Ω

δ(x) fθ(x)γ0dx
}1/γ0

≈ 0 (7)

for all θ ∈ Θ and an appropriately large constant γ0 > 0 (see also [5]). Note that the
assumption (7) is also a basis to prove the robustness against outliers for the minimum
γ-divergence estimator in [5]. Then, we have the following theorem.

Theorem 4. Assume the condition (7). Let:

q(γ)(x; θ) := q(d̃γ)(x; θ) =
1
γ

fθ(x)γ

{∫
Ω

fθ(y)1+γdy
}−γ/(1+γ)

,

and let:

h(γ)ij (θ) = −E fθ

[
∂i∂jq(γ)(X1; θ)

]
,

g̃(γ)ijk (θ) = E fθ

[
∂i∂j∂kq(γ)(X1; θ)

]
.

Then, it holds that:

J(γ)ij (θ) = −Eg

[
∂i∂jq(γ)(X1; θ)

]
= (1− ε)h(γ)ij (θ) + O(ενγ),

g(γ)ijk (θ) = Eg

[
∂i∂j∂kq(γ)(X1; θ)

]
= (1− ε)g̃(γ)ijk (θ) + O(ενγ),

(8)

for γ + 1 ≤ γ0, where ν := max{ν f , supθ∈Θ νθ}. The notation O(ενγ) is the same use as that
of [5]. Furthermore, from the above results, the reference prior and Equation (4) are approximately
given by:

πR(θ) ∝ det
(

H(γ)(θ)
)1/2

,

∂`π(θ)

π(θ)
+

1
2 ∑

i,j
g̃(γ)ij` (θ)h

ij(θ) = 0,
(9)

where H(γ)(θ) = (h(γ)ij (θ)) and {H(γ)(θ)}−1 = (hij(θ)).
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Proof. Put `(x) = log fθ(x), `i(x) = ∂i log fθ(x), `ij(x) = ∂i∂j log fθ(x) and `ijk(x) =
∂i∂j∂k log fθ(x). First, from Hölder’s inequality and Lyapunonv’s inequality, it holds that:

∫
Ω
|δ(x) fθ(x)γ`i(x)|dx ≤ νγ

(∫
Ω
|`i(x)|1+γδ(x)dx

)1/(1+γ)

,

∫
Ω

∣∣δ(x) fθ(x)γ`i(x)`j(x)
∣∣dx ≤ νγ

(∫
Ω
|`i(x)`j(x)|1+γδ(x)dx

)1/(1+γ)

,

∫
Ω

∣∣δ(x) fθ(x)γ`ij(x)
∣∣dx ≤ νγ

(∫
Ω
|`ij(x)|1+γδ(x)dx

)1/(1+γ)

,

∫
Ω

∣∣∣δ(x) fθ(x)γ`ijk(x)
∣∣∣dx ≤ νγ

(∫
Ω
|`ijk(x)|1+γδ(x)dx

)1/(1+γ)

,

∫
Ω

∣∣δ(x) fθ(x)γ`ij(x)`k(x)
∣∣dx ≤ νγ

(∫
Ω
|`ij(x)`k(x)|1+γδ(x)dx

)1/(1+γ)

,

∫
Ω

∣∣δ(x) fθ(x)γ`i(X)`j(X1)`k(X1)
∣∣dx ≤ νγ

(∫
Ω
|`i(x)`j(x)`k(x)|1+γδ(x)dx

)1/(1+γ)

(10)

for i, j, k = 1, . . . , p. Using (10) and the results in Appendix A, we have:∣∣∣∣∫Ω
δ(x)∂i∂jq(γ)(x; θ)dx

∣∣∣∣ ≤‖ fθ‖−γ
γ+1γ

∫
Ω

∣∣δ(x) fθ(x)γ`i(x)`j(x)
∣∣dx

+ ‖ fθ‖−γ
γ+1

∫
Ω

∣∣δ(x) fθ(x)γ`ij(x)
∣∣dx

+ γSi‖ fθ‖−1−2γ
γ+1

∫
Ω

∣∣δ(x) fθ(x)γ`j(x)
∣∣dx

+ γSj‖ fθ‖−1−2γ
γ+1

∫
Ω
|δ(x) fθ(x)γ`i(x)|dx

+
(1 + 2γ)

