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Abstract: We address security and privacy problems for digital devices and biometrics from an
information-theoretic optimality perspective to conduct authentication, message encryption/decryption,
identification or secure and private computations by using a secret key. A physical unclonable func-
tion (PUF) provides local security to digital devices and this review gives the most relevant summary
for information theorists, coding theorists, and signal processing community members who are
interested in optimal PUF constructions. Low-complexity signal processing methods are applied
to simplify information-theoretic analyses. The best trade-offs between the privacy-leakage, secret-
key, and storage rates are discussed. Proposed optimal constructions that jointly design the vector
quantizer and error-correction code parameters are listed. These constructions include modern and
algebraic codes such as polar codes and convolutional codes, both of which can achieve small block-
error probabilities at short block lengths, corresponding to a small number of PUF circuits. Open
problems in the PUF literature from signal processing, information theory, coding theory, and hard-
ware complexity perspectives and their combinations are listed to stimulate further advancements in
the research on local privacy and security.

Keywords: physical unclonable functions (PUFs); private authentication; secret key generation;
information theoretic privacy; code constructions for security

1. Motivations

Fundamental advances in cryptography were made in secret during the 20th century.
One exception was Claude E. Shannon’s paper “Communication Theory of Secrecy Sys-
tems” [1]. Until 1967, the literature on security was not extensive, but a book [2] with a
historical review of cryptography changed this trend [3]. Since then, the amount of sensitive
data to be protected against attackers has increased significantly. Continuous improvements
in security are needed and every improvement creates new possibilities for attacks [4].

Recent hardware-intrinsic security systems, biometric secrecy systems, 5th generation
of cellular mobile communication networks (5G) and beyond, as well as the internet of
things (IoT) networks, have numerous noticeable characteristics that differentiate them
from existing mechanisms. These include large numbers of low-complexity terminals with
light or no infrastructure, stringent constraints on latency, and primary applications of
inference, data gathering, and control. Such characteristics make it difficult to achieve
a sufficient level of secrecy and privacy. Traditional cryptographic protocols, requiring
certificate management or key distribution, might not be able to handle various applications
supported by such technologies and might not be able to assure the privacy of personal
information in the data collected. Similarly, low complexity terminals might not have the
necessary processing power to handle such protocols, or latency constraints might not
permit the processing time required for cryptographic operations. Similarly, traditional
methods that store a secret key in a secure nonvolatile memory (NVM) can be illustrated
to be not secure because of possible invasive attacks to the hardware. Thus, secrecy and
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privacy for information systems are issues that need to be rethought in the context of recent
networks, digital circuits, and database storage.

Information-theoretic security is an emerging approach to provide secrecy and privacy,
for example, for wireless communication systems and networks by exploiting the unique
characteristics of the wireless communication channel. Information-theoretic security meth-
ods such as physical layer security (PLS) use signal processing, advanced coding, and
communication techniques to secure wireless communications at the physical layer. There
are two key advantages of PLS. Firstly, it enables the use of resources available at the
physical layer such as multiple measurements, channel training mechanisms, power, and
rate control, which cannot be utilized by the upper layers of the protocol stack. Secondly,
it is based on an information-theoretic foundation for secrecy and privacy that does not
make assumptions on the computational capabilities of adversaries, unlike cryptographic
primitives. By considering the security and privacy requirements of recent digital systems
and the potential benefits from information-theoretic security and privacy methods, it can
be seen that information-theoretic methods can complement or even replace conventional
cryptographic protocols for wireless networks, databases, and user authentication and
identification. Since information-theoretic methods do not generally require pre-shared se-
cret keys, they might considerably simplify the key management in complicated networks.
Thus, these methods might be able to fulfill the stringent hardware area constrains of
digital devices and delay constraints in 5G/6G applications, or to avoid unnecessary com-
putations, increasing the battery life of low power devices. Information-theoretic methods
offer “built-in” secrecy and privacy, generally independent of the network infrastructure,
providing better scalability with respect to an increase in the network or data size.

A promising local solution to information-theoretic security and privacy problems
is a physical unclonable function (PUF) [5]. PUFs generate “fingerprints” for physical
devices by using their intrinsic and unclonable properties. For instance, consider ring
oscillators (ROs) with a logic circuit of multiple inverters serially connected with a feedback
of the output of the last inverter into the input of the first inverter, as depicted in Figure 1.
RO outputs are oscillation frequencies 1/x̂, where x̂ is the oscillation period, that are
unique and uncontrollable since the difference between different RO outputs is caused
by submicron random manufacturing variations that cannot be controlled. One can use
RO outputs as a source of randomness, called a PUF circuit, to extract secret keys that are
unique to the digital device that embodies these ROs. The complete method that puts out a
unique secret key by using RO outputs is called an RO PUF. Similarly, binary static random
access memory (SRAM) outputs are utilized as a source of randomness to implement
SRAM PUFs in almost all digital devices because most digital devices have embedded
SRAMs used for data storage. The logic circuit of an SRAM is depicted in Figure 2 and the
logically stable states of an SRAM cell are (Q, Q) = (1, 0) and (0, 1). During the power-up,
the state is undefined if the manufacturer did not fix it. The undefined power-up state
of an SRAM cell converges to one of the stable states due to random and uncontrollable
mismatch of the inverter parameters, fixed when the SRAM cell is manufactured [6]. There
is also random noise in the cell that affects the cell at every power-up. Since the physical
mismatch of the cross-coupled inverters is due to manufacturing variations, an SRAM cell
output during power-up is a PUF output that is a response with one challenge, where the
challenge is the address of the SRAM cell [6].

ENABLE

   x̂

1

Figure 1. Ring oscillator (RO) logic circuit.
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Figure 2. Static random access memory (SRAM) logic circuit.

PUFs resemble biometric features of human beings. In this review, we will list state-
of-the-art methods that bridge the gap between the practical secrecy systems that use PUFs
and the information-theoretic security limits by

• Modeling real PUF outputs to solve security problems with valid assumptions;
• Analyzing methods that make information-theoretic analysis tractable, for example,

by transforming PUF symbols so that the transform-domain outputs are almost inde-
pendent and identically distributed (i.i.d.), and that result in smaller hardware area
than benchmark designs in the literature;

• Stating the information-theoretic limits for realistic PUF output models and providing
optimal and practical (i.e., low-complexity and finite-length) code constructions that
achieve these limits;

• Illustrating best-in-class nested codes for realistic PUF output models.

