
entropy

Article

Towards Generative Design of Computationally Efficient
Mathematical Models with Evolutionary Learning

Anna V. Kalyuzhnaya *, Nikolay O. Nikitin, Alexander Hvatov, Mikhail Maslyaev, Mikhail Yachmenkov and
Alexander Boukhanovsky

����������
�������

Citation: Kalyuzhnaya, A.V.;

Nikitin, N.O.; Hvatov, A.;

Maslyaev, M.; Yachmenkov, M.;

Boukhanovsky, A. Towards

Generative Design of

Computationally Efficient

Mathematical Models with

Evolutionary Learning. Entropy 2021,

23, 28.

https://dx.doi.org/10.3390/e23010028

Received: 9 November 2020

Accepted: 24 December 2020

Published: 27 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland. This

article is an open access article distributed

under the terms and conditions of the

Creative Commons Attribution (CC BY)

license (https://creativecommons.org/

licenses/by/4.0/).

Nature Systems Simulation Lab, National Center for Cognitive Research, ITMO University, 49 Kronverksky Pr.,
197101 St. Petersburg, Russia; nnikitin@itmo.ru (N.O.N.); alex_hvatov@itmo.ru (A.H.);
mikemaslyaev@itmo.ru (M.M.); mmiachmenkov@itmo.ru (M.Y.); boukhanovsky@mail.ifmo.ru (A.B.)
* Correspondence: anna.kalyuzhnaya@itmo.ru

Abstract: In this paper, we describe the concept of generative design approach applied to the
automated evolutionary learning of mathematical models in a computationally efficient way. To
formalize the problems of models’ design and co-design, the generalized formulation of the modeling
workflow is proposed. A parallelized evolutionary learning approach for the identification of
model structure is described for the equation-based model and composite machine learning models.
Moreover, the involvement of the performance models in the design process is analyzed. A set
of experiments with various models and computational resources is conducted to verify different
aspects of the proposed approach.

Keywords: generative design; automated learning; evolutionary learning; co-design; genetic programming

1. Introduction

Nowadays, data-driven modeling is a very popular concept, first of all because of
many examples of the successful application for a wide range of tasks where we have data
samples which are sufficient for model training. However, originally the term “modeling”
assumes a wider meaning than just identifying numerical coefficients in equations. One
may say that modeling is an art of creation of mathematical (in the context) models that
describe processes, events, and systems with mathematical notation. And current successes
of artificial intelligence (AI) give the opportunity to come closer to the solution of the task
of mathematical modeling in this original formulation.

For this purpose we may use an approach of generative design that assumes open-
ended automatic synthesis of new digital objects or digital reflections of material objects
which have desired properties and are aligned with possible restrictions. Open-ended
evolution is a term that assumes ongoing generation of novelty as new adaptations of spec-
imens, new entities and evolution of the evolvability itself [1]. We assume that new objects
are objects with essentially new features that appeared during the adaptation process and
that can’t be obtained with simple tuning or recombination of initially known parameters.
Other words, it is an approach that aims of algorithmic “growing” of a population of new
objects when each of them is aligned with restrictions and have desired properties, to
some extent. However, only the objects which could maximize the measure of fitness will
be used for their intended purpose. The generative design is a well-known concept for
creation of digital twins of material objects [2]. The same idea can be applied to mathe-
matical models [3]. Indeed, it is known that we may grow mathematical expressions that
approximate some initial data with a symbolic (usually polynomial) regression approach.
However, if we look at mathematical expressions in a wider perspective we may admit
that expressions could be different even much more complicated. For example, we may try
to apply this approach to the problem of searching for an equation of mathematical physics
that is able to describe observed phenomena. Or, we may want to create in an automated

Entropy 2021, 23, 28. https://dx.doi.org/10.3390/e23010028 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://www.mdpi.com/1099-4300/23/1/28?type=check_update&version=1
https://dx.doi.org/10.3390/e23010028
https://dx.doi.org/10.3390/e23010028
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.3390/e23010028
https://www.mdpi.com/journal/entropy

Entropy 2021, 23, 28 2 of 26

way a complicated data-driven model that consists of many single models and feature
processing stages. Tasks in both examples can be formalized as the generative design of
computer models.

Both of cases (model as mathematical equation and complicated data-driven models)
have their own spheres of application, but they also can be joined as composite models. In
machine learning the composite model case often is described in terms of the multi-model
data-driven pipelines. If a single data-driven model cannot provide appropriate results,
various ensembling techniques like stacking or blending are applied [4]. To achieve better
quality, complex modeling pipelines can be used, that include different pre-processing
stages and can contain several types of models. A generalization of ensembling approaches
is the composite model concept [5]. A composite model has a heterogeneous structure, so
it can include models of different nature: machine learning (ML), equation-based, etc. [6].

A design of a composite model can be represented from an automated ML (AutoML)
perspective that may use a genetic algorithm for learning the structure. The evolutionary
learning approach seems to be a natural and justified choice because of several reasons.
First of all, the idea of generative design refers to the possibility of controlled open-ended
evolution under a set of restrictions. After that, genetic algorithms give flexible opportuni-
ties for treating mixed problems with combinatorial and real parts of a chromosome.

However, the design of the composite model may depend on different factors: the
desired modeling quality, computational constraints, time limits, interpreting ability re-
quirements, etc. It raises the problem of co-design [7] of the automatically generated
composite models with the specific environment. Generative co-design is an approach
which allows to synthesize jointly a set (mostly a pair) of objects that will be compatible
with each other. In context of this article these are mathematical models and computational
infrastructure. The conceptual difference between the generative design (that builds the
model on a basis of dataset only) and the generative co-design (that takes into account both
data and infrastructure) is illustrated in Figure 1. The structure of composite models can be
very complex, so it is complicated to construct the models in an expert way. For this reason,
different optimization techniques are used for the structural learning of the model. Usually,
the objective function for optimization is aimed to minimize the error of the predictions
obtained from the candidate model [8].

Model design

PhenotypeGenotype

Graph
structure

Func�onal
blocks

Quan�ta�ve
parameters

Quality measures
Gene�c

programming

Machine learning

Hyperparameter
op�misa�on

Input
data Output

data

Genera�ve co-design

Methods

Structural
complexity
measures

Performance
measures

Computa�onal
Infrastructure

Genera�ve design

Figure 1. The description of the generative co-design concept: the different aspects of the model design (genotype,
phenotype, and the identification methods); the pipeline of the data-driven modeling; the difference between classical
design approach and co-design approach.

Entropy 2021, 23, 28 3 of 26

The paper is organized as follows. Section 2 describes the existing approaches to the
design of models. Section 3 provides the mathematical formulation for the model’s design
and co-design tasks and associated optimization problems. Section 4 described the actual
issues of generative co-design for the mathematical models. Section 5 provides the results
of experimental studies for different applications of generative design (composite models,
equation-based models, etc). The unsolved problems of co-design and potential future
works are discussed in Section 6. Section 7 provides the main conclusions.

2. Related Work

An extensive literature review shows many attempts for mathematical models design
in the different fields [9,10]. In particular, the methods of the automated model design
is highly valuable part of the various researches [11]. As an example, the equation-free
methods allow building the models that represent the multi-scale processes [12]. Another
example is building of the physical laws from data in form of function [13], ordinary
differential equations system [14], partial differential equations (PDE) [15]. The application
of the automated design of ML models or pipelines (which are algorithmicaly close notions)
are commonly named AutoML [8] although most of them work with models of fixed
structure, some give opportunity to automatically construct relatively simple the ML
structures. Convenient notation for such purpose is representation of a model as a directed
acyclic graph (DAG) [16]. Another example of popular AutoML tool for pipelines structure
optimization is TPOT [17].

To build the ML model effectively in the complicated high-performance environ-
ment [18], the properties of both algorithms and infrastructure should be taken into ac-
count. It especially important for the non-standard infrastructural setups: embedded [19],
distributed [20], heterogeneous [21] systems. Moreover, the adaptation of the model design
to the specific hardware is an actual problem for the deep learning models [22,23].

However, the application of co-design approaches [24] for the generative model
identification in the distributed or supercomputer environment [25,26] is still facing a
lot of issues. For example, the temporal characteristics of the designed models should
be known. The estimations of fitting and simulation time of the data-driven models can
be obtained in several ways. The first is the application of the analytical performance
models of the algorithm [27]. The identification of the analytical performance models can
be achieved using domain knowledge [28]. However, it can be impossible to build this
kind of model for the non-static heterogeneous environment. For this reason, the empirical
performance models (EPMs) are highly applicable to the different aspects of the generative
model design [29]. Moreover, the effective estimation of execution time is an important
problem for the generation of optimal computational schedule [30] or the mapping of
applications to the specific resources [31].

The execution of the complex resource-consuming algorithms in the specific infras-
tructure with limited resources raises the workflow scheduling problem [32]. It can be
solved using an evolutionary algorithm [33] or neural approaches [34].

It can be noted that the existing design and co-design approaches are mostly focused
on the specific application and do not consider the design for the different types of mathe-
matical models. In the paper, we propose the modified formulation of this problem that
allows applying the generative design and co-design approaches to the different tasks
and models.