‖ fθ‖2+3γ
γ+1

SiSj

∫
Ω
|δ(x) fθ(x)γ|dx

+ ‖ fθ‖−1−2γ
γ+1

∫
Ω
|δ(x) fθ(x)γ|dx

∫
Ω

fθ(y)γ+1sij(y)dy,

=O(νγ),

where:

sij(y) =(γ + 1)`i(y)`j(y) + `ij(y),

Si =
∫

Ω
fθ(y)γ+1`i(y)dy

for i, j = 1, . . . , p. Similarly, it also holds that:∫
δ(x)∂i∂j∂kq(γ)(x; θ)dx = O(νγ)

for i, j, k = 1, . . . , p. Since,

J(γ)ij (θ) =−Eg

[
∂i∂jq(γ)(X1; θ)

]
= −(1− ε)h(γ)ij (θ)− ε

∫
Ω

δ(x)∂i∂jq(γ)(x; θ)dx,

g(γ)ijk (θ) =Eg

[
∂i∂j∂kq(γ)(X1; θ)

]
= (1− ε)g̃(γ)ijk (θ) + ε

∫
δ(x)∂i∂j∂kq(γ)(x; θ)dx,

the proof of (8) is complete. It is also easy to see the result of (9) from (8).
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It should be noted that (8) looks like the results for Theorem 5.1 in [5]. However,
q(γ)(x; θ), and its derivative functions are different formulae from those of [5], so that the
derivative functions and the proof of (8) are given in the Appendix A. Theorem 4 shows that
expectations on the right-hand side of J(γ)ij (θ) and g(γ)ijk (θ) only depend on the underlying
model fθ, but do not depend on the contamination distribution. Furthermore, reference
and moment matching priors for the γ-posterior are obtained by the parametric model fθ,
that is, these do not depend on the contamination ratio and the contamination distribution.
For example, for a normal distribution N(µ, σ2), reference and moment matching priors
are given by:

π
(γ)
R (µ, σ) = σ−3+1/(1+γ) + O(ενγ),

π
(γ)
M (µ, σ) = σ−(γ+7)/{2(1+γ)} + O(ενγ).

(11)

However, reference and moment matching priors under the R(α)-posterior depend on
unknown quantities in the data generating distribution unless ε ≈ 0, since J(α)ij (θ) and

g(α)ijk (θ) have the following forms:

J(α)ij (θ) =−Eg

[
∂i∂jq(α)(X1; θ)

]
=− (1− ε)E fθ

[
∂i∂jq(α)(X1; θ)

]
− ε

1 + α

∫
Ω

∂i∂j fθ(x)1+αdx + O(ενα),

g(α)ijk (θ) =Eg

[
∂i∂j∂kq(α)(X1; θ)

]
=(1− ε)E fθ

[
∂i∂j∂kq(α)(X1; θ)

]
+

ε

1 + α

∫
Ω

∂i∂j∂k fθ(x)1+αdx + O(ενα),

where:

q(α)(x; θ) := q(dα)(x; θ) =
1
α

fθ(x)α − 1
1 + α

∫
Ω

fθ(y)1+αdy.

The priors given by (11) can be practically used under the condition (7) even if the
contamination ratio ε is not small.

4. Simulation Studies
4.1. Setting and Results

We present the performance of posterior means under reference and moment matching
priors through some simulation studies. In this section, we assume that the parametric
model is the normal distribution with mean µ and variance σ2 and consider the joint
estimation problem for µ and σ2. We assume that the true values of µ and σ2 are zero
and one, respectively. We also assume that the contamination distribution is the normal
distribution with mean ν and variance one. In other words, the data generating distribution
is expressed by:

g(x) = (1− ε)N(0, 1) + εN(ν, 1),

where ε is the contamination ratio and n is the sample size. We compare the performances of
estimators in terms of empirical bias and mean squared error (MSE) among three methods,
which include the ordinary KL divergence-based posterior, R(α)-posterior, and γ-posterior
(our proposal). We also employ three prior distributions for (µ, σ), namely (i) uniform
prior, (ii) reference prior, and (iii) moment matching prior.

Since exact calculations of posterior means are not easy, we use the importance sam-
pling Monte Carlo algorithm using the proposal distributions N(x̄, s2) for µ and IG(6, 5s)
for σ (the inverse gamma distribution with parameters a and b is denoted by IG(a, b)),
where x̄ = n−1 ∑n

i=1 xi and s2 = (n− 1)−1 ∑n
i=1(xi − x̄)2 (for the details of the importance

sampling, see, e.g., [23]). We carry out the importance sampling with 10,000 steps, and we
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compute the empirical bias and MSE for posterior means (µ̂, σ̂) of (µ, σ) by 10,000 iterations.
The simulation results are reported in Tables 1–4. The reference and the moment matching
priors for the γ-posterior are given by (11), and those for the R(α)-posterior are “formally”
given as follows:

π
(α)
M (µ, σ) ∝ σ−2−α, π

(α)
M (µ, σ) ∝ σCM/2, (12)

where CM is a constant given by:

CM = − 2 + α2

(1 + α)
+

α(1 + α)3(2 + α) + (10− α2(−2 + α(5 + α(3 + α))))πα/2

(1 + α)(−α(1 + α)2 + (−2 + α + α2 + α3)πα/2)
.