In short, we start with real PUF outputs to obtain mathematically-tractable models of
their behavior and then list optimal code constructions for these models. Since we discuss
methods developed from the fundamentals of signal processing and information theory,
any further improvements in this topic are likely to follow the listed steps in this review.

Organization and Main Insights

In Section 2, we provide a definition of a PUF, list its existing and potential applica-
tions, and analyze the most promising PUF types. The PUF output models and design
challenges faced when manufacturing reliable, low-complexity, and secure PUFs are listed
in Section 3. The main security challenge in designing PUFs, i.e., output correlations,
is tackled in Section 4 mainly by using a transform coding method, which can provably
protect PUFs against various machine learning attacks. The reliability and secrecy perfor-
mance (e.g., the number of authenticated users) metrics used for PUF designs are defined
and jointly optimized in Section 5. PUF security and complexity performance evaluations
for the defined transform coding method are given in Section 6. Performance results for
error-correction codes used in combination with previous code constructions that are used
for key extraction with PUFs, are shown in Section 7 in order to illustrate that previous
key extraction methods are strictly suboptimal. We next define the information theoretic
metrics and the ultimate key-leakage-storage rate regions for the key agreement with PUFs
problem, as well as comparing available code constructions for the key agreement problem
in Section 8. Optimal code constructions for the key extraction with PUFs are implemented
in Section 9 by using nested polar codes, which are used in 5G networks in the control
channel, to illustrate significant gains from using optimal code constructions. In Section 10,
we provide a list of open PUF problems that might be interesting for information theorists,
coding theorists, and signal processing researchers in addition to the PUF community.

2. PUF Basics

We give a brief review of the literature on PUFs and discuss the problems with previous
PUF designs that can be tackled by using signal processing and coding-theoretic methods.
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A PUF is defined as an unclonable function embodied in a device. In the literature,
there are alternative expansions of the term PUF such as “physically unclonable function”,
suggesting that it is a function that is only physically-unclonable. Such PUFs may provide
a weaker security guarantee since they allow their functions to be digitally-cloned. For any
practical application of a PUF, we need the property of unclonability both physically and
digitally. We therefore consider a function as a PUF only when the function is a physical
function, i.e. it is in a device, and it is not possible to clone it physically and digitally.

Physical identifiers such as PUFs are heuristically defined to be complex challenge-
response mappings that depend on the random variations in a physical object. Secret
sequences are derived from this complex mapping, which can be used as a secret key. One
important feature of PUFs is that the secret sequence generated is not required to be stored
and it can be regenerated on demand. This property makes PUFs cheaper (no requirement
for a memory for secret storage) and safer (the secret sequence is regenerated only on
demand) alternatives to other secret generation and storage techniques such as storing the
secret in an NVM [5].

There is an immense number of PUF types, which makes it practically impossible to
give a single definition of PUFs that covers all types. We provide the following definition
of PUFs that includes all PUF types of interest for this review.

Definition 1 ([5]). We define a PUF as a challenge-response mapping embodied by a device such
that it is fast and easy for the device to put out the PUF response and hard for an attacker, who does
not have access to the PUF circuits, to determine the PUF output to a randomly chosen input, given
that a set of challenge-response (or input-output) pairs is accessible to him.

The terms used in Definition 1, i.e., fast, easy, and hard, are relative terms that should
be quantified for each PUF application separately. There are physical functions, called
physical one-way functions (POWFs), in the literature that are closely related to PUFs. Such
functions are obtained by applying the cryptographic method of “one-way functions”,
which refers to easy to evaluate and (on average) difficult to invert functions [7], to physical
systems. As the first example of POWFs, the pattern of the speckle obtained from waves
that propagate through a disordered medium is a one-way function of both the physical
randomness in the medium and the angle of the beam used to generate the optical waves [8].

Similar to POWFs, biometric identifiers such as the iris, retina, and fingerprints
are closely related to PUFs. Most of the assumptions made for biometric identifiers are
satisfied also by PUFs, so we can apply almost all of the results in the literature for
biometric identifiers to PUFs. However, it is common practice to assume that PUFs can
resist invasive (physical) attacks, which are considered to be the most powerful attacks
used to obtain information about a secret in a system, unlike biometric identifiers that are
constantly available for attacks. The reason for this assumption is that invasive attacks
permanently destroy the fragile PUF outputs [5]. This assumption will be the basis for the
PUF system models used throughout this review. We; therefore, assume that the attacker
does not observe a sequence that is correlated with the PUF outputs, unlike biometric
identifiers, since physical attacks applied to obtain such a sequence permanently change
the PUF outputs.

2.1. Applications of PUFs

A PUF can be seen as a source of random sequences hidden from an attacker who does
not have access to the PUF outputs. Therefore, any application that takes a secret sequence
as input can theoretically use PUFs. We list some scenarios where PUFs fit well practically:

• Security of information in wireless networks with an eavesdropper, i.e., a passive
attacker, is a PLS problem. Consider Wyner’s wiretap channel model introduced
in [9]. This model is the most common PLS model, which is a channel coding problem
unlike the secret key agreement problem we consider below that is a source coding
problem. A randomized encoder helps the transmitter in keeping the message secret
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by confusing the eavesdropper. Therefore, at the WTC transmitter, PUFs can be used
as the local randomness source when a message should be sent securely through the
wiretap channel.

• Consider a 5G/6G mobile device that uses a set of SRAM outputs, which are available
in mobile devices, as PUF circuits to extract secret keys so that the messages to be
sent are encrypted with these secret keys before sending the data over the wireless
channel. Thus, the receiver (e.g., a base station) that previously obtained the secret
keys (sent by mobile devices, e.g., via public key cryptography) can decrypt the
data, while an eavesdropper who only overhears the data broadcast over the wireless
channel cannot easily learn the message sent.

• The controller area network (CAN) bus standard used in modern vehicles is illustrated
in [10] to be susceptible to denial-of-service attacks, which shows that safety-critical
inputs of the internal vehicle network such as brakes and throttle can be controlled by
an attacker. One countermeasure is to encrypt the transmitted CAN frames by using
block ciphers with secret keys generated from PUF outputs used as inputs.

• IoT devices such as wearable or e-health devices may carry sensitive data and use a
PUF to store secret keys in such a way that only a device to which the secret keys are
accessible can command the IoT devices. One common example of such applications
is when PUFs are used to authenticate wireless body sensor network devices [11].