3. Problem Statement

A problem of the generative design of mathematical models requires a model repre-
sentation as a flexible structure and appropriate optimization methods for maximizing a
measure of the quality of the designed model. To solve this optimization problem, different
approaches can be applied. The widely used approach is based on evolutionary algorithms
(e.g., genetic optimization implemented in TPOT [35] and DarwinML [16] frameworks) be-
cause it allows solving both exploration and exploitation tasks in a space of model structure

Entropy 2021, 23, 28 4 of 26

variants. The other optimization approaches like the random search of Bayesian optimiza-
tion also can be used, but the populational character of evolutionary methods makes it
possible to solve the generative problems in a multiobjective way and produce several
candidates model. Such formulation also can be successfully treated with the evolutionary
algorithms or hybrid ones that combine the use of evolutionary operators with additional
optimization procedures for increasing of robustness and acceleration of convergence. In
this section, we describe the problem of generative co-design of mathematical models and
computational resources in terms of the genetic programming approach.

A general statement for numerical simulation problem can be formulated as follows:

Y = H(M|Z), (1)

whereH is an operator of simulation with model M on data Z.
In the context of problem of computer model generative design, the model M should

have flexible structure that can evolve by changing (or adding/eliminating) the properties
of a set of atomic parts (“building blocks”). For such task, the model M can be described as
a graph (or more precisely as a DAG):

M = 〈S, E, {a1:|A|}〉, (2)

with edges E that denoted relations between nodes
〈

S,
{

a1:|A|
}〉

that characterize func-

tional properties S of atomic blocks and set of their parameters
{

a1:|A|
}

.
In terms of evolutionary algorithms each specimen dp in population D of computer

model can be represented as a tuple that consists of phenotype Y, genotype M and fitness
function ϕ(M):

dp =
〈
Yp, Mp, ϕ

(
Mp
)〉

, D =
(
dp, p ∈ [1 : |D|]

)
. (3)

Genotype M should be mapped on plain vector as a multi-chromosome that consists of
three logical parts: functional properties, sets of their parameters, relations between blocks:

Mp =
〈

Sp, Ep, {Ak}p

〉
=

〈{
s1:|Sp|

}
p
,
{

e1:|Ep|
}

p
,
{

a1:|Sp||Ak |
}

p

〉
, Ak =

{
a1:|Ak |

}
k
, k ∈

[
1 :
∣∣Sp
∣∣]. (4)

The genotype is also illustrated in Figure 2.

Individual

e1

e2

e3

S1
A1

S2
A2

S3
A3

...

func�ons parameters edges

S1 S2 S3 ... a11

Sk
Ak

S|s |p ... a1|A |,11
... a1,|S |p

... a|A |,|S |p p
e1 ... er

er

func�onal proper�es

set of parameters

rela�ons between blocks

atomic block

Figure 2. The structure of the genotype during evolutionary optimization: functional properties, set of parameters and
relations between atomic blocks.

Entropy 2021, 23, 28 5 of 26

An important property is that
∣∣Sp
∣∣, ∣∣Ap

∣∣, ∣∣Ep
∣∣ 6= const, what means varying over-

all size of chromosome (and its structure). Such property makes this approach is really
open-ended and consistent with idea of model evolution because it give an opportunity
to synthesize the models with truly new features instead of simple recombination and
optimization of existed ones. Technically open-endedness here refers to the ability of
generative design algorithms to expand or narrow a combinatorial search space in the
process of optimization with evolutionary operators. This leads to need of special real-
izations for crossover and mutation operators. As the chromosome Mp is a ordered set

with the structure fixed in a tuple
〈

S,
{

a1:|A|
}

, E
〉

it is necessary to preserve this structure
after crossover and mutation. That’s why these operators are written relative to the graph
structure and influence on the parts of chromosome that describe the node or a set of nodes
with associated edges (sub-graphs). We may say that each single node can be described
as some function with parameters yk = fk

(
x,
{

a1:|A|
}

k

)
. And mutation of function fk

performs symbolic changes in the mathematical expression that results in extension of
range of limits of initial genes.

So, the task of mathematical model generative design can be formulated as optimiza-
tion task:

pQ
max(M∗) = max

M
fQ
(

M|I+, Tgen ≤ τg
)
, M =

{
Mp
}

, (5)

where fQ is a fitness function that characterizes quality generated mathematical and pQ
max

is a maximal value of fitness function, model M is a space of possible model structures,
I+ - actual computational resources, Tgen is time for model structure optimization critical
threshold τg. In such formulation we try to design the model with the highest quality, but
we need to rely optimization to single configuration of computational resources. This factor
is a strong limitation for the idea of generative design because this idea assumes flexibility
of searched solution including the possibility to find the most appropriate for applied task
combination of model structure and computational resources. The concept was illustrated
on Figure 1.

Model and computational infrastructure co-design may be formulated as follows:

pmax(M∗, I∗) = max
M,I

F
(

M, I|Tgen ≤ τg
)
, I =

{
Iq
}

, M =
{

Mp
}

, (6)

where I is a set of infrastructure features, F is a vector fitness function that characterize a
trade off between a goodness of fit and computational intensity of model structure. Vector
function F consists of quality function fQ and time function fT that is negative for correct
maximization:

F(M, I) =
(

fQ(M, I),− fT(M, I)
)
. (7)

The time function fT is a function that shows expected execution time of the model that is
being synthesized with generative design approach. As the model M is still in the process
of creation at the moment we want to estimate F, the values of fT may be defined by
performance models (e.g., Equation (9)). The example of the model selection from the
Pareto frontier on a basis of pmax and τc constraints is presented is Figure 3. It can be seen
that model M4 has the better quality but it does not satisfy the execution time constraint τc.

However, in most of cases correct reflection of infrastructure properties to model per-
formance is quite complicated task. In described case when we need, first, to generate the
model with appropriate quality and vital limitations for computation time, we have several
issues: (1) we may be not able to estimate model performance with respect to certain infras-
tructure in straight forward way and as a consequence we need performance models; (2) es-
timation of the dependency between model structure and computational resources reflects
only mean tendency due to number of simplifications in performance models and search for
minima on such uncertain estimations lead to unstable convergence to local minima. Due to
these issues the formulation of optimization for co-design on stage of model building may
be simplified to single criteria problem F

(
M, I|Tgen ≤ τg

)
≈ F′

(
M| TM ≤ τ, Tgen ≤ τg

)

Entropy 2021, 23, 28 6 of 26

with change of direct usage of infrastructure features to estimated time of model execution
via performance models TM ≈ T = fT(M, I):

p̂max(M∗) = max
M

f̂Q
(

M| TM ≤ τc, Tgen ≤ τg
)
, (8)

where fQ is single criteria fitness function that characterize goodness of fit of model with
additional limitations for expected model execution time TM and estimated time for
structural optimization Tgen.

Figure 3. Pareto frontier obtained after the evolutionary learning of the composite model in the “quality-execution time”
subspace. The points referred as M1 - M4 represent the different solutions obtained during optimization. pmax and τc

represent quality and time constraints.

In the context of automated models building and their co-design with computational
resources, performance models (PM) should be formulated as a prediction of expected
execution time with the explicit approximation of a number of operations as a function
of computer model properties S,

{
a1:|S|

}
and infrastructure I parameters. However, for

different computer models classes, there are different properties of performance models. In
the frame of this paper, we address the following classes of models: ML models, numerical
models (based on the numerical solution of symbolic equations), and composite models
(that may include both ML and numerical models).

For ML models PM can be formulated as follows:

TPM
ML (Z, M) = maxi

[
∑
it

OMLi,it

Vi(I) + Consti(I)

]
+ O(I), (9)

where OML = OML(Z, M) is an approximate number of operations for data-driven model
with data volume Z and parametric model M, it—iterator for learning epoch, Vi(I) is for
performance of i′th computational node in flops, Consti(I) is for constant overheads for
i′th node in flops, O(I) is for sequential part of model code.

Entropy 2021, 23, 28 7 of 26

According to structure M =
〈

S, E,
{

a1:|S|
}〉

for data driven-model case, duple 〈S, E〉
characterize structural features of models (e.g., activation functions and layers in neural
networks) and

{
a1:|S|

}
characterize hyper-parameters.

For numerical models PM can be formulated as follows:

TPM
Num(R, M) = maxi

[
ONi

Vi(I) + Consti(I)

]
+ O(I), (10)

where ON = ON(R, M)is an approximate number of operations for numerical model. In
distinction with ML models they are not required for learning epochs and do not have
strong dependency from volume of input data. Instead of this, there are internal features of
model M, but it is worth separately denote computational grid parameters R. They include
parameters of grid type, spatial and temporal resolution. Among the most influential
model parameters M there are type and order of equations, features of numerical solution
(e.g., numerical scheme, integration step, etc.).

For composite models PM total expected time is a sum of expected times for sequential
parts of model chain:

TPM
Comp(R, Z, M) = ∑

j
maxi

[OCi,j

Vi(I) + Consti(I)

]
+ O(I), (11)

where expected time prediction for each sequential part is based on properties of appropri-
ate model class:

OC =

{
OML, i f model is ML

ON, i f model is numerical
. (12)

4. Important Obstacles on the Way of Generative Co-Design Implementation

It may seem that the problem statement described above gives us a clear vision of an
evolutionary learning approach for generative design and co-design. However, several
subtle points should be highlighted. This section is devoted to a discussion of the most
interesting and challenging points (in the authors’ opinion) that affect the efficiency or
even the possibility of implementation the generative design (and co-design) approach for
growing new mathematical models.

Issue 1. Numerical Methods for Computation of Designed Arbitrary Function

Open-ended realization of automated symbolic model creation with a generative
design approach leads to the possibility of getting an unknown function as a resulted
model. On the one hand, it gives interesting perspectives to create the new approximations
of unknown laws. However, on the other hand, this possibility leads to the first conceptual
problem of the generative design of mathematical models and a serious stumbling block
on the way to implementing this idea. This problem is the need to calculate an arbitrary
function or get the numerical solution of an arbitrary equation.