The term “formally” means that since the reference and the moment matching priors for
the R(α)-posterior strictly depend on an unknown contamination ratio and contamination
distribution, we set ε = 0 in these priors. On the other hand, our proposed objective priors
do not need such an assumption, but we assume only the condition (7). We note that [17]
also used the same formal reference prior in their simulation studies.

The simulation results of the empirical bias and MSE of posterior means of µ and σ are
provided by Tables 1–4. We consider three prior distributions for (µ, σ), namely uniform,
reference, and moment matching priors. In these tables, we set ν = 6, ε = 0.00, 0.05, 0.20
and n = 20, 50, 100. We also set the tuning parameters for the R(α)- and γ-posteriors as
0.2, 0.3, 0.5, 0.7.

Tables 1 and 3 show the empirical bias and MSE of the posterior means of mean
parameter µ based on the standard posterior and the R(α)- and γ-posteriors. The empirical
bias and MSE for the two robust methods are smaller than those of the standard posterior
mean (denoted by “Bayes” in Tables 1–4) in the presence of outliers for a large sample size.
When there are no outliers (ε = 0), it seems that the three methods are comparable. On the
other hand, when ε = 0.05 and ε = 0.20, the standard posterior mean gets worse, while the
performances of the posterior means based on the R(α)-posterior and the γ-posterior are
comparable for both empirical bias and MSE.

We also present the results of the estimation for variance parameter σ in Tables 2 and 4.
When there are no outliers, the performances of robust Bayes estimators under the uniform
prior are slightly worse. On the other hand, the reference and moment matching priors
provide relatively reasonable results even if the sample size is small and ε = 0. The empiri-
cal bias and MSE of the R(α)-posterior and the γ-posterior means for α, γ = 0.5, 0.7 remain
small even if the contamination ratio ε is not small. In particular, the empirical bias and
MSE of the γ-posterior means for σ are shown to be drastically smaller than those of the
R(α)-posterior.

Table 1. Empirical biases of the posterior means for µ.

ε n
Bayes R(α)-Posterior γ-Posterior

α, γ → 0.0 α = 0.2 α = 0.3 α = 0.5 α = 0.7 γ = 0.2 γ = 0.3 γ = 0.5 γ = 0.7

Uniform prior
0.00 20 −0.002 −0.003 −0.003 −0.002 0.001 −0.003 −0.003 −0.003 −0.002
0.00 50 −0.002 −0.001 −0.001 −0.001 0.000 −0.001 −0.001 −0.001 0.000
0.00 100 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001
0.05 20 0.298 0.109 0.075 0.098 0.172 0.104 0.064 0.046 0.060
0.05 50 0.301 0.053 0.020 0.009 0.016 0.051 0.017 0.004 0.002
0.05 100 0.301 0.038 0.012 0.004 0.002 0.036 0.011 0.003 0.001
0.20 20 1.192 0.917 0.800 0.815 0.973 0.908 0.755 0.596 0.615
0.20 50 1.198 0.869 0.638 0.362 0.478 0.864 0.600 0.215 0.112
0.20 100 1.201 0.862 0.578 0.158 0.108 0.859 0.537 0.065 0.015
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Table 1. Cont.

ε n
Bayes R(α)-Posterior γ-Posterior

α, γ → 0.0 α = 0.2 α = 0.3 α = 0.5 α = 0.7 γ = 0.2 γ = 0.3 γ = 0.5 γ = 0.7

Reference prior
0.00 20 −0.002 −0.003 −0.004 −0.004 −0.003 −0.003 −0.004 −0.004 −0.004
0.00 50 −0.002 −0.001 −0.001 −0.001 0.000 −0.001 −0.001 −0.001 0.000
0.00 100 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001
0.05 20 0.298 0.072 0.033 0.016 0.018 0.070 0.030 0.010 0.006
0.05 50 0.301 0.041 0.013 0.002 0.001 0.040 0.011 0.001 −0.001
0.05 100 0.301 0.033 0.010 0.003 0.001 0.032 0.009 0.002 0.001
0.20 20 1.192 0.808 0.558 0.295 0.293 0.803 0.537 0.227 0.152
0.20 50 1.198 0.820 0.504 0.143 0.079 0.817 0.473 0.085 0.023
0.20 100 1.201 0.838 0.495 0.071 0.027 0.836 0.457 0.029 0.006