• Cloud storage requires security to protect users’ sensitive data. However, securing the
cloud is expensive and the users do not necessarily trust the cloud service providers.
A PUF in a universal serial bus (USB) token, i.e., Saturnus, has been trademarked
to encrypt user data before uploading the data to the cloud, decrypted locally by
reconstructing the same secret from the same PUF.

• System developers want to mutually authenticate a field programmable gate array
(FPGA) chip and the intellectual property (IP) components in the chip, and IP devel-
opers want to protect the IP. In [12], a protocol is described to achieve these goals with
a small hardware area that uses one symmetric cipher and one PUF.

Other applications of PUFs include providing non-repudiation (i.e., undeniable trans-
mission or reception of data), proof of execution on a specific processor, and remote inte-
grated circuit (IC) enabling. Every application of PUFs has different assumptions about the
PUF properties, computational complexity, and the specific system models. Therefore, there
are different constraints and system parameters for each application. We focus mainly on the
application where a secret key is generated from a PUF for user, or device, authentication
with privacy and secrecy guarantees, and low complexity.

2.2. Main PUF Types

We review four PUF types, i.e., silicon, arbiter, RO, and SRAM PUFs. We consider
mainly the last two PUF types for algorithm and code designs due to their common use
in practice and because signal processing techniques can tackle the problems arising in
designing these PUFs. For a review of other PUF types that are mostly considered in the
hardware design and computer science literatures, and various classifications of PUFs, see,
for example, [4,13,14]. The four PUF types considered below can be shown to satisfy the
assumption that invasive attacks permanently change PUF outputs, since digital circuit
outputs used as the source of randomness in these PUF types change permanently under
invasive attacks due to their dependence on nano-scale alterations in the hardware.

2.3. Silicon and Arbiter PUFs

Common complementary metal-oxide-semiconductor (CMOS) manufacturing pro-
cesses are used to build silicon PUFs, where the response of the PUF depends on the circuit
delays, which vary across integrated circuits (ICs) [5]. Due to high sensitivity of the circuit
delays to environmental changes (e.g., ambient temperature and power supply voltage),
arbiter PUFs are proposed in [15], for which an arbiter (i.e., a simple transparent data latch)
is added to the silicon PUFs so that the delay comparison result is a single bit. The differ-
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ence of the path delays is mapped to, for example, the bit 0 if the first path is faster, and
the bit 1 otherwise. The difference between the delays can be small, causing meta-stable
outputs. Since the output of the mapper is generally pre-assigned to the bit 0, the signals
that are incoming are required to satisfy a setup time (tsetup), required by the latch to
change the output to the bit 1, resulting in a bias in the arbiter PUF outputs. Symmetrically
implementable latches (e.g., set-reset latches) should be used to overcome this problem,
which is difficult because FPGA routing does not allow the user to enforce symmetry in the
hardware implementation. We discuss below that PUFs without symmetry requirements,
for example, RO PUFs, provide better results.

2.4. RO PUFs

The RO logic circuit is depicted in Figure 1, where an odd number of inverters are
connected serially with feedback. The first logic gate in Figure 1 is a NAND gate, giving the
same logic output as an inverter gate when the ENABLE signal is 1 (ON), to enable/disable
the RO circuit. The manufacturing-dependent and uncontrollable component in an RO
is the total propagation delay of an input signal to flow through the RO, determining the

oscillation frequency
1
x̂

of an RO that is used as the source of randomness. A self-sustained

oscillation is possible when the ring that oscillates at the oscillation frequency
1
x̂

of the RO
provides a phase shift of 2π with a voltage gain of 1.

Consider an RO with m ≥ 3 inverters. Each inverter should provide a phase shift of π
m

with an additional phase shift of π due to the feedback. Therefore, the signal should flow
through the RO twice to provide the necessary phase shift [16]. Suppose a propagation

delay of τd for each inverter, so the oscillation frequency of an RO is
1
x̂
=

1
2mτd

. We remark

that since RO outputs are generally measured by using 32-bit counters, it is realistic to

assume that a measured RO output
1
x̂

is a realization of a continuous distribution that can
be modeled by using the histogram of a family of RO outputs with the same circuit design,
as assumed below.

The propagation delay τd is affected by nonlinearities in the digital circuit. Further-
more, there are deterministic and additional random noise sources [16]. Such effects should
be eliminated to have a reliable RO output. Rather than improving the standard RO designs,
which would impose the condition that manufacturers should change their RO designs, the
first proposal to fix the reliability problem was to make hard bit decisions by comparing
RO pairs [17], as illustrated in Figure 3.
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Figure 3. The first and most common RO physical unclonable function (PUF) design [17].

In Figure 3, the multiplexers are challenged by a bit sequence of length at most
dlog2 Ne so that an RO pair out of N ROs is selected. The counters count the number of
times a rising edge is observed for each RO during a fixed time. A logic bit decision is
made by comparing the counter values, which can be bijectively mapped to the oscillation
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frequencies. For instance, when the upper RO has a greater counter value, then the bit 0 is
generated; otherwise, the bit 1. Given that ROs are identically laid out in the hardware,
the differences in the oscillation frequencies are determined mainly by uncontrollable
manufacturing variations. Furthermore, it is not necessary to have a symmetric layout
when hard-macro hardware designs are used for different ROs, unlike arbiter PUFs.

The key extraction method illustrated in Figure 3 gives an output of (N
2 ) bits, which

are correlated due to overlapping RO comparisons. This causes a security threat and makes
the RO PUF vulnerable to various attacks, including machine learning attacks. Thus, non-
overlapping pairs of ROs are used in [17] to extract each bit. However, there are systematic
variations in the neighboring ROs due to the surrounding logic, which also should be
eliminated to extract sequences with full entropy. Furthermore, ambient temperature and
supply voltage variations are the most important effects that reduce the reliability of RO
PUF outputs. A scheme called 1-out-of-k masking is proposed as a countermeasure to these
effects, which compares the RO pairs that have the maximum difference between their
oscillation frequencies for a wide range of temperatures and voltages to extract bits [17].
The bits extracted by such a comparison are more reliable than the bits extracted by using
previous methods. The main disadvantages of this scheme are that it is inefficient due to
unused RO pairs, and only a single bit is extracted from the (semi-) continuous RO outputs.
We review transform-coding based RO PUF methods below that significantly improve on
these methods without changing the standard RO hardware designs.