The choice of the numerical method for a given problem (discovered algebraic, or-
dinary differential, partial differential equation equations) is the crucial point. In most
cases, the numerical method is designed to solve only several types of equations. When
the numerical method is applied to the problem type, where convergence theorem is not
proved, the result may not be considered as the solution.

As an example, solution of the partial difference equations using the finite difference
schemes. For brevity, we omit details and particular equations, the reader is referred
to [36] for details. The classical one-dimensional diffusion equation has different schemes,
in particular, explicit, implicit, Crank-Nicolson scheme. Every scheme has a different
approximation order and may lead to different solutions depending on the time-spatial
grid taken. If the Crank-Nicolson spatial derivative scheme is taken to solve another
equation, for example, the one-dimensional string equation, then the solution will also

Entropy 2021, 23, 28 8 of 26

depend on the time-spatial grid taken, however, in another manner. It leads to the general
problem that the particular finite schemes cannot be used for the general equation solution.

The second approach is to approximate a solution with a neural network, which
somewhat mimics the finite element method. The neural networks are known as universal
approximators. However, their utility for differential equations solution is still arguable.
The main problem is that the good approximation of the field is not necessary leads to
the good derivative approximation [37]. There is a lot of workarounds to approximate
derivatives together with the initial field, however, it is done with the loss of generality.

The possible promising solution is to combine optimization methods, local neural
network approximation, and classical approach [38]. However, there is still a lot of the
“white spots”, since the arbitrary equation means a strongly non-linear equation with
arbitrary boundary conditions. Such a generality cannot be achieved at the current time
and requires a significant differentiation, approximation, and numerical evaluation method
development. The illustration examples of the inverse problem solution are shown in
Section 5.1.

Issue 2. Effective Parallelization of Evolutionary Learning Algorithm

The procedure of generative design has high computation cost, thus effective algo-
rithm realization is highly demanded. Efficiency can be achieved primarily by parallelizing
the algorithm. As discussed generative algorithm is implemented on a base of the evolu-
tionary approach, so the first way is a computation of each specimen dp in a population in
a separate thread. Strictly speaking, it may be not only threads, but also separate computa-
tional nodes for clusters, but not to confuse computer nodes with nodes of a model graph
Mp, here and further we will use the term “thread” in a wide sense. This way is the easiest
for implementation but will be effective only in the case of cheap computations of objective
function ϕ(M).

The second way is acceleration of each model Mp on the level of its nodes
〈

S,
{

a1:|A|
}〉

with possibility of logical parallelized. However, this way seems to be the most effective if
we have uniform (from the performance point of view) nodes of models Mp and computa-
tional intensity appropriate for used infrastructure (in other words, each node should be
computed in a separate thread in acceptable time). Often for cases of composite models
and numerical models, this condition is becoming violated. Usually, the numerical model
is consists of differential equations that should be solved on large computational grids.
And composite models may include nodes that are significantly more computationally
expensive than others. All these features lead us to take into account possibility of par-
allelization of generative algorithm on several levels: (1) population level, (2) model Mp

level, (3) each node
〈

S,
{

a1:|A|
}〉

level; and make an adaptation of algorithm with respect
to certain task.

Moreover, for the effective acceleration of the generative algorithm, we may take into
account that most of the new composite models are based on nodes that are repeated nu-
merously in the whole population. For such a case, we may provide storage for computed
nodes and use them as results of pre-build models. The illustration of an ineffective and an
effective parallelization setups described above is shown in the Figure 4.

The set of experiments that illustrates the problem raised in this issue and proposes
the possible solutions is presented in Section 5.2.2.

Issue 3. Co-Design of an Evolutionary Learning Algorithm and Computational Infrastructure

In the frame of this research, the problem of co-design appears not only for the question
of automatic creation of the computer model but also for the generative optimization
algorithm itself. In Equation (8) we described co-design of generated model regarding the
computational resources using estimation of model execution time TM. Separate problem
is adaptation of generative evolutionary algorithm regarding the computational resources
and specific traits of the certain task. In formulation Equation (8) it was only accounted
for by the restriction to the overall time Tgen for model generation. However, the task

Entropy 2021, 23, 28 9 of 26

can be formulated as search for generative evolutionary algorithm that is able to find
the best model structure M in limited time Tgen. This task can be solved by optimization
of hyper-parameters, evolutionary operators (and strategy of their usage) for generative
optimization algorithm and formulated as meta-optimization problem over a set of possible
algorithms U that are defined by a set of strategies B:

U = {u(B)}, B =
{

b1:|B|
}

, b = 〈H,R〉, (13)

u∗ = u(b∗) = arg max
b

F (u(b)|Tgen ≤ τg), (14)

where F is a meta-fitness function and each strategy b is defined by evolutionary op-
erators R and hyper-parameters H. Evolutionary operators also my be described as
hyper-parameters but here we subdivide them in separate entityR.

Figure 4. Setup that illustrates inefficiency of the parallel evolution implementation due to fitness function computation
complexity.

For the model’s generative design task, the most expensive step usually refers to the
evaluation of the fitness function value [6]. The calculation of the fitness function for the
individuals of the evolutionary algorithm can be parallelized in different ways that are
presented in Figure 5.

Unit 0

Synchronous approach Asynchronous approach

Individuals Individuals

[X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12][X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12]

Unit 1 Unit 2

Unit 3

Unit 0

Unit 0

Unit 1

Unit 3

workerworker

worker

manager

Fitness evaluation for the
population

Figure 5. Approaches to the parallel calculation of fitness function with the evolutionary learning algorithm: (a) syn-
chronously, each element of the population is processed at one node until all is processed (b) asynchronously, one of the
nodes controls the calculations in other nodes.

Entropy 2021, 23, 28 10 of 26

The described approaches can be used for the different variants of the computational
environment used for the generation of the models. The practical application of the
generated models with the complex structure almost always difficult because of the high
computation complexity of the numerical model-based simulations.

There are several groups of models that can be separated by the simulation pipeline
structure. For the data-driven model, the computational cost of the fitting (identification)
stage is higher than for the simulation stage. For the equation-based numerical models
with rigid structure, there is no implicit fitting stage, but the simulation can be very expen-
sive. In practice, different parallelization strategies can be applied to improve simulation
performance [39].

The set of experiments that provides the examples to the problem raised in this issue
can be seen in Section 5.3.

Issue 4. Computational Strategies for Identification of Graph M

The problem of DAG M =
〈

S, E,
{

a1:|S|
}〉

identification has two sides. First of all, the
task of structural and parametric optimization of model M has exponential computational
complexity with the growth of nodes number. Even if the functional structure 〈S, E〉 of the
composite model is already identified, there is a computationally expensive problem of
parameters

{
a1:|S|

}
(or hyperparameters in ML terms) tuning.

However, except for the computational intensity, there is a problem of searching the op-

timal set of values
〈

S∗, E∗,
{

a1:|S|
}∗〉

in a space of high dimension (when chromosome has
great length from tens to hundreds of values). This leads to unstable results of optimization
algorithm because of the exponential growth of possible solutions in a combinatorial space
(some parameters could be continuous but they are discretized and generally problem may
be treated as combinatorial). One of the obvious ways for dealing with such a problem is
local dimensionality reduction (or segmentation of the whole search space). This could be
done with the application of various strategies. For example, we may simplify the task and
search with generative algorithm only functional parts, and parameters (hyperparameters)
may be optimized on the model execution stage (as discussed in Section 6). Such a way is
economically profitable but we will get a result with lower fitness. An alternative variant is
to introduce an approach for iterative segmentation of the domain space and greedy-like
search on each batch (Section 5.4).

Another point should be taken into account, the structure of DAG with directed
edges and ordered nodes (composite model with primary and secondary nodes) leads to
the necessity of introducing the sequential strategies for parameters tuning. Despite the
tuning can be performed simultaneously with the structural learning, there is a common
approach to apply it for the best candidates only [16]. Unlike the individual models tuning,
the tuning of the composite models with graph-based structure can be performed with
different strategies, that are represented in Figure 6.

1

1

1

2

Data

1

1

1

M

T

T - Tuning quality evalua�on M - Modeling result

T

T

b) a)

Data 2

T

M

T

T

Tuning step �1

Tuning ste
p �3

Tuning step �2

Figure 6. The different strategies of hyper-parameters tuning for the composite models: (a) individual tuning for each
atomic model (b) the tuning of the composite model that uses secondary models to evaluate the tuning quality for the
primary models.

Entropy 2021, 23, 28 11 of 26

The experiment that demonstrates the reduction of the search space for the composite
model design by the application of the modified hyperparameters tuning strategy for the
best individual is described in Section 5.4.