Moment matching prior
0.00 20 −0.002 −0.003 −0.004 −0.004 −0.003 −0.003 −0.004 −0.004 −0.004
0.00 50 −0.002 −0.001 −0.001 −0.001 0.000 −0.001 −0.001 −0.001 0.000
0.00 100 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.001
0.05 20 0.298 0.059 0.025 0.010 0.008 0.059 0.024 0.009 0.007
0.05 50 0.301 0.037 0.011 0.002 −0.001 0.036 0.010 0.001 −0.001
0.05 100 0.301 0.031 0.009 0.002 0.001 0.030 0.009 0.002 0.001
0.20 20 1.192 0.759 0.486 0.220 0.196 0.759 0.481 0.210 0.165
0.20 50 1.198 0.799 0.462 0.111 0.043 0.797 0.441 0.079 0.025
0.20 100 1.201 0.828 0.468 0.058 0.018 0.827 0.435 0.028 0.006

Table 2. Empirical biases of the posterior means for σ.

ε n
Bayes R(α)-Posterior γ-Posterior

α, γ → 0.0 α = 0.2 α = 0.3 α = 0.5 α = 0.7 γ = 0.2 γ = 0.3 γ = 0.5 γ = 0.7

Uniform prior
0.00 20 0.058 0.148 0.225 0.733 2.089 0.136 0.184 0.330 0.620
0.00 50 0.022 0.049 0.067 0.122 0.263 0.046 0.058 0.085 0.116
0.00 100 0.011 0.024 0.031 0.053 0.088 0.022 0.028 0.039 0.051
0.05 20 0.669 0.438 0.476 1.620 4.335 0.404 0.370 0.540 1.109
0.05 50 0.660 0.203 0.144 0.188 0.475 0.189 0.116 0.110 0.139
0.05 100 0.652 0.134 0.078 0.087 0.135 0.123 0.061 0.049 0.058
0.20 20 1.732 1.848 2.086 5.500 9.627 1.769 1.727 2.207 3.833
0.20 50 1.653 1.558 1.304 1.098 3.158 1.533 1.182 0.573 0.454
0.20 100 1.626 1.508 1.151 0.506 0.563 1.495 1.042 0.198 0.113

Reference prior
0.00 20 −0.001 0.009 0.006 −0.007 −0.013 0.007 −0.001 −0.041 −0.117
0.00 50 0.000 0.003 0.002 −0.004 −0.010 0.003 0.000 −0.012 −0.036
0.00 100 0.000 0.002 0.001 −0.002 −0.006 0.002 0.000 −0.005 −0.016
0.05 20 0.576 0.173 0.093 0.066 0.097 0.161 0.069 0.000 −0.051
0.05 50 0.625 0.119 0.050 0.028 0.029 0.110 0.035 −0.003 −0.030
0.05 100 0.635 0.096 0.039 0.024 0.026 0.088 0.026 0.000 −0.014
0.20 20 1.580 1.281 0.954 0.659 0.697 1.258 0.877 0.427 0.303
0.20 50 1.598 1.367 0.917 0.375 0.324 1.354 0.832 0.181 0.071
0.20 100 1.599 1.421 0.937 0.241 0.196 1.413 0.839 0.068 0.014

Moment matching prior
0.00 20 −0.039 −0.036 −0.044 −0.083 −0.186 −0.034 −0.039 −0.061 −0.090
0.00 50 −0.015 −0.014 −0.016 −0.029 −0.067 −0.013 −0.014 −0.019 −0.027
0.00 100 −0.007 −0.006 −0.007 −0.014 −0.032 −0.006 −0.006 −0.008 −0.012
0.05 20 0.516 0.093 0.021 −0.029 −0.113 0.089 0.016 −0.021 −0.023
0.05 50 0.601 0.089 0.026 −0.002 −0.037 0.083 0.017 −0.011 −0.021
0.05 100 0.623 0.082 0.027 0.010 −0.005 0.075 0.017 −0.003 −0.010
0.20 20 1.481 1.097 0.736 0.395 0.225 1.094 0.717 0.373 0.361
0.20 50 1.559 1.293 0.808 0.276 0.165 1.287 0.748 0.162 0.084
0.20 100 1.579 1.386 0.872 0.197 0.135 1.381 0.787 0.061 0.019



Entropy 2021, 23, 29 13 of 19

Table 3. Empirical MSEs of the posterior means for µ.