2.5. SRAM PUFs

There are multiple memory-based PUFs such as SRAM, Flip-flop, DRAM, and Butter-
fly PUFs. Their common feature is to possess a small number of challenge-response pairs
with respect to their sizes. As the most promising memory-based PUF type that is already
used in the industry, we consider SRAM PUFs that use the uncontrollable settling state of
bi-stable circuits [18]. In the standard SRAM design, there are four transistors used to form
the logic of two cross-coupled inverters, as depicted in Figure 2, and two other transistors
to access the inverters. The power-up state, i.e., (Q, Q) = (1, 0) or (0, 1), of an SRAM cell
provides one secret bit. Concatenating many such bits allows to generate a secret key from
SRAM PUFs on demand. We provide an open problem about SRAM PUFs in Section 10.

3. Correlated, Biased, and Noisy PUF Outputs

PUF circuit outputs are biased (nonuniform), correlated (dependent), and noisy
(erroneous). We review a transform-coding algorithm that extracts an almost i.i.d. uniform
bit sequence from each PUF, so a helper-data generation algorithm can correct the bit errors
in the sequence generated from noisy PUF outputs. Using this transform-coding algorithm,
we also obtain memoryless PUF measurement-channel models, so standard information-
theoretic tools, which cannot be easily applied to correlated sequences, can be used.

Remark 1. The bias in the PUF circuit outputs is considered in the PUF literature to be a big
threat against the security of the key generated from PUFs since the bias allows to apply, for example,
machine learning attacks. However, it is illustrated in [19] (Figure 6) that the output bias does
not change the information-theoretic rate regions significantly, illustrating that there exist code
constructions that do not require PUF outputs to be uniformly distributed.

We consider two scenarios, where a secret key is either generated from PUF outputs
(i.e., generated secret [GS] model) or they are bound to PUF outputs (chosen secret [CS]
model). An example of GS methods is code-offset fuzzy extractors (COFE) [20], and
an example of the CS methods is the fuzzy-commitment scheme (FCS) [21]. We first
analyze a method that significantly improves privacy, reliability, hardware cost and secrecy
performance, by transforming the PUF outputs into a frequency domain, which are later
used in the FCS. We remark that the information-theoretic analysis of the CS model follows
directly from the analysis of the GS model [22], so one can use either model for comparisons.
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PUF output correlations might cause information leakage about the PUF outputs
(i.e., privacy leakage) and about the secret key (i.e., secrecy leakage) [22,23]. Furthermore,
channel codes are required to satisfy the constraint on the reliability due to output noise.
The transform coding method proposed in [24] adjusts the PUF output noise to satisfy the
reliability constraint in addition to reducing the PUF output correlations.

3.1. PUF Output Model

Consider a (semi-)continuous output physical function such as an RO output as a
source with real valued outputs x̂. Since in a two-dimensional (2D) array the maximum
distance between RO hardware logic circuits is less than in a one-dimensional array, decreas-
ing the variations in the RO outputs caused by surrounding hardware logic circuits [25],
we consider a 2D RO array of size l = r×c that can be represented as a vector random
variable X̂l . Each device embodies a single 2D RO array that has the same circuit design
and we have X̂l ∼ fX̂l , where fX̂l is a probability density function. Mutually independent
and additive Gaussian noise denoted as Ẑl disturbs the RO outputs, i.e., we have noisy RO
outputs Ŷl = X̂l+Ẑl . Since X̂l and Ŷl are dependent, using these outputs a secret key can
be agreed [26,27].

Remark 2. PUF outputs are noisy, as discussed above in this section. However, the first PUF
outputs are used by, for example, a manufacturer to generate or embed a secret key, which is called
the enrollment procedure. Since a manufacturer can measure multiple noisy outputs of the same
RO to estimate the noiseless RO output, we can consider that the PUF outputs measured during
enrollment are noiseless. However, during the reconstruction step, for example, an IoT device
observes a noisy RO output, which can be the case because the IoT device cannot measure the
RO outputs multiple times due to delay and complexity constraints. Therefore, we consider a
key-agreement model where the first measurement sequence (during enrollment) is noiseless and the
second measurement sequence (during reconstruction) is noisy; see also Section 8. Extensions to
key agreement models with two noisy sequences, where the noise components can be correlated, are
discussed in [23,28,29].

We extract i.i.d. symbols from X̂l and Ŷl such that information theoretic tools used
in [30] for the FCS can be applied. An algorithm is proposed in [24] to obtain almost
i.i.d. uniformly-distributed and binary vectors Xn and Yn from X̂l and Ŷl , respectively.
For such Xn and Yn, we can define a binary error vector as En = Xn⊕Yn, where ⊕ is
the modulo-2 sum. We then obtain the random sequence En ∼ Bernoullin(p), so the
channel PY|X ∼ BSC(p) is a binary symmetric channel (BSC) with crossover probability p.
We discuss a transform-coding method below, which further provides reliability guarantees
for each bit generated.

The FCS can reconstruct a secret key from dependent random variables with zero
secrecy leakage [21]. For the FCS, depicted in Figure 4, an encoder Enc(·) maps a secret
key S ∈ S , which is uniformly distributed in the set {1, 2, . . . , |S|}, into a codeword Cn

with binary symbols that are later added to the PUF-output sequence Xn in modulo-2
during enrollment. The output is called helper data W, sent to a database via a noiseless,
public and authenticated communication link. The sum of W and Yn in modulo-2 is
Rn = W ⊕Yn = Cn⊕ En, mapped to a secret key estimate Ŝ during reconstruction by the
decoder Dec(·).

We next give information-theoretic rate regions for the FCS; see [31] for information-
theoretic notation and basics.
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Cn = Enc(S)

PY|X

Ŝ = Dec(Rn)

W

Xn Yn

S

Enrollment Reconstruction

Ŝ

RnCn

Figure 4. The fuzzy commitment scheme (FCS).

Definition 2. The FCS can achieve a secret-key vs. privacy-leakage rate pair (Rs , R`) with zero
secrecy leakage (i.e., perfect secrecy) if, given any δ> 0, there is some n≥ 1, and an encoder and

decoder pair for which we have Rs =
log |S|

n
and

Pr[Ŝ 6= S] = PB ≤ δ (reliability) (1)

H(S) ≥ n(Rs − δ) (key uniformity) (2)

I(S; W)=0 (perfect secrecy) (3)

I(Xn; W) ≤ n(R` + δ) (privacy) (4)

where (3) suggests that S and W are independent and (4) suggests that the rate of dependency
between Xn and W is bounded. The achievable secret-key vs. privacy-leakage rate, or key-leakage,
regionRFCS for the FCS is the union of all achievable pairs.