Issue 5. Estimation of PM for Designed Models

Analytic formulations of PM show expected execution time that is based on relation
between approximate number of operations and computational performance of certain
infrastructure configuration. The problem is to estimate this relation for all pairs from model
structures M =

〈
S, E,

{
a1:|A|

}〉
and computational resources I =

{
Iq
}

with respect to
input data Z because we need to make estimations of OML, ON and OC (depending on the
class of models). Generally, there are two ways: (1) estimation of computational complexity
(in O notation) for each model M, (2) empirical performance model (EPM) estimation of
execution time for every specimen 〈M, I, Z〉. The first option gives us theoretically proved
results, but this is hardly may be implemented in case of models’ generative design when
we have too many specimens 〈M, I, Z〉. The second option is to make a set of experimental
studies for specimens 〈M, I, Z〉 execution time measurements. However, in this case, we
need to make a huge number of experiments before we start the algorithm of generative co-
design and the problem statement becomes meaningless. To avoid numerous experiments,
we may introduce estimation of EPM that consists of two steps. The first one is to estimate
relation between time TM and volume of data Z: TPM

Num(M, Z, I) ≈ TEPM
Num (Z|M, I). To

simplify identification of TEPM
Num (Z|M, I), we would like to approximate this with a linear

function with non-linear kernel ψ(Z):

TEPM
Num (Z|M, I) =

W

∑
w=1

ωwψw(Z), (15)

where W is a number of components of linear function. The second step is to use
value of TEPM

Num (Z|M, I) to estimate relation between execution time and infrastructure I:
TEPM

Num (Z|M, I)→ TEPM
Num (I|M, Z). For this purpose we should make even a raw estimation

of number of operations OML, ON and OC.
On the example of EPM for numerical model (Equation (10)) we can make the follow-

ing assumptions:

O(I) ≈ 0, Consti(I) ≈ 0, V = meani(Vi(I)), ON = meani(ONi), (16)

maxi

[
ONi

Vi(I) + Consti(I)

]
= meani

[
ONi

Vi(I) + Consti(I)

]
, (17)

and get the following transformations for raw estimation of overall number of operations
nON with respect to n computational nodes:

nON(M, Z) = nTPM
Num(M, Z, I)V(I), i ∈ [1 : n]. (18)

It is worth nothing that the obvious way to improve accuracy of estimation nON is to
use for experimental setup resources with characteristics of computational performance
close to V = meani(Vi(I)) and task partitioning close to ON = meani(ONi). Getting the
estimation of nON and infrastructure parameters Vi(I), Consti(I), O(I) we may go to raw
estimation:

TEPM
Num (M, Z, I) = maxi

[
αinON(M, Z)

Vi(I) + Consti(I)

]
+ O(I), (19)

where αi is coefficient for model partitioning. Similar transformations could be made for
other models.

The experiments devoted to the identification of the empirical performance models
for both atomic and composite models are provided in Section 5.5.

Entropy 2021, 23, 28 12 of 26

5. Experimental Studies

The proposed approaches to the co-design of generative models cannot be recognized
as effective without experimental evaluation. To conduct the experiments, we constructed
the computational environment that includes and hybrid cluster and several multiprocessor
nodes that can be used to evaluate different benchmarks.

A set of experiments have been held with the algorithm of data-driven partial dif-
ferential equation discovery to analyze its performance with different task setups. All
experiments were conducted using the EPDE framework described in detail in [15].

The other set of experiments devoted to the automated design of the ML models
was conducted using the open-source Fedot framework (https://github.com/nccr-itmo/
FEDOT). The framework allows generating composite models using evolutionary ap-
proaches. The composite model generated by the framework can include different types
of models [6]. The following parameters of the genetic algorithm were used during the
experiments: maximum number of the generations in 20, number of the individuals in
each population is 32, probability of mutation, probability of mutation is 0.8, probability
of crossover is 0.8, maximum arity of the composite model is 4, maximum depth of the
composite model is 3. More detailed setup is described in [40].

5.1. Choice of the Model Evaluation Algorithm

The first group of experiments is connected with the Issue 1 that describes the different
aspects of numerical computation of designed models.

For example, the problem of data preprocessing for partial differential equations
models, represented by the calculation of derivatives of the input field, is of the top priority
for the correct operation of the algorithm: the incorrect selection of tools can lead to
the increasing magnitudes of the noise, present in the input data, or get high values of
numerical errors. The imprecise evaluation of equation factors can lead to cases, when the
wrong structure has lower equation discrepancy (the difference between the selected right
part term and the constructed left part) and, consequently, higher fitness values, than the
correct governing equation.

However, the versatility of the numerical differentiation adds the second criterion on
the board. The finite differences require a lot of expertise to choose and thus their automatic
use is restricted since the choice of the finite difference scheme is not a trivial task that
requires either a fine grid to reduce the error or choice of the particular scheme for the
given problem. Both ways require extended time.

Artificial neural networks (ANN), used to approximate the initial data field, are an
alternative to this approach, which can have a number of significant advantages. To get the
fields of derivatives, we utilize the automatic differentiation, that is based on the approach,
similar to the chain differentiation rule from the elementary calculus, and is able to combine
the evaluated values of derivatives of a function, comprising the neural network to get
the “correct” values of derivatives. In contrast to the previously used method of analytical
differentiation of polynomials, the automatic differentiation is able to get mixed derivatives.
From the performance point of view, the advantages of the artificial neural networks lie in
the area of ease of parallelization of tensor calculations and the use of graphical processing
units (GPU) for computation.

However, the task setup has a number of challenges in the approach to ANN training.
First of all, the analyzed function is observed on a grid, therefore, we can have a rather
limited set of training data. The interpolation approaches can alter the function, defining
the field, and the derivatives, in that case, will represent the structure of the interpolating
function. Next, the issue of the approximation quality remains unsolved. While the ANN
can decently approximate the function of one variable (which is useful for tasks of ordinary
differential equations discovery), on the multivariable problem statement the quality of the
approximation is relatively low. The example of approximation is presented in Figure 7.

In the conducted experiments [41] we have used the artificial neural network with the
following architecture: the ANN was comprised of 5 fully connected layers of 256, 512,

https://github.com/nccr-itmo/FEDOT
https://github.com/nccr-itmo/FEDOT

Entropy 2021, 23, 28 13 of 26

256, 128, 64 neurons with sigmoid activation function. As the input data, the values of the
solution function for a wave equation (utt = αuxx), solved with the implicit finite-difference
method, have been utilized. Due to the nature of the implemented solution method, the
function values were obtained on the uniform grid. The training of ANN was done for a
specified number of epochs (500 for the conducted experiments), when of the each epoch
the training batch is randomly selected as a proportion of all points (0.8 of the total number
of points). To obtain the derivatives, the automatic differentiation methods, implemented
in the Tensorflow package are applied to the trained neural network.

0 1 2 3 4 5

x

0.0

0.2

0.4

0.6

0.8

y

approximation by ANN
solution of the equation

(a) (b)
Figure 7. Comparison of the equation solution and its approximation by artificial neural networks (ANNs) for a time slice
(a) and heatmap of the approximation error (uapprox − utrue) (b).

Even with the presented very good approximation of the original field, the first
derivatives (Figure 8) are obtained with decent quality and may serve as the building
blocks. However, it is seen that the derivative field is significantly biased.

0 1 2 3 4 5

x

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

y

automatic differentiation by ANN
polynomial differentiation

(a) ut

0 1 2 3 4 5

x

−0.4

−0.2

0.0

0.2

0.4

0.6

y

automatic differentiation by ANN
polynomial differentiation

(b) ux

Figure 8. Comparison of derivatives obtained by polynomial differentiation and by symbolic regression for first time
derivative (a) first spatial derivatives (b) for a time slice (t = 50).

Further differentiation amplifies the error. The higher-order derivatives shown in
Figure 9 cannot be used as the building blocks of the model and do not represent the
derivatives of the initial data field.

Entropy 2021, 23, 28 14 of 26

0 1 2 3 4 5

x

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

y

automatic differentiation by ANN
polynomial differentiation

(a) utt

0 1 2 3 4 5

x

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y

automatic differentiation by ANN
polynomial differentiation

(b) uxx

Figure 9. Comparison of derivatives obtained by polynomial differentiation and by symbolic regression for second time
derivative (a) second spatial derivatives (b) for a time slice (t = 50).

Both of the implemented differentiation techniques are affected by numerical errors,
inevitable in the machine calculations, and contain errors, linked to the limitations of the
method (for example, approximation errors). To evaluate the influence of the errors on
the discovered equation structure, the experiments were conducted on simple ordinary
differential Equation (ODE) (20) with solution function (21).

L(t) = x(t) sin t +
dx
dt

cos t = 1, (20)

x(t) = sin t + C cos t. (21)

We have tried to rediscover the equation, based on data, obtained via analytical
differentiation of function (21), application of polynomial differentiation, and with the
derivative, calculated by automatic differentiation of fitted neural network. The series of
function values and the derivatives are presented in Figure 10. Here, we can see, that the
proposed ANN can decently approximate data; the analytical & polynomial differentiation
obtains similar fields, while automatic differentiation algorithm may result in insignificant
errors. 10 independent runs of the equation discovery algorithm have been performed
for each derivative calculation method, and the results with the lowest errors have been
compared. For the quality metric, the Mean Square Error of the vector, representing
the discrepancy of the function x̄(t), which is the solution of discovered on data-driven
equation M(t) = 0 with aim of |M(t)| −→ min, evaluated on the nodes of the grid was used.

While all of the runs resulted in the successful discovery of governing equations, the is-
sues with such equations are in the area of function parameters detection and calculating the
correct coefficients of the equation. The best result was achieved on the data from analytical
differentiation: MSE = 1.452 · 10−4. The polynomial differentiation got the similar quality
MSE = 1.549 · 10−4, while the automatic differentiation achieved MSE = 3.236 · 10−4. It
could be concluded, that in the case of first-order equations, the error of the differentiation
has less order than all other errors and thus the fastest method for the given problem may
be used. However, in the PDE case, it is complicated to use only first-order derivatives,
whereas arbitrary ordinary differential equations may be represented as the system of the
first-order equations.