ε n
Bayes R(α)-Posterior γ-Posterior

α, γ → 0.0 α = 0.2 α = 0.3 α = 0.5 α = 0.7 γ = 0.2 γ = 0.3 γ = 0.5 γ = 0.7

Uniform prior
0.00 20 0.050 0.051 0.053 0.090 0.282 0.051 0.053 0.057 0.078
0.00 50 0.020 0.021 0.022 0.023 0.027 0.021 0.022 0.023 0.025
0.00 100 0.010 0.010 0.011 0.012 0.013 0.010 0.011 0.012 0.013
0.05 20 0.223 0.098 0.081 0.280 1.081 0.096 0.075 0.076 0.159
0.05 50 0.144 0.031 0.025 0.025 0.039 0.031 0.025 0.025 0.027
0.05 100 0.118 0.015 0.012 0.013 0.013 0.014 0.012 0.013 0.014
0.20 20 1.761 1.267 1.127 2.296 4.781 1.254 1.031 0.906 1.402
0.20 50 1.571 0.950 0.647 0.311 0.879 0.944 0.613 0.188 0.088
0.20 100 1.509 0.844 0.494 0.095 0.052 0.840 0.463 0.046 0.019

Reference prior
0.00 20 0.050 0.052 0.054 0.062 0.077 0.052 0.054 0.063 0.076
0.00 50 0.020 0.021 0.022 0.024 0.027 0.021 0.022 0.024 0.028
0.00 100 0.010 0.010 0.011 0.012 0.013 0.010 0.011 0.012 0.014
0.05 20 0.223 0.080 0.065 0.067 0.086 0.080 0.064 0.077 0.066
0.05 50 0.144 0.028 0.024 0.026 0.028 0.028 0.024 0.030 0.026
0.05 100 0.118 0.014 0.012 0.013 0.014 0.014 0.012 0.015 0.013
0.20 20 1.761 1.106 0.744 0.385 0.564 1.104 0.727 0.304 0.280
0.20 50 1.571 0.881 0.497 0.111 0.057 0.879 0.477 0.082 0.042
0.20 100 1.509 0.809 0.410 0.041 0.020 0.807 0.385 0.026 0.019

Moment matching prior
0.00 20 0.050 0.052 0.055 0.064 0.080 0.052 0.055 0.063 0.074
0.00 50 0.020 0.021 0.022 0.025 0.028 0.021 0.022 0.025 0.028
0.00 100 0.010 0.010 0.011 0.012 0.014 0.010 0.011 0.012 0.014
0.05 20 0.223 0.075 0.063 0.067 0.085 0.075 0.063 0.067 0.076
0.05 50 0.144 0.028 0.024 0.026 0.030 0.028 0.024 0.026 0.029
0.05 100 0.118 0.014 0.012 0.013 0.014 0.014 0.012 0.013 0.015
0.20 20 1.761 1.039 0.648 0.295 0.394 1.043 0.655 0.286 0.290
0.20 50 1.571 0.852 0.453 0.088 0.044 0.853 0.443 0.078 0.043
0.20 100 1.509 0.794 0.385 0.034 0.018 0.794 0.365 0.025 0.018

Table 4. Empirical MSEs of the posterior means for σ.

ε n
Bayes R(α)-Posterior γ-Posterior

α, γ → 0.0 α = 0.2 α = 0.3 α = 0.5 α = 0.7 γ = 0.2 γ = 0.3 γ = 0.5 γ = 0.7

Uniform prior
0.00 20 0.033 0.062 0.104 1.110 8.455 0.057 0.080 0.195 0.747
0.00 50 0.011 0.015 0.019 0.034 0.161 0.015 0.017 0.025 0.036
0.00 100 0.005 0.006 0.007 0.011 0.018 0.006 0.007 0.009 0.012
0.05 20 0.761 0.424 0.471 7.528 37.358 0.379 0.309 0.673 3.370
0.05 50 0.553 0.095 0.051 0.066 0.950 0.087 0.040 0.035 0.047
0.05 100 0.482 0.039 0.017 0.018 0.031 0.035 0.014 0.012 0.014
0.20 20 3.262 4.185 5.830 55.081 138.264 3.874 4.117 8.080 29.181
0.20 50 2.816 2.706 2.229 1.895 27.513 2.638 1.962 0.741 0.454
0.20 100 2.682 2.405 1.704 0.483 0.506 2.372 1.526 0.146 0.038