Theorem 1 ([30]). The key-leakage region RFCS for the FCS with perfect secrecy, uniformly-
distributed X and Y, and a channel PY|X ∼ BSC(p) is

RFCS = {(Rs, R`) : 0 ≤ Rs ≤ 1− Hb(p), R` ≥ 1− Rs} (5)

where Hb(p) = −p log p− (1− p) log(1− p) is defined as the binary entropy function.

The regionR of all achievable (secret-key, privacy-leakage) rate pairs for the CS model
with a negligible secrecy-leakage rate is [22]

R=
⋃

PU|X

{
(Rs, R`): 0 ≤ Rs ≤ I(Y; U), R` ≥ I(X; U)− I(Y; U)

}
(6)

such that U − X−Y forms a Markov chain and it suffices to have |U |≤ |X |+ 1. The aux-
iliary random variable U represents a distorted version of X through a channel PU|X.
The FCS is optimal only at the point (R∗s , R∗` )=(1−Hb(p), Hb(p)) [30], corresponding to
the maximum secret-key rate.

4. Transformation Steps

Transform coding methods decrease RO output correlations for ROs that are in the
same 2D array by using, for example, a linear transformation. We discuss a transform-
coding algorithm proposed in [32] as an extension of [24] to provide reliability guarantees
to each generated bit. Joint optimization of the error-correction code and quantizer in
order to maximize the reliability and secrecy are the main steps. The output of these
post-processing steps is a bit sequence Xn (or its noisy version Yn) utilized in the FCS.
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It suffices to discuss only the enrollment steps, depicted in Figure 5, since the same steps
are used also for reconstruction.

X̂l are correlated RO outputs, where the cause of correlations is, for example, the sur-
rounding logic in the hardware. A transform Tr×c(·) with size r×c transforms RO outputs
to decrease output correlations. We model each output T in the transform domain, i.e.,
transform coefficient, calculated by transforming the RO outputs given in the dataset [33] by
using the Bayesian information criterion (BIC) [34] and the corrected Akaike’s information
criterion (AICc) [35], suggesting a Gaussian distribution as a good fit for the discrete Haar
transform (DHT), discrete Walsh–Hadamard transform (DWHT), DCT, and Karhunen–
Loève transform (KLT).

Transform
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^ l
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Figure 5. Transformation steps [24].

In Figure 5, the histogram equalization changes the probability density of the i-th
coefficient Ti into a standard normal distribution so that quantizers are the same for all
transform coefficients, decreasing the storage. Obtained coefficients T̂i are independent
when the transform coefficients Ti are jointly Gaussian and the transform Tr×c(·) decor-
relates the RO outputs perfectly. For such a case, scalar quantizers do not introduce any
performance loss. Bit extraction methods and scalar quantizers are given below for the FCS
with the independence assumption, which can be combined with a correlation-thresholding
approach in practice.

5. Joint Quantizer and Error-Correction Code Design

The steps in Figure 5 are applied to obtain a uniform binary sequence Xn. We utilize
a quantizer ∆(·) that assigns quantization-interval values of k = 1, 2, · · · , 2Ki , where Ki
represents the number of bits obtained from the i-th coefficient. We have

∆(t̂i) = k if bk−1< t̂i≤bk (7)

where we have bk = Φ−1
(

k
2Ki

)
, and Φ−1(·) is the standard Gaussian distribution’s

quantile function. A length-Ki bit sequence represents the output k. Since the noise
has zero mean, we use a Gray mapping to determine the sequences assigned to each k,
so neighboring sequences differ only in one bit.

Quantizers with Given Maximum Number of Errors

We discuss a conservative approach that suppose either bits assigned to a quantized
transform coefficient all flip or they are all correct. Let the correctness probability Pc of a
coefficient be the probability that all bits assigned to a transform coefficient are correct,
used to choose the number of bits extracted from a coefficient in such a way that one can
design a channel encoder with a bounded minimum distance decoder (BMDD) to satisfy
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the reliability constraint PB ≤ 10−9, a common value for the block-error probability of
PUFs that use CMOS circuits [17].

Let Q(·) be the Q-function, fT̂ the probability density of the standard Gaussian distri-
bution, and σ2

n̂ the noise variance. The correctness probability can be calculated as

Pc(K)=
2K−1

∑
k=0

bk+1∫
bk

[
Q
( bk− t̂

σn̂

)
−Q

( bk+1− t̂
σn̂

)]
fT̂(t̂)dt̂ (8)

where K is the length of the bit sequence assigned to a quantizer with quantization bound-
aries bk from (7) for an equalized Gaussian transform coefficient T̂. In (8), we calculate the
probability that the additive noise will not change the quantization interval assigned to the
transform coefficient, i.e., all bits associated with the transform coefficient stay the same
after adding noise.

Assume that all errors in up to Cmax coefficients can be corrected by a channel decoder,
that the correctness probability Pc,i(K) of the i-th coefficient T̂i is greater than or equal to
Pc(Cmax), and that errors occur independently. We first find the minimum correctness
probability that satisfies PB≤10−9, denoted as Pc(Cmax), by solving

l

∑
c=Cmax+1

(
l
c

)
(1−Pc(Cmax))

cPc(Cmax)
l−c≤10−9 (9)

which allows to find the maximum bit-sequence length Ki for the i-th transform coefficient
such that Pc,i(K) ≥ Pc(Cmax). The first transform coefficient, i.e., DC coefficient, T̂1 can
in general be estimated by an attacker, which is the first reason why it is not used for
key extraction. As the second reason, temperature and voltage changes affect RO outputs
highly linearly, which affects the DC coefficient the most [36]. Thus, we fix K1=0, so the
total number of extracted bits can be calculated as

n(Cmax)=
l

∑
i=2

Ki. (10)

We first sort Ki values in descending order such that K′i≥K′i+1 for all i=1, 2, . . . , l− 2. Thus,
up to

e(Cmax) =
Cmax

∑
i=1

K′i (11)

bit errors must be corrected for the worst case scenario. Using a BMDD, a block code with
minimum distance dmin≥2e(Cmax)+1 can satisfy this requirement [37].