Entropy 2021, 23, 28 15 of 26

Figure 10. The solution of ODE from Equation (20), its approximation by neural network, and derivatives calculated by
analytic, polynomial and automatic differentiation.

5.2. Computationally Intensive Function Parallelization
5.2.1. Parallelization of Generative Algorithm for PDE Discovery

The first experiment devoted to the parallelization of the atomic models’ computation
using partial differential equations discovery case as an example. As shown in Figure 4,
the parallelization of the evolutionary algorithm in some cases does not give significant
speed improvement. In cases where atomic models are computationally expensive, it is
expedient to try to reduce every node computation as much as possible.

The experiment [42] was dedicated to the selection of an optimal method of com-
putational grid domain handling. It had been previously proven, that the conventional
approach when we process the entire domain at once, was able to correctly discover the
governing equation. However, with the increasing size of the domain, the calculations may
take longer times. In this case parallelization of the evolutionary algorithm does not give
speed-up on a given computational resources configuration, since the computation of a
fitness function of a single gene takes the whole computational capacity.

To solve this issue, we have proposed a method of domain division into a set of spatial
subdomains to reduce the computational complexity of a single gene. For each of these
subdomains, the structure of the model in form of the differential equation is discovered,
and the results are compared and combined, if the equation structures are similar: with
insignificant differences in coefficients or the presence of terms with higher orders of
smallness. The main algorithm for the subdomains is processed in a parallel manner due
to the isolated method of domain processing: we do not examine any connections between
domains until the final structure of the subdomains’ models is obtained.

The experiments to analyze the algorithm performance were conducted on the syn-
thetic data: by defining the presence of a single governing equation, we exclude the issue
of the existence of multiple underlying processes, described by different equations, in
different parts of the studied domain. So, we have selected a solution of the wave equation
with two spatial dimensions in Equation (22) for a square area, which was processed as
one domain, and after that, into small fractions of subdomains.

∂2u
∂t2 =

∂2u
∂x2 +

∂2u
∂y2 . (22)

Entropy 2021, 23, 28 16 of 26

However, that division has its downsides: smaller domains have less data, therefore,
the disturbances (noise) in individual point will have a higher impact on the results.
Furthermore, in realistic scenarios, the risks of deriving an equation, that describes a local
process, increases with the decrease in domain size. The Pareto front, indicating the trade-
off between the equation discrepancy and the time efficiency, could be utilized to find
the parsimonious setup of the experiment. On the noiseless data (we assume, that the
derivatives are calculated without the numerical error) even the data from a single point
will correctly represent the equation. Therefore, the experiments must be held on the data
with low, but significant noise levels.

We have conducted the experiments with the partition of data (Figure 11), containing
80× 80× 80 values, divided by spatial axes in fractions from the set {1, 10}. The experi-
ments were held with 10 independent runs on each of the setup (size of input data (number
of subdomains, into which the domain was divided, and sparsity constant, which affects
the number of terms of the equation).

(a)

0 20 40 60 80 100
Number of subdomains

20

40

60

80

100

Re
la

tiv
e

co
m

pu
ta

tio
n

tim
e,

 %

(b)
Figure 11. The results of the experiments on the divided domains. (a) evaluations of discovered equation quality for
different division fractions along each axis (2× division represents division of domain into 4 square parts); (b) domain
processing time (relative to the processing of entire domain) for subdomain number.

The results of the test, presented in Figure 11, give insight into the consequences of
the processing domain by parts. It can be noticed, that with the split of data into smaller
portions, the qualities of the equations decrease due to the “overfitting” to the local noise.
However, in this case, due to higher numerical errors near the boundaries of the studied
domain, the base equation, derived from the full data, has its own errors. By dividing
the area into smaller subdomains, we allow some of the equations to be trained on data
with lower numerical errors and, therefore, have higher quality. The results, presented
in the Figure 11b are obtained only for the iterations of the evolutionary algorithm of the
equation discovery and do not represent the differences in time for other stages, such as
preprocessing, or further modeling of the process.

We can conclude that the technique of separating the domain into lesser parts and pro-
cessing them individually can be beneficial both for achieving speedup via parallelization
of the calculations and avoiding equations, derived from the high error zones. In this case,
such errors were primarily numerical, but in realistic applications, they can be attributed to
the faulty measurements or prevalence of a different process in a local area.

5.2.2. Reducing of the Computational Complexity of Composite Models

To execute the next set of experiments, we used the Fedot framework to build the
composite ML models for classification and regression problems. The different open

Entropy 2021, 23, 28 17 of 26

datasets were used as benchmarks that allow to analyze the efficiency of the generative
design in various situations.

To improve the performance of the model building (this issue was noted in Issue 2),
different approaches can be applied. First of all, caching techniques can be used. The cache
can be represented as a dictionary with the topological description of the model position in
the graph as a key and a fitted model as a value. Moreover, the fitted data preprocessor
can be saved in cache together with the model. The common structure of the cache is
represented in Figure 12.

Data-driven
model

Iden��ca�on
(��ng)

Predic�on

Computa�onally
expensive

Fast and simple

Hyperparam.

Input data

Depends on
underlying chain

structure

Cache dic�onary

SID 1 Cached model 1

... ...

SID N Cached model N

Shared storage for the �	ed models

Methods: append, clear, get

Described by SID
(structural ID)

Figure 12. The structure of the multi-chain shared cache for the fitted composite models.

The results of the experiments with a different implementation of cache are described
in Figure 13.

0

1000

2000

3000

4000

0 1 2 3 4 5 6 7 8 9 10

Generations

N
u

m
b

e
r

o
f

fi
ts

Real evals (local cache misses)

Real evals (shared cache misses)

Requested evals

Figure 13. The total number model fit requests and the actually executed fits (cache misses) for the shared and local cache.

Local cache allows reducing the number of models fits up to five times against the
non-cached variant. The effectiveness of the shared cache implementation is twice as high
as that for the local cache.

The parallelization of the composite models building, fitting, and application also
makes it possible to decrease the time devoted to the design stage. It can be achieved
in different ways. First of all, the fitting and application of the atomic ML models can
be parallelized using the features of the underlying framework (e.g., Scikit-learn, Keras,
TensorFlow, etc [43]), since the atomic models can be very complex. However, this approach
is more effective in the shared memory systems and it is hard to scale it to the distributed
environments. Moreover, not all models can be efficiently parallelized in this way.

Then, the evolutionary algorithm that builds the composite model can be paralleled
itself, since the fitness function for each individual can be calculated independently. To con-
duct the experiment, the classification benchmark based at the credit scoring problem (https:
//github.com/nccr-itmo/FEDOT/blob/master/cases/credit_scoring_problem.py) was

https://github.com/nccr-itmo/FEDOT/blob/master/cases/credit_scoring_problem.py
https://github.com/nccr-itmo/FEDOT/blob/master/cases/credit_scoring_problem.py

Entropy 2021, 23, 28 18 of 26

used. The parameters of the evolutionary algorithm are the same as described at the
beginning of the section.

The obtained values of the fitness function for the classification problem are presented
in Figure 14.

1 2 4 8 16
Threads, #

0.805

0.810

0.815

0.820

0.825

0.830

0.835

0.840

RO
C

AU
C

(a)

30 85 150 250 310 410 480
Execution time, sec

0.80

0.81

0.82

0.83

0.84

0.85

0.86

RO
C

AU
C

1
1

2
2

3
4

5

(b)
Figure 14. (a) The best achieved fitness value for the different computational configurations (represented as different
number of parallel threads) used to evaluate the evolutionary algorithm on classification benchmark. The boxplots are build
for the 10 independent runs. (b) Pareto frontier (blue) obtained for the classification benchmark in “execution time-model
quality” subspace. The red points represent dominated individuals.

The effectiveness of the evolutionary algorithm parallelization depends on the vari-
ance of the composite models fitting time in the population. It is matters because the new
population can not be formed until all individuals from the previous one are assessed. This
problem is illustrated in Figure 15 for cases (a) and (b) that were evaluated with classifica-
tion dataset and parameters of evolutionary algorithm described above. It can be noted that
the modified selection scheme noted in (b) can be used to increase parallelization efficiency.
The early selection, mutation, and crossover of the already processed individuals allow to
start the processing of the next population before the previous population’s assessment
is finished.

0 2 4 6 8 10
Time, sec * 10⁴

0

5

10

15

20

⁴v
al

ua
tio

ns
 *

10
²

Worst cast
Realistic case
Best case

(a)

0 20 40 60 80 100
Complexity variance in population, %

70

75

80

85

90

95

100

Ef
fe

ct
iv

en
es

s o
f p

ar
al

le
liz

at
io

n,
 %

Standard selection
Early selection

(b)
Figure 15. (a) The comparison of different scenarios of evolutionary optimization: best (ideal), realistic and worst cases
(b) The conceptual dependence of the parallelization efficiency from the variance of the execution time in population for
the different types of selection.

Entropy 2021, 23, 28 19 of 26

The same logic can be applied for the parallel fitting of the part of composite model
graphs. It raises the problem of the importance of assessment for the structural subgraphs
and the prediction of most promising candidate models before the final evaluation of the
fitness function will be done.

5.3. Co-Design Strategies for the Evolutionary Learning Algorithm

The co-design of the generative algorithm and the available infrastructure is an impor-
tant issue (described in detail in the Issue 3) in the task of composite model optimization.
The interesting case here is optimization under the pre-defined time constraints [44]. The
experimental results obtained for the two different optimization strategies are presented
in Figure 16. The classification problem was solved using the credit scoring problem
(described above) as a benchmark for the classification task. The parameters of the evo-
lutionary algorithm are the same as described at the beginning of the section. The fitness
function value is based on ROC AUC measure and maximized during optimization.