Reference prior
0.00 20 0.027 0.030 0.033 0.040 0.059 0.030 0.032 0.041 0.058
0.00 50 0.010 0.011 0.012 0.015 0.017 0.011 0.012 0.015 0.020
0.00 100 0.005 0.006 0.006 0.007 0.008 0.006 0.006 0.007 0.009
0.05 20 0.611 0.153 0.083 0.068 0.101 0.145 0.073 0.050 0.054
0.05 50 0.504 0.054 0.023 0.019 0.021 0.051 0.021 0.017 0.021
0.05 100 0.459 0.027 0.011 0.009 0.010 0.025 0.010 0.008 0.010
0.20 20 2.731 2.283 1.624 0.941 0.982 2.232 1.482 0.548 0.304
0.20 50 2.633 2.165 1.330 0.341 0.215 2.140 1.218 0.171 0.048
0.20 100 2.595 2.158 1.268 0.144 0.070 2.143 1.144 0.046 0.014
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Table 4. Cont.

ε n
Bayes R(α)-Posterior γ-Posterior

α, γ → 0.0 α = 0.2 α = 0.3 α = 0.5 α = 0.7 γ = 0.2 γ = 0.3 γ = 0.5 γ = 0.7

Moment matching prior
0.00 20 0.026 0.028 0.031 0.040 0.063 0.028 0.032 0.042 0.054
0.00 50 0.010 0.011 0.012 0.015 0.019 0.011 0.012 0.015 0.020
0.00 100 0.005 0.006 0.006 0.007 0.009 0.006 0.006 0.007 0.009
0.05 20 0.525 0.105 0.058 0.046 0.052 0.104 0.057 0.048 0.056
0.05 50 0.470 0.043 0.020 0.017 0.018 0.041 0.019 0.017 0.021
0.05 100 0.443 0.023 0.010 0.008 0.009 0.022 0.009 0.008 0.010
0.20 20 2.411 1.809 1.132 0.441 0.186 1.816 1.137 0.461 0.385
0.20 50 2.507 1.974 1.120 0.222 0.082 1.971 1.065 0.153 0.054
0.20 100 2.532 2.065 1.148 0.106 0.040 2.059 1.054 0.043 0.015

Figure 1 shows the results of the empirical bias and MSE of the posterior means of
µ and σ under the uniform, reference, and moment matching priors when ν = 6 (fixed)
and the contamination ratio ε varies from 0.00 to 0.30. In all cases, we can find that the
standard posterior means (i.e., cases α, γ = 0) do not work well. For the estimation of mean
parameter µ, the R(α)- and γ-posterior means seems to be reasonable for the value of ε
between 0.0 and 0.20. In particular, the γ-posterior means under reference and moment
matching priors have better performance even if ε = 0.30. For the estimation of variance
parameter σ, the R(α)-posterior means under the uniform prior have larger bias and MSE
than the other methods. The γ-posterior mean with γ = 1.0 still may be better than other
competitors for any ε ∈ [0, 0.30]. For α, γ = 0.5, the R(α)- and γ-posterior means seem to
be comparable.

Figure 2 also presents the results of the empirical bias and MSE of the posterior means
of µ and σ under the same priors as Figure 1 when the contamination ratio is ε = 0.20
(fixed) and ν varies from 0.0 to 10.0. For the estimation of mean parameter µ in Figure 2,
the empirical bias and MSE for the robust estimators seem to be nice regardless of ν except
for the case of the R(α)-posterior under the uniform prior. Although we can find that some
differences appear near ν = 4, the γ-posterior means with γ = 1.0 have better performance
for the estimation of both mean µ and variance σ for all ν ∈ [0, 10].

In these simulation studies, the γ-posterior mean under the reference and moment
matching priors seems to have better performance for the joint estimation of (µ, σ) in
most scenarios. Although we provide the results for the univariate normal distribution,
the other distribution (including the multivariate distribution) should be also considered
in the future.
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1

Figure 1. The horizontal axis is the contamination ratio ε. The red lines show the empirical bias and MSE of the γ-posterior
means under the three priors when n = 100 and ν = 6. Similarly, the blue and green lines show that of the R(α)-posterior
and ordinary posterior means, respectively. The uniform, reference, and moment matching priors are denoted by “Uni”,
“Ref”, and “MM”, respectively.
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1

Figure 2. The horizontal axis is the location parameter ν of the contamination distribution. The red lines show the empirical
bias and MSE of the γ-posterior means under the three priors when n = 100 and ε = 0.20. Similarly, the blue and green lines
show that of the R(α)-posterior and ordinary posterior means, respectively. The uniform, reference, and moment matching
priors are denoted by “Uni”, “Ref”, and “MM”, respectively.