The advanced encryption standard (AES) requires a seed of, e.g., a secret key with
length 128 bits. If the FCS is applied to PUFs to extract such a secret key for the AES, the block
code designed should have a code length ≤ n(Cmax) bits, code dimension ≥128 bits, and
minimum distance dmin ≥ 2e(Cmax) + 1, given a Cmax. Such an optimization problem is
generally hard to solve but, using an exhaustive search over different Cmax values and
over different algebraic codes, one can show the existence of a channel code that satisfies
all constraints. Considering codes with low-complexity implementations is preferred for,
e.g., IoT applications. We remark that the correctness probability might be significantly
greater than Pc(Cmax), that the probability that less than Ki bits are actually in error when
the i-th coefficient is erroneous is high, and that the bit errors do not necessarily happen in
the coefficients from which the maximum-length bit sequences are obtained. Therefore,
we next illustrate that even though e(Cmax) errors cannot be corrected, the constraint
PB≤10−9 is satisfied.
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6. PUF Performance Evaluations

Represent RO outputs X̂l as a vector random variable with the autocovariance matrix
CX̂X̂ and consider 8×8 and 16×16 RO arrays, whose autocovariance matrix is estimated by
using the RO outputs in [33]. Using the dataset, we next compare the performance of the
DWHT, DCT, KLT, and DHT in terms of their security, decorrelation efficiency, uniqueness,
and complexity.

6.1. Decorrelation Efficiency

Consider the autocovariance matrix CTT of the transform coefficients so that the
decorrelation efficiency ηc, used as a decorrelation performance metric, of a fixed transform
is [38]

ηc = 1−

l
∑

a=1

l
∑

b=1
|CTT(a, b)|1{a 6=b}

l
∑

a=1

l
∑

b=1
|CX̂X̂(a, b)|1{a 6=b}

(12)

where 1{·} is the indicator function. The KLT has a decorrelation efficiency of 1,
i.e., optimal [38]. Average ηc values of remaining transforms are given in Table 1 and
they have good (i.e., high) and similar decorrelation efficiency performance. The DHT
and DCT have the highest efficiency for 8× 8 RO arrays; while, for 16× 16 RO arrays,
the DWHT is the best transform. Table 1 suggests that an array size increase improves ηc.

Table 1. Average decorrelation-efficiency results for RO outputs.

DWHT DCT DHT

ηc for 16× 16 0.9988 0.9987 0.9986

ηc for 8× 8 0.9977 0.9978 0.9978

6.2. Complexity of Transforms

Computational complexity of r × c = 8× 8 and 16× 16 RO arrays are considered,
which are powers of 2 so that there are fast algorithms to implement the DWHT, DCT, and
DHT. The KLT has a computational complexity of O(n3) for r= c=n; while, the DWHT
and DCT have O(n2 log2 n), and the DHT has O(n2) [39]. Efficient implementations of
the DWHT that do not require multiplications exist [32], which can be applied also to the
transforms proposed in [40]. The DWHT is therefore a good candidate for implementing
RO PUFs for IoT applications. For instance, a hardware implementation of 2D DWHT in an
evaluation board of Xilinx ZC706 with a Zynq-7000 XC7Z045 system-on-chip is illustrated
in [32] to require approximately 11% smaller hardware area and 64% less processing time
than the benchmark RO PUF hardware implementation in [41].

6.3. Security and Uniqueness

The extracted bit sequence is required to be uniformly distributed to use the rate region
RFCS in (5). The randomness measure called uniqueness is the average fractional Hamming
distance between bit sequences generated from different RO PUFs. All transforms have
similar uniqueness results with a mean Hamming distance of 0.500 and Hamming distance
variance is 7× 10−4. These results are close to optimal uniqueness results, expected because
of equipartitioned quantization intervals and high decorrelation efficiencies, that are better
than previous uniqueness results with mean values of 0.462 [17] and 0.473 [33].

The national institute of standards and technology (NIST) has randomness tests to
check if an extracted binary sequence can be differentiated from a uniformly-random
binary sequence [42]. The bit sequences with the DWHT pass most of the applicable tests,
considered to be an acceptable result [42]. The KLT performs the best because of its optimal
decorrelation performance.



Entropy 2021, 23, 16 13 of 23

7. Error-Correction Codes for PUFs with Transform Coding

Suppose that bit sequences extracted by using the transform-coding method are i.i.d.
and uniformly distributed, so perfect secrecy is satisfied. We assume that signal processing
steps mentioned above perform well, so we can conduct standard information- and coding-
theoretic analysis. We provide a list of codes designed for the transform-coding algorithm
by using the reliability metric considered above.

Select a channel code for the quantizer designed above for a fixed maximum number
of errors for a secret key of size 128 bits. The correctness probabilities for the coefficients
with the smallest and highest probabilities are depicted in Figure 6. Transform coefficients
that represent the low-frequency coefficients are the most reliable, which are at the upper-
left corner of the 2D transform-coefficient array with indices such as 1, 17, 2, 18, 3, 19. These
coefficients thus have the highest signal-to-noise ratios (SNRs). Conversely, the least
reliable coefficients are observed to be coefficients that represent intermediate frequencies,
indicating that one can define a metric called SNR-packing efficiency, defined similarly as
the energy-packing efficiency, and show that it follows a more complicated scan order than
the classic zig-zag scan order used for the energy-packing efficiency.

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

K

P c

Coeff. 1
Coeff. 2
Coeff. 17
Coeff. 31
Coeff. 128
Coeff. 150

Figure 6. Transform coefficients’ correctness probabilities.

Fix Cmax, defined above, and calculate Pc(Cmax) via (9), n(Cmax) via (10), and e(Cmax)
via (11). If Cmax≤10, Pc(Cmax) is large and Pc,i(K=1)≤Pc(Cmax) for all i = 2, . . . , l. In ad-
dition, if 11≤Cmax≤15, then n(Cmax) ≤ 128 bits. Furthermore, if Cmax increases, Pc(Cmax)
decreases, so the maximum of the number Kmax(Cmax)=K′1(Cmax) of bits extracted among
all used coefficients increases, increasing the hardware complexity. Thus, consider only the
cases where Cmax≤20. Table 2 shows Pc(Cmax), n(Cmax), and e(Cmax) for a range of Cmax
values used for channel-code selection.