The static strategy S1 represents the evolutionary optimization with the fixed hyper-
parameters of the algorithm. The computational infrastructure used in the experiment
makes it possible to evaluate the 20 generations with 20 individuals in the population with
a time limit of T0. This strategy allows finding the solution with the fitness function value
F0. However, if the time limit T1 < T0 is taken into account, the static strategy allow to find
the solution S1 with the fitness function value F1, where F1 < F0.

Otherwise, the adaptive optimization strategy S2, which takes the characteristics of
the infrastructure to self-tune the parameters can be used. It allow to evaluate 20 generation
with 10 individuals in a time limit T1 and reach the fitness function value F2. As can be
seen, the F1 < F2 < F0, so the better solution is found under the given time constraint.

Figure 16. The comparison of different approaches to the evolutionary optimization of the composite models. The min-
max intervals are built for the 10 independent runs. The green line represents the static optimization algorithm with
20 individuals in the population; the blue line represented the dynamic optimization algorithm with 10 individuals in the
population. T0, T1 and T2 are different real-time constraints, F0, F1 and F2 are the values of fitness functions obtained with
the corresponding constraints.

Entropy 2021, 23, 28 20 of 26

5.4. Strategies for Optimization of Hyperparameters in Evolutionary Learning Algorithm

As it was noted in the issue described in Issue 4, the very large search space is a major
problem in the generative design. To prove that it can be solved with the application of the
specialized hyperparameters tuning strategies, a set of experiments was conducted.

As can be seen from Figure 6, the direct tuning strategy means that each atomic model
is considered an autonomous model during tuning. The computational cost of the tuning
is low in this case (since it is not necessary to fit all the models in a chain to estimate
the quality metric), but the found set of parameters can be non-optimal. The composite
model tuning allows to take into account the influence of the chain beyond the scope of
an individual atomic model, but the cost is additional computations to tune all models. A
pseudocode of an algorithm for composite model tuning is represented in Algorithm 1.

Algorithm 1: The simplified pseudocode of the composite models tuning algorithm illustrated in Figure 6b.
Data: maxTuningTime, tuneData, paramsRanges
Result: tunedCompositeModel
fitData, validationData = Split(tuneData)
for atomicModel in compositeModel do

candidateCompositeModel = compositeModel
while tuningTime < maxTuningTime do

bestQuality = 0
candidateAtomicModel← OptFunction(atomicModel, paramsRanges) // OptFunction can be

implemented as random search, Bayesian optimization, etc.
candidateCompositeModel← Update(candidateCompositeModel, candidateAtomicModel)
Fit(candidateCompositeModel, fitData)
quality = EvaluateQuality (candidateCompositeModel, validationData)
if quality > bestQuality then

bestQuality = quality
bestAtomicModel = candidateAtomicModel

end
compositeModel← Update(compositeModel, bestAtomicModel)

end
end
tunedCompositeModel = compositeModel

The results of the model-supported tuning of the composite models for the different
regression problems obtained from PMLB benchmark suite (Available in the https://
github.com/EpistasisLab/pmlb) are presented in Table 1. The self-developed toolbox
that was used to run the experiments with PMLB and FEDOT is available in the open
repository (https://github.com/ITMO-NSS-team/AutoML-benchmark). The applied
tuning algorithm is based on a random search in a pre-defined range.

Table 1. The quality measures for the composite models after and before random search-based tuning of hyperparameters. The
regression problems from PMLB suite [45] are used as benchmarks.

Benchmark Name MSE without Tuning MSE with Tuning R2 without Tuning R2 with Tuning

1203_BNG_pwLinear 8.213 0.102 0.592 0.935
197_cpu_act 5.928 7.457 0.98 0.975

215_2dplanes 1.007 0.001 0.947 1
228_elusage 126.755 0.862 0.524 0.996

294_satellite_image 0.464 0.591 0.905 0.953
4544_GeographicalOriginalofMusic 0.194 2.113 0.768 0.792

523_analcatdata_neavote 0.593 0.025 0.953 0.999
560_bodyfat 0.07 0.088 0.998 0.894

561_cpu 3412.46 0.083 0.937 0.91
564_fried 1.368 0.073 0.944 0.934

https://github.com/EpistasisLab/pmlb
https://github.com/EpistasisLab/pmlb
https://github.com/ITMO-NSS-team/AutoML-benchmark

Entropy 2021, 23, 28 21 of 26

It can be seen that the hyperparameter optimization allow increasing the quality of
the models in most cases.

5.5. Estimation of the Empirical Performance Models

The experiments for the performance models identification (this problem was raised
in the issue described in Issue 5) were performed using the benchmark with a large number
of features and observations in the sample. The benchmark is based on a classification
task from the robotics field. It is quite a suitable example since there is a large number
of tasks in this domain that can be performed on different computational resources from
the embedded system to supercomputer in robotics. The analyzed task is devoted to
the manipulator grasp stability prediction obtained from the Kaggle competition (https:
//www.kaggle.com/ugocupcic/grasping-dataset).

An experiment consists of grasping the ball, shaking it for a while, while computing
grasp robustness. Multiple measurements are taken during a given experiment. Only one
robustness value is associated though. The obtained dataset is balanced and has 50/50
stable and unstable grasps respectively.

The approximation of the EPM with simple regression models is a common way to
analyze the performance of algorithms [46]. After the set of experiments, for the majority
of considered models it was confirmed that the common regression surface of a single
model EPM can be represented as a linear model. However, some considered models can
be described better by another regression surface (see the quality measures for the different
structures of EPM in Appendix A). One of them is a random forest model EPM. According
to the structure of the Equation (9), these structures of EPM can be represented as follows:

TEPM =

 Θ1NobsN f eat + Θ2Nobs, f or the common case
Nobs
Θ2

1
+

N2
obs N f eat

Θ2
2

, speci f ic case f or random f orest
, (23)

where TEPM—model fitting time estimation (represented in ms according to the scale of
coefficients from Table 2), Nobs—number of observations in the sample, N f eat—number of
features in the sample. The characteristics of the computational resources and hyperparam-
eters of the model are considered as static in this case.

We applied the least squared errors (LSE) algorithm to (23) and obtained the Θ
coefficients for the set of models that presented Table 2. The coefficient of determination R2

is used to evaluate the quality of obtained performance models.

Table 2. The examples of coefficients for the different performance models.

ML Model Θ1 · 104 Θ2 · 103 R2

LDA 2.9790 3.1590 0.9983
QDA 1.9208 3.1012 0.9989

Naive Bayes for Bernoulli models 1.3440 3.3120 0.9986
Decision tree 31.110 4.1250 0.9846

PCA 3.1291 2.4174 0.9992
Logistic regression 9.3590 2.3900 0.9789

Random forest −94.42 · 104 2.507·108 0.9279

The application of the evolutionary optimization to the benchmark allows finding the
optimal structure of the composite model for the specific problem. We demonstrate EPM
constructing for the composite model which consists of logistic regression and random
forest as a primary nodes and logistic regression as a secondary node. On the basis of (11),
EPM for this composite model can be represented as follows:

TEPM
Add = max(Θ1,1NobsN f eat + Θ2,1Nobs, Θ1

1,2NobsN f eat + Θ2,2Nobs) +
Nobs

Θ2
1,3

+
N2

obsN f eat

Θ2
2,3

, (24)

https://www.kaggle.com/ugocupcic/grasping-dataset
https://www.kaggle.com/ugocupcic/grasping-dataset

Entropy 2021, 23, 28 22 of 26

where TEPM
Add —composite model fitting time estimated by the additive EMP, Θi, j-i coeffi-

cient of j model type for EPM according to the Table 2.
The performance model for the composite model with three nodes (LR + RF = LR) is

shown in Figure 17. The visualizations for the atomic models are available in Appendix A.

Figure 17. Predictions of the performance model that uses an additive approach for local empirical performance models
(EPMs) of atomic models. The red points represent the real evaluations of the composite model as a part of validation.

The RMSE (root-mean-squared-error) measure is used to evaluate the quality of chain
EPM evaluation against real measurements. In this case, the obtained RMSE = 21.3 s
confirms the good quality of obtained estimation in an observed 0–400 seconds range.

6. Discussion and Future Works

In a wider sense co-design problem may be solved as an iterative procedure that
includes additional tuning during the model execution stage and a cyclic closure (or re-
building stage) with respect to time evolution. Re-building stage may be initiated by two
types of events: (1) model error overcomes acceptable threshold ec; (2) execution time
overcomes acceptable threshold τc. In this case a solution is to build the new model with
respect to corrected set of structures S̃ and performance model T̃M:

p′min
(M∗, t) > ρc, Tex

min > τc, p̃min(M∗∗, t) = max
M̃

F′
(

M̃, t| T̃M ≤ τc, Tgen ≤ τg
)
, (25)

where t is a variable of real time and ρc is a critical threshold for values of error function
E. Such a problem is typical for models that are connected with a lifecycle of their pro-
totype, e.g., models inside digital shadow for industrial system [47], weather forecasting
models [48], etc.