4.2. Selection of Tuning Parameters

The selection of a tuning parameter γ (or α) is very challenging, and to the best of our
knowledge, there is no optimal choice of γ. The tuning parameter γ controls the degree
of robustness, that is, if we set large γ, we obtain higher robustness. However, there is
a trade-off between the robustness and efficiency of estimators. One of the solutions for
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this problem is to use the asymptotic relative efficiency (ARE) (see, e.g., [11]). It should be
noted that [11] only dealt with a one parameter case. In general, the asymptotic relative
efficiency of the robust posterior mean θ̂(γ) of p-dimensional parameter θ relative to the
usual posterior mean θ̂ is defined by:

ARE(θ̂(γ), θ̂) :=

(
det(V(θ))

det
(
V(γ)(θ)

))1/p

(see, e.g., [24]). This is the ratio of the determinants of the covariance matrices, raised to
the power of 1/p, where p is the dimension of the parameter θ. We now calculate the
ARE(θ̂(γ), θ̂) in our simulation setting. After some calculations, the asymptotic relative
efficiency is given by:

ARE(θ̂(γ), θ̂) =

(
2

(1 + γ)6(1 + 2γ)(2 + 4γ + 3γ2)

)1/2
=: h(γ)

for γ > 0. We note that it holds h(γ)→ 1 as γ→ 0. Hence, we may be able to choose γ to
allow for the small inflation of the efficiency. For example, if we require the value of the
asymptotic relative efficiency ARE = 0.95, we may choose the value of γ as the solution
of the equation h(γ) = 0.95 (see Table 5). The curve of the function h(γ) is also given in
Figure 3. Several authors have provided methods for the selection of the tuning parameters
(e.g., [25–27]). Reference [5] focused on the reduction of the latent bias of the estimator,
and they recommended setting γ = 1 for the normal mean-variance estimation problem;
however, it seems to be unreasonable in terms of the asymptotic relative efficiency (see
Table 5 and Figure 3). To the best of our knowledge, there is no method that is robust and
efficient under the heavy contamination setting. Hence, other methods that have higher
efficiency under heavy contamination should be considered in the future.
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Figure 3. The curve of the asymptotic relative efficiency for normal mean and variance estimation
under the γ-posterior.

Table 5. The value of γ and the corresponding asymptotic relative efficiency.

γ 0.01 0.1 0.3 0.5

ARE 0.951489 0.6222189 0.2731871 0.1359501
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5. Concluding Remarks

We consider objective priors for divergence-based robust Bayesian estimation. In par-
ticular, we prove that the reference and moment matching priors under quasi-posterior
based on the γ-divergence are robust against unknown quantities in a data generating
distribution. The performance of the corresponding posterior means is illustrated through
some simulation studies. However, the proposed objective priors are often improper,
and showing their posterior propriety remains as future research. Our results should
be extended to other settings. For example, Kanamori and Fujisawa [28] proposed the
estimation of the contamination ratio using an unnormalized model. Examining such a
problem from the Bayesian perspective is also challenging because there is the problem of
how to set a prior distribution for an unknown contamination ratio. Furthermore, it would
also be interesting to consider an optimal data-dependent choice of tuning parameter γ.
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Appendix A. Some Derivative Functions

We now put `(x) = log fθ(x), `i(x) = ∂i log fθ(x), `ij(x) = ∂i∂j log fθ(x), and `ijk(x) =
∂i∂j∂k log fθ(x) and let a norm ‖ · ‖p : Lp(Ω)→ R be defined by:

‖h‖p =

(∫
Ω
|h(x)|pdx

)1/p
.

We then obtain derivative functions of q(α)(xj; θ) with respect to θ as follows:

∂iq(α)(x; θ) = fθ(x)α`i(x)−
∫

Ω
fθ(y)α+1`i(y)dy,

∂i∂jq(α)(x; θ) = fθ(x)α
{

α`i(x)`j(x) + `ij(x)
}

−
∫

Ω
fθ(y)α+1{(α + 1)`i(y)`i(y) + `ij(y)

}
dy,

∂i∂j∂kq(α)(x; θ) = fθ(x)α
{

α2`i(x)`j(x)`k(x) + `ijk(x)

− α
(
`k(x)`ij(x) + `i(x)`jk(x)+`j(x)`ik(x)