Table 2. Code-design constraints.

Cmax 20 19 18 17 16

Pc 0.9844 0.9860 0.9875 0.9889 0.9902

Kmax 3 3 3 3 3

n 259 255 250 224 144

e 25 23 21 20 18

Consider Reed–Solomon (RS) and binary (extended) Bose–Chaudhuri–Hocquenghem
(BCH) codes, whose minimum-distance dmin is high. There is no BCH or RS code with
parameters satisfying any of the (n(Cmax), e(Cmax)) pairs in Table 2 such that its dimension
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is ≥128 bits. However, the analysis leading to Table 2 is conservative. Thus, we next
find a BCH code whose parameters are as close as possible to an (n(Cmax), e(Cmax)) pair
in Table 2. Consider the binary BCH code that can correct all error patterns with up to
eBCH = 18 errors with the block length of 255 and code dimension of 131 bits.

First, extract exactly one bit from each transform coefficient, i.e., Ki = 1 for all
i=2, 3, . . . , l, so n = l − 1 = 255 bits are extracted, resulting in mutually-independent
bit errors Ei. Thus, all error patterns with up to e = 20 bit errors should be corrected by
the chosen code rather than e(20)=25 bit errors. However, this value is still greater than
eBCH = 18.

The block error probability PB for the BCH code C(255, 131, 37) with a BMDD is equal
to the probability of encountering more than 18 errors, i.e., we have

PB =
255

∑
j=19

[
∑

A∈Fj

∏
i∈A

(1− Pc,i) • ∏
i∈Ac

Pc,i

]
(13)

where Pc,i is the correctness probability of the i-th coefficient T̂i as in (8) for i=2, 3, . . . , 256,
Ac denotes the complement of the set A, and Fj is the set of all size-j subsets of the set
{2, 3, . . . , 256}. Pc,i values are different and they represent probabilities of independent
events because we assume that the transform coefficients are independent. We apply the
discrete Fourier transform characteristic function method [43] to evaluate the block-error
probability with the result PB ≈ 1.26 × 10−11 < 10−9. The block-error probability
(i.e., reliability) constraint is therefore satisfied by the BCH code C(255, 131, 37), although
the conservative analysis suggested otherwise. This code achieves a (secret-key, privacy-
leakage) rate pair of (Rs, R`) = ( 131

255 , 1− 131
255 ) ≈ (0.514, 0.486) bits/source-bit, which is

significantly better than previous results. We next consider the region of all achievable
rate pairs for the CS model and the FCS for a BSC PY|X with crossover probability pb =

1− 1
l−1 ∑l

i=2 Pc,i(Ki = 1)≈0.0097, i.e., probability of being in error averaged over all used
coefficients with the above defined quantizer. The (secret-key, privacy-leakage) rate pair of
the BCH code, regions of all rate pairs achievable by the FCS and CS model, the maximum
secret-key rate point, and a finite-length bound [44] for the block length of n = 255 bits and
PB =10−9 are depicted in Figure 7 for comparisons.
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s
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Fuzzy Commitment
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(R∗l , R∗s )
Finite-length Bound

Figure 7. The operation point of the considered Bose–Chaudhuri–Hocquenghem (BCH) code
C(255, 131, 37), the maximum secret-key rate point (R∗` , R∗s ), regions of achievable rate pairs according
to (5) and (6), and a finite-length bound for BSC(0.0097), n = 255 bits, and PB = 10−9.

Denote the maximum secret-key rate as R∗s ≈ 0.922 bits/source-bit and the corre-
sponding minimum privacy-leakage rate as R∗` ≈ 0.079 bits/source-bit. The gap between
(R∗` , R∗s ) at which the FCS is optimal and the rate tuple achieved by the BCH code can be
explained by the short block length and small block-error probability. However, the finite-
length bound given in [44] (Theorem 52) suggests that the FCS can achieve the rate tuple
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(Rs, R`)= (0.691, 0.309) bits/source-bit, shown in Figure 7. Better channel code designs
and decoders (possibly with higher hardware implementation complexity) can improve the
performance, but they might not be feasible for IoT applications. Figure 7 shows that there
are other code constructions (that are not standard error-correcting codes) that can achieve
smaller privacy-leakage and storage rates for a fixed secret-key rate, illustrated below.

8. Code Constructions for PUFs

Consider the two-terminal key agreement problem, where the identifier outputs
during enrollment are noiseless. We mention two optimal linear code constructions from [45]
that are based on distributed lossy source coding (or Wyner–Ziv [WZ] coding) [46]. The ran-
dom linear code construction achieves the GS and CS models’ key-leakage-storage regions
and the nested polar code construction jointly designs vector quantization (during enroll-
ment) and error correction (during reconstruction) codes. Designed nested polar codes
improve on existing code designs in terms of privacy-leakage and storage rates, and one
code achieves a rate tuple that existing methods cannot achieve.

Several practical code constructions for key agreement with identifiers have been
proposed in the literature. For instance, the COFE and the FCS both require a standard error-
correction code to satisfy the constraints of, respectively, the key generation (GS model)
and key embedding (CS model) problems, as discussed above. Similarly, a polar code
construction is proposed for the GS model in [47]. These constructions are sub-optimal in
terms of storage and privacy-leakage rates.

A Golay code is used as a vector quantizer (VQ) in [22] in combination with distributed
lossless source codes (or Slepian–Wolf [SW] codes) [48] to increase the ratio of key vs.
storage rates (or key vs. leakage rates). Thus, we next consider VQ by using WZ coding
to decrease storage rates. The WZ-coding construction turns out to be optimal, which is
not coincidental. For instance, the bounds on the storage rate of the GS model and on the
WZ rate (storage rate) have the same mutual information terms optimized over the same
conditional probability distribution. This similarity suggests an equivalence that is closely
related to the concept of formula duality. In fact, the optimal random code construction,
encoding, and decoding operations are identical for both problems. One therefore can
call the GS model and WZ problem functionally equivalent. Such a strong connection
suggests that there might exist constructive methods that are optimal for both problems for
all channels, which is closely related to the operational duality concept.