Additional fitting of co-designed system may appear also on the level of model
execution where classic scheduling approach may be blended with model tuning. Classic
formulation of scheduling for resource intensive applications Tex

min(L∗) = min
A

G′(L|M, I)

is based on idea of optimization search for such algorithm L∗ that helps to provide minimal
computation time Tex

min for model execution process through balanced schedules of
workload on computation nodes. However, such approach is restricted by assumption
of uniform performance models for all parts of application. In real cases performance of
application may change dynamically in time and among functional parts. Thus, to reach
more effective execution it is desirable to formulate optimization problem with respect to
possibility of tuning model characteristics that influence on model performance:

Entropy 2021, 23, 28 23 of 26

Tex
max
({

a1:|S|
}∗

, L∗
)
= max

a,L
G
(

M
({

a1:|S|
})

, L|I
)

, M = S∗, E∗,
{

a1:|S|
}

, L = {Lm}, (26)

where G is objective function that characterize expected time of model execution with
respect to used scheduling algorithm L and model M. In the context of generative modeling
problem on the stage of execution model M can be fully described as a set of model
properties that consists of optimal model structure: optimal functions S∗ (from previous
stage) and additional set of performance influential parameters

{
a1:|S|

}
. Reminiscent

approaches can be seen in several publications, e.g., [49].

7. Conclusions

In this paper, we aimed to highlight the different aspects of the creation of mathe-
matical models using automated evolutionary learning approach. Such approach may be
represented from the perspective of generative design and co-design for mathematical
models. First of all, we formalize several actual and unsolved issues that exist in the
field of generative design of mathematical models. They are devoted to different aspects:
computational complexity, performance modeling, parallelization, interaction with the
infrastructure, etc. The set of experiments was conducted as proof-of-concept solutions
for every announced issue and obstacle. The composite ML models obtained by the FE-
DOT framework and differential equation-based models obtained by the EPDE framework
were used as case studies. Finally, the common concepts of the co-design implementation
were discussed.

Author Contributions: Conceptualization, A.V.K. and A.B.; Investigation, N.O.N., A.H., M.M. and
M.Y.; Methodology, A.V.K.; Project administration, A.B.; Software, N.O.N., A.H., and M.M.; Supervi-
sion, A.B.; Validation, M.M.; Visualization, M.Y.; Writing–original draft, A.V.K., N.O.N. and A.H. All
authors have read and agreed to the final publication of the manuscript.

Funding: This research is financially supported by the Ministry of Science and Higher Education,
Agreement #075-15-2020-808.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial intelligence
ANN Artificial neural network
AutoML Automated machine learning
DAG Directed acyclic graph
EPM Empirical performance model
GPU Graphics processing unit
ML Machine learning
MSE Mean squared error
NAS Neural architecture search
ODE Ordinary differential equation
PDE Partial differential equation
PM Performance model
R2 Coefficient of determination
RMSE Root mean square error
ROC AUC Area under receiver operating characteristic curve

Entropy 2021, 23, 28 24 of 26

Appendix A. Additional Details on the Empirical Performance Models Validation

The validation of different EPM for the set of the atomic models (that was noted in
Table 2) is presented in Table A1. R2 and RMSE metrics are used to compare the predictions
of EPM and real measurements of the fitting time. The obtained results confirm that
the linear EPM with two terms is most suitable for most of the ML models used in the
experiments. However, the fitting time for some models (e.g., random forest) is represented
better by the more specific EPM. The one-term EPM provides a lower quality than more
complex analogs.

Table A1. Approximation errors for the different empirical performance models’ structures obtained
for the atomic ML models. The best suitable structure is highlighted with bold.

Model Θ1Nobs N f eat
Θ1Nobs N f eat

+ Θ2Nobs

Nobs
Θ2

1
+

N2
obs N f eat

Θ2
2

RMSE, s R2 RMSE, s R2 RMSE, s R2

LDA 0.35 0.92 0.11 0.99 0.66 0.74
QDA 0.75 0.57 0.03 0.99 0.93 0.36

Naive Bayes 0.82 0.42 0.04 0.99 0.961 0.21
Decision tree 1.48 0.98 1.34 0.98 3.49 0.89

PCA 0.28 0.78 0.04 0.99 0.28 0.95
Logit 0.54 0.91 0.37 0.96 0.95 0.75

Random forest 96.81 0.60 26.50 0.71 21.36 0.92

The visualization of the performance models predictions for the different cases is
presented in Figure A1. It confirms that the selected EPMs allow estimating the fitting time
quite reliably.

(a) LDA (b) QDA

(c) DT (d) PCA

Figure A1. Cont.

Entropy 2021, 23, 28 25 of 26

(e) BernoulliNaveBayes (f) Logit

Figure A1. The empirical performance models for the different atomic models: LDA, QDA, Decision Tree (DT), PCA
dimensionality reduction model, Bernoulli Naïve Bayes model, logistic regression. The heatmap represent the prediction of
EPM and the black points are real measurements.

References
1. Packard, N.; Bedau, M.A.; Channon, A.; Ikegami, T.; Rasmussen, S.; Stanley, K.; Taylor, T. Open-Ended Evolution and Open-Endedness:

Editorial Introduction to the Open-Ended Evolution I Special Issue; MIT Press: Cambridge, MA, USA, 2019.
2. Krish, S. A practical generative design method. Comput.-Aided Des. 2011, 43, 88–100. [CrossRef]
3. Ferreira, C. Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence; Springer: Berlin/Heidelberg, Germany,

2006; Volume 21.
4. Pavlyshenko, B. Using stacking approaches for machine learning models. In Proceedings of the 2018 IEEE Second International

Conference on Data Stream Mining & Processing (DSMP), Lviv, Ukraine, 21–25 August 2018; pp. 255–258.
5. Kovalchuk, S.V.; Metsker, O.G.; Funkner, A.A.; Kisliakovskii, I.O.; Nikitin, N.O.; Kalyuzhnaya, A.V.; Vaganov, D.A.; Bochenina,

K.O. A conceptual approach to complex model management with generalized modelling patterns and evolutionary identification.
Complexity 2018, 2018, 5870987. [CrossRef]

6. Kalyuzhnaya, A.V.; Nikitin, N.O.; Vychuzhanin, P.; Hvatov, A.; Boukhanovsky, A. Automatic evolutionary learning of composite
models with knowledge enrichment. In Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion,
Cancun, Mexico, 8–12 July 2020; pp. 43–44.

7. Lecomte, S.; Guillouard, S.; Moy, C.; Leray, P.; Soulard, P. A co-design methodology based on model driven architecture for real
time embedded systems. Math. Comput. Model. 2011, 53, 471–484. [CrossRef]

8. He, X.; Zhao, K.; Chu, X. AutoML: A Survey of the State-of-the-Art. arXiv 2019, arXiv:1908.00709.
9. Caldwell, J.; Ram, Y.M. Mathematical Modelling: Concepts and Case Studies; Springer Science & Business Media: Berlin/Heidelberg,

Germany, 2013; Volume 6.
10. Banwarth-Kuhn, M.; Sindi, S. How and why to build a mathematical model: A case study using prion aggregation. J. Biol. Chem.

2020, 295, 5022–5035. [CrossRef] [PubMed]
11. Castillo, O.; Melin, P. Automated mathematical modelling for financial time series prediction using fuzzy logic, dynamical

systems and fractal theory. In Proceedings of the IEEE/IAFE 1996 Conference on Computational Intelligence for Financial
Engineering (CIFEr), New York City, NY, USA, 24–26 March 1996; pp. 120–126.

12. Kevrekidis, I.G.; Gear, C.W.; Hyman, J.M.; Kevrekidid, P.G.; Runborg, O.; Theodoropoulos, C. Equation-free, coarse-grained
multiscale computation: Enabling mocroscopic simulators to perform system-level analysis. Commun. Math. Sci. 2003, 1, 715–762.

13. Schmidt, M.; Lipson, H. Distilling free-form natural laws from experimental data. Science 2009, 324, 81–85. [CrossRef]
14. Kondrashov, D.; Chekroun, M.D.; Ghil, M. Data-driven non-Markovian closure models. Phys. D Nonlinear Phenom. 2015,

297, 33–55. [CrossRef]
15. Maslyaev, M.; Hvatov, A.; Kalyuzhnaya, A. Data-Driven Partial Derivative Equations Discovery with Evolutionary Approach. In

International Conference on Computational Science; Springer: Berlin/Heidelberg, Germany, 2019; pp. 635–641.
16. Qi, F.; Xia, Z.; Tang, G.; Yang, H.; Song, Y.; Qian, G.; An, X.; Lin, C.; Shi, G. A Graph-based Evolutionary Algorithm for Automated

Machine Learning. Softw. Eng. Rev. 2020, 1, 10–37686.
17. Olson, R.S.; Bartley, N.; Urbanowicz, R.J.; Moore, J.H. Evaluation of a tree-based pipeline optimization tool for automating

data science. In Proceedings of the Genetic and Evolutionary Computation Conference, New York, NY, USA, 20–24 July 2016;
pp. 485–492.

18. Zhao, H. High Performance Machine Learning through Codesign and Rooflining. Ph.D. Thesis, UC Berkeley, Berkeley, CA,
USA, 2014.