)}
−
∫

Ω
fθ(y)α+1

{
(α + 1)2`i(y)`j(y)`k(y) + `ijk(y)

+(α + 1)
{
`k(y)`ij(y) + `i(y)`jk(y) + `j(y)`ik(y)

}}
dy.
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Similarly, we obtain derivative functions of q(γ)(xj; θ) as follows:

∂iq(γ)(x; θ) =
fθ(x)γ

‖ fθ‖γ
γ+1

`i(x)− fθ(x)γ

‖ fθ‖1+2γ
γ+1

∫
Ω

fθ(y)γ+1`i(y)dy,

∂i∂jq(γ)(xj; θ) =
fθ(x)γ

‖ fθ‖γ
γ+1

(
γ`i(x)`j(x) + `ij(x)

)
− γ

fθ(x)γ

‖ fθ‖1+2γ
γ+1

(
`j(x)

∫
Ω

fθ(y)γ+1`i(y)dy + `i(x)
∫

Ω
fθ(y)γ+1`j(y)dy

)

+ (1 + 2γ)
fθ(x)γ

‖ fθ‖2+3γ
γ+1

∫
Ω

fθ(y)γ+1`i(y)dy
∫

Ω
fθ(y)γ+1`j(y)dy

− fθ(x)γ

‖ fθ‖1+2γ
γ+1

(∫
Ω

fθ(y)γ+1sij(y)dy
)

,

∂i∂j∂kq(γ)(x; θ) =
fθ(x)γ

‖ fθ‖γ
γ+1

(
γ2`i(x)`j(x)`k(x) + `ijk(x)

)
+ γ

fθ(x)γ

‖ fθ‖γ
γ+1

(
`k(x)`ij(x) + `j(x)`ik(x) + `i(x)`jk(x)

)
− fθ(x)γ

‖ fθ‖1+2γ
γ+1

(
γ2`j(x)`k(x) + γ`jk(x)

) ∫
Ω

fθ(y)γ+1`i(y)dy

− fθ(x)γ

‖ fθ‖1+2γ
γ+1

(
γ2`i(x)`k(x) + γ`ik(x)

) ∫
Ω

fθ(y)γ+1`j(y)dy

− fθ(x)γ

‖ fθ‖1+2γ
γ+1

(
γ2`i(x)`j(x) + γ`ij(x)

) ∫
Ω

fθ(y)γ+1`k(y)dy

+ (1 + γ)(1 + 2γ)
fθ(x)γ

‖ fθ‖2+3γ
γ+1

`k(x)
∫

Ω
fθ(y)γ+1`i(y)dy

∫
Ω

fθ(y)γ+1`j(y)dy

+ (1 + γ)(1 + 2γ)
fθ(x)γ

‖ fθ‖2+3γ
γ+1

`j(x)
∫

Ω
fθ(y)γ+1`i(y)dy

∫
Ω

fθ(y)γ+1`k(y)dy

+ (1 + γ)(1 + 2γ)
fθ(x)γ

‖ fθ‖2+3γ
γ+1

`i(x)
∫

Ω
fθ(y)γ+1`j(y)dy

∫
Ω

fθ(y)γ+1`k(y)dy

− γ
fθ(x)γ

‖ fθ‖1+2γ
γ+1

`k(x)
∫

Ω
fθ(y)γ+1sij(y)dy

− γ
fθ(x)γ

‖ fθ‖1+2γ
γ+1

`j(x)
∫

Ω
fθ(y)γ+1sik(y)dy

− γ
fθ(x)γ

‖ fθ‖1+2γ
γ+1

`i(x)
∫

Ω
fθ(y)γ+1sjk(y)dy

− (1 + 2γ)(2 + 3γ)

‖ fθ‖3+4γ
γ+1

fθ(x)γSijk

− fθ(x)γ

‖ fθ‖1+2γ
γ+1

∫
Ω

fθ(y)γ+1
{
(γ + 1)2`i(y)`j(y)`k(y) + `ijk(y)

}
dy

− fθ(x)γ

‖ fθ‖1+2γ
γ+1

∫
Ω

fθ(y)γ+1sijk(y)dy,
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where:

sij(y) =(γ + 1)`i(y)`j(y) + `ij(y),

sijk(y) =(γ + 1){`ij(y)`k(y) + `j(y)`ik(y) + `i(y)`jk(y)},

Sijk =
∫

Ω
fθ(y)γ+1`i(y)dy

∫
Ω

fθ(y)γ+1`j(y)dy
∫

Ω
fθ(y)γ+1`k(y)dy.
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