19. Amid, A.; Kwon, K.; Gholami, A.; Wu, B.; Asanović, K.; Keutzer, K. Co-design of deep neural nets and neural net accelerators for
embedded vision applications. IBM J. Res. Dev. 2019, 63, 6:1–6:14. [CrossRef]

20. Li, Y.; Park, J.; Alian, M.; Yuan, Y.; Qu, Z.; Pan, P.; Wang, R.; Schwing, A.; Esmaeilzadeh, H.; Kim, N.S. A network-centric
hardware/algorithm co-design to accelerate distributed training of deep neural networks. In Proceedings of the 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), Fukuoka, Japan, 20–24 October 2018; pp. 175–188.

http://dx.doi.org/10.1016/j.cad.2010.09.009
http://dx.doi.org/10.1155/2018/5870987
http://dx.doi.org/10.1016/j.mcm.2010.03.035
http://dx.doi.org/10.1074/jbc.REV119.009851
http://www.ncbi.nlm.nih.gov/pubmed/32005659
http://dx.doi.org/10.1126/science.1165893
http://dx.doi.org/10.1016/j.physd.2014.12.005
http://dx.doi.org/10.1147/JRD.2019.2942284

Entropy 2021, 23, 28 26 of 26

21. Bertels, K. Hardware/Software Co-Design for Heterogeneous Multi-Core Platforms; Springer: Berlin/Heidelberg, Germany, 2012.
22. Wang, K.; Liu, Z.; Lin, Y.; Lin, J.; Han, S. HAQ: Hardware-Aware Automated Quantization With Mixed Precision. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019.
23. Cai, H.; Zhu, L.; Han, S. Proxylessnas: Direct neural architecture search on target task and hardware. arXiv 2018, arXiv:1812.00332.
24. Dosanjh, S.S.; Barrett, R.F.; Doerfler, D.; Hammond, S.D.; Hemmert, K.S.; Heroux, M.A.; Lin, P.T.; Pedretti, K.T.; Rodrigues, A.F.;

Trucano, T. Exascale design space exploration and co-design. Future Gener. Comput. Syst. 2014, 30, 46–58. [CrossRef]
25. Gramacy, R.B.; Lee, H.K. Adaptive Design of Supercomputer Experiments. 2018. Available online: http://citeseerx.ist.psu.edu/

viewdoc/download?doi=10.1.1.312.3750&rep=rep1&type=pdf (accessed on 26 December 2020).
26. Glinskiy, B.; Kulikov, I.; Snytnikov, A.V.; Chernykh, I.; Weins, D.V. A multilevel approach to algorithm and software design for

exaflops supercomputers. Numer. Methods Program. 2015, 16, 543–556.
27. Kaltenecker, C. Comparison of Analytical and Empirical Performance Models: A Case Study on Multigrid Systems. Master’s The-

sis, University of Passau, Passau, Germany, 2016.
28. Calotoiu, A. Automatic Empirical Performance Modeling of Parallel Programs. Ph.D. Thesis, Technische Universität, Berlin,

Germany, 2018.
29. Eggensperger, K.; Lindauer, M.; Hoos, H.H.; Hutter, F.; Leyton-Brown, K. Efficient benchmarking of algorithm configurators via

model-based surrogates. Mach. Learn. 2018, 107, 15–41. [CrossRef]
30. Chirkin, A.M.; Belloum, A.S.; Kovalchuk, S.V.; Makkes, M.X.; Melnik, M.A.; Visheratin, A.A.; Nasonov, D.A. Execution time

estimation for workflow scheduling. Future Gener. Comput. Syst. 2017, 75, 376–387. [CrossRef]
31. Gamatié, A.; An, X.; Zhang, Y.; Kang, A.; Sassatelli, G. Empirical model-based performance prediction for application mapping

on multicore architectures. J. Syst. Archit. 2019, 98, 1–16. [CrossRef]
32. Shi, Z.; Dongarra, J.J. Scheduling workflow applications on processors with different capabilities. Future Gener. Comput. Syst.

2006, 22, 665–675. [CrossRef]
33. Visheratin, A.A.; Melnik, M.; Nasonov, D.; Butakov, N.; Boukhanovsky, A.V. Hybrid scheduling algorithm in early warning

systems. Future Gener. Comput. Syst. 2018, 79, 630–642. [CrossRef]
34. Melnik, M.; Nasonov, D. Workflow scheduling using Neural Networks and Reinforcement Learning. Procedia Comput. Sci. 2019,

156, 29–36. [CrossRef]
35. Olson, R.S.; Moore, J.H. TPOT: A tree-based pipeline optimization tool for automating machine learning. Proc. Mach. Learn. Res.

2016, 64, 66–74.
36. Evans, L.; Society, A.M. Partial Differential Equations; Graduate Studies in Mathematics; American Mathematical Society:

Providence, RI, USA, 1998.
37. Czarnecki, W.M.; Osindero, S.; Jaderberg, M.; Swirszcz, G.; Pascanu, R. Sobolev training for neural networks. In Proceedings of

the Advances in Neural Information Processing Systems 30 (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017; pp. 4278–4287.
38. Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward

and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [CrossRef]
39. Epicoco, I.; Mocavero, S.; Porter, A.R.; Pickles, S.M.; Ashworth, M.; Aloisio, G. Hybridisation strategies and data structures for

the NEMO ocean model. Int. J. High Perform. Comput. Appl. 2018, 32, 864–881. [CrossRef]
40. Nikitin, N.O.; Polonskaia, I.S.; Vychuzhanin, P.; Barabanova, I.V.; Kalyuzhnaya, A.V. Structural Evolutionary Learning for

Composite Classification Models. Procedia Comput. Sci. 2020, 178, 414–423. [CrossRef]
41. Full Script That Allows Reproducing the Results Is Available in the GitHub Repository. Available online: https://github.

com/ITMO-NSS-team/FEDOT.Algs/blob/master/estar/examples/ann_approximation_experiments.ipynb (accessed on
26 December 2020).

42. Full Script That Allows Reproducing the Results Is Available in the GitHub Repository. Available online: https://github.com/
ITMO-NSS-team/FEDOT.Algs/blob/master/estar/examples/Pareto_division.py (accessed on 26 December 2020).

43. Géron, A. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent
Systems; O’Reilly Media: Sebastopol, CA, USA, 2019.

44. Nikitin, N.O.; Vychuzhanin, P.; Hvatov, A.; Deeva, I.; Kalyuzhnaya, A.V.; Kovalchuk, S.V. Deadline-driven approach for multi-
fidelity surrogate-assisted environmental model calibration: SWAN wind wave model case study. In Proceedings of the Genetic
and Evolutionary Computation Conference Companion, Prague, Czech Republic, 13–17 July 2019; pp. 1583–1591.

45. Olson, R.S.; La Cava, W.; Orzechowski, P.; Urbanowicz, R.J.; Moore, J.H. PMLB: A large benchmark suite for machine learning
evaluation and comparison. BioData Min. 2017, 10, 1–13. [CrossRef]

46. Li, K.; Xiang, Z.; Tan, K.C. Which surrogate works for empirical performance modelling? A case study with differential evolution.
In Proceedings of the 2019 IEEE Congress on Evolutionary Computation (CEC), Wellington, New Zealand, 10–13 June 2019;
pp. 1988–1995.

47. Bauernhansl, T.; Hartleif, S.; Felix, T. The Digital Shadow of production–A concept for the effective and efficient information
supply in dynamic industrial environments. Procedia CIRP 2018, 72, 69–74. [CrossRef]

48. Cha, D.H.; Wang, Y. A dynamical initialization scheme for real-time forecasts of tropical cyclones using the WRF model. Mon.
Weather Rev. 2013, 141, 964–986. [CrossRef]

49. Melnik, M.; Nasonov, D.A.; Liniov, A. Intellectual Execution Scheme of Iterative Computational Models based on Symbiotic
Interaction with Application for Urban Mobility Modelling. IJCCI 2019, 1, 245–251.

http://dx.doi.org/10.1016/j.future.2013.04.018
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.312.3750&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.312.3750&rep=rep1&type=pdf
http://dx.doi.org/10.1007/s10994-017-5683-z
http://dx.doi.org/10.1016/j.future.2017.01.011
http://dx.doi.org/10.1016/j.sysarc.2019.06.001
http://dx.doi.org/10.1016/j.future.2005.11.002
http://dx.doi.org/10.1016/j.future.2017.04.002
http://dx.doi.org/10.1016/j.procs.2019.08.126
http://dx.doi.org/10.1016/j.jcp.2018.10.045
http://dx.doi.org/10.1177/1094342016684930
http://dx.doi.org/10.1016/j.procs.2020.11.043
https://github.com/ITMO-NSS-team/FEDOT.Algs/blob/master/estar/examples/ann_approximation_experiments.ipynb
https://github.com/ITMO-NSS-team/FEDOT.Algs/blob/master/estar/examples/ann_approximation_experiments.ipynb
https://github.com/ITMO-NSS-team/FEDOT.Algs/blob/master/estar/examples/Pareto_division.py
https://github.com/ITMO-NSS-team/FEDOT.Algs/blob/master/estar/examples/Pareto_division.py
http://dx.doi.org/10.1186/s13040-017-0154-4
http://dx.doi.org/10.1016/j.procir.2018.03.188
http://dx.doi.org/10.1175/MWR-D-12-00077.1

	Introduction
	Related Work
	Problem Statement
	Important Obstacles on the Way of Generative Co-Design Implementation
	Experimental Studies
	Choice of the Model Evaluation Algorithm
	Computationally Intensive Function Parallelization
	Parallelization of Generative Algorithm for PDE Discovery
	Reducing of the Computational Complexity of Composite Models

	Co-Design Strategies for the Evolutionary Learning Algorithm
	Strategies for Optimization of Hyperparameters in Evolutionary Learning Algorithm
	Estimation of the Empirical Performance Models

	Discussion and Future Works
	Conclusions
	Additional Details on the Empirical Performance Models Validation
	References