Consider the GS model, where a secret key is generated from a physical or biomet-
ric source, depicted in Figure 8(a). The encoder Enc(·) observes during enrollment the
noiseless i.i.d. sequence Xn ∼ PX to generate public helper data W and a secret key S,
i.e., (S, W) =Enc(Xn). The decoder Dec(·) observes during reconstruction the helper data
W and a noisy measurement Yn of Xn through a memoryless channel PY|X to estimate
the secret key, i.e., Ŝ=Dec(Yn, W). Similarly, the CS model is shown in Figure 8(b), where
a secret key S independent of (Xn, Yn) is chosen and embedded into the helper data,
i.e., W = Enc(Xn, S). The alphabets X , Y , S , andW are finite sets, which can be achieved
if, for example, the transform-coding algorithm discussed above is applied.
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Figure 8. The (a) generated-secret (GS) and (b) chosen-secret (CS) models.

Definition 3. For GS and CS models, a key-leakage-storage tuple (Rs, R`, Rw) is achievable if,

given any δ > 0, there is an encoder, a decoder, and some n≥1 such that Rs =
log |S|

n
and

Pr[Ŝ 6= S] = PB ≤ δ (reliability) (14)

I(W; S) ≤ nδ (weak secrecy) (15)

I(Xn; W) ≤ n(R` + δ) (privacy) (16)

H(S) ≥ n(Rs − δ) (uni f ormity) (17)

log |W| ≤ n(Rw + δ) (storage) (18)

are satisfied. The key-leakage-storage regionsRgs for the GS model andRcs for the CS model are
the closures of the sets of achievable tuples for these models.

Theorem 2 ([22]). The key-leakage-storage regions Rgs and Rcs for the GS and CS models,
respectively, are

Rgs=
⋃

PU|X

{
(Rs, R`, Rw):

0 ≤ Rs ≤ I(Y; U),

R` ≥ I(X; U)− I(Y; U),

Rw ≥ I(X; U)− I(Y; U)
}

,

and

Rcs=
⋃

PU|X

{
(Rs, R`, Rw):

0 ≤ Rs ≤ I(Y; U),

R` ≥ I(X; U)− I(Y; U),

Rw ≥ I(X; U)
}

where U − X−Y form a Markov chain. Rgs andRcs are convex sets and |U |≤ |X |+ 1 suffices
for both rate regions.

Remark 3. Improvement of the weak secrecy to strong secrecy, where (15) is replaced with
I(W; S) ≤ δ, is possible by using multiple identifier output blocks as described in [49], e.g., by using
multiple PUFs in the same device.

Assume, as above, that Xn ∼ Bernoullin( 1
2 ) and the channel PY|X ∼ BSC(pA) for

pA ∈ [0, 0.5]. Define the star-operation as q ∗ pA = q(1− pA) + (1− q)pA. The key-leakage-
storage region of this GS model is

Rgs,bin=
⋃

q∈[0,0.5]

{
(Rs, R`, Rw):

0 ≤ Rs ≤ 1− Hb(q ∗ pA),

R` ≥ Hb(q ∗ pA)− Hb(q),

Rw ≥ Hb(q ∗ pA)− Hb(q)
}

. (19)
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Comparisons Between Code Constructions for PUFs

We consider three best code constructions proposed for the GS and CS models, which
are COFE and the polar code construction in [47] for the GS model, and FCS for the CS
model, in order to compare them with the WZ-coding constructions. The FCS and COFE
achieve only a single point on the key-leakage rate region boundary, i.e., R∗s = I(X; Y) and
R∗` = H(X|Y).

Adding a VQ step, one can improve these two methods. During enrollment rather
than Xn, its quantized version Xn

q can be used for this purpose, which can be asymptotically
represented as summing the original helper data and another independent random variable
Jn ∼ Bernoullin(q), i.e., W = Xn ⊕ Cn ⊕ Jn is the (new) helper data. Modified FCS and
COFE can achieve the key-leakage region when a union of all achieved rate tuples is taken
over all q ∈ [0, 0.5]. Nevertheless, the helper data of the modified FCS and COFE have
length n bits, i.e., the storage rate is 1 bit/source-bit, which is suboptimal.

The storage rate of 1 bit/source-bit is decreased by using the polar code construction
proposed in [47]. Nevertheless, this construction cannot achieve the key-leakage-storage
region. In addition, in [47] there is an assumption that a “private” key that is shared
between the encoder and decoder is available, which is not realistic because there is a
need for hardware protection against invasive attacks to have such a private key. If such a
hardware protection is feasible, there is no need to utilize an on-demand key reconstruction
and storage method like a PUF. The previous methods cannot, therefore, achieve the key-
leakage-storage region for a BSC, unlike the distributed lossy source coding constructions
proposed in [45]. To compare such WZ-coding constructions, we use the ratio of key vs.
storage rates as the metric, which determines the design procedures to control the storage
and privacy leakage.

9. Optimal Nested Polar Code Constructions

The first channel codes with asymptotic information-theoretic optimality and low
decoding complexity are polar codes [50], whose finite length performance is good when a
list decoder is utilized. Nesting two codes is simple with polar codes due to their simple
matrix representation; therefore, one can use them for distributed lossy source coding [51].
The channel polarization phenomenon, i.e., converting a channel into polarized binary
channels by using a polar transform, is the core of polar codes. The polar transform takes a
sequence Un with unfrozen and frozen bits as input and converts it into a codeword that
has also length n. The decoder then observes a noisy codeword in addition to the fixed
frozen bits of Un in order to estimate the bit sequence Un. A polar code with block length
n, and frozen bit sequence G|F | at indices F are denoted as C(n,F , G|F |). We next utilize
nested polar codes that are proposed for WZ coding in [51].

9.1. The GS Model Polar Code Construction

Consider two nested polar codes C(n,F , V) and C1(n,F1, V) such that F = F1 ∪ Fw
and V = [W, V], where W is of length m2 and V is of length m1. Suppose m1 and m2 satisfy

m1

n
= Hb(q)− δ (20)

m1 + m2

n
= Hb(q ∗ pA) + δ (21)

for a δ > 0 and some distortion q ∈ [0, 0.5]. Two polar codes C(n,F , V) and C1(n,F1, V)
are nested since the set of indices F1 refer to frozen channels with values V, which are
common to both polar codes, and the code C has further frozen channels with values W at
indices Fw.

Since the rate of C1 is greater than the capacity of the lossy source coding problem for
an average distortion q, it functions as a VQ with distortion q. Furthermore, since the rate
of C is less than the channel capacity of the BSC(q ∗ pA), it functions as an error-correcting
code. We want to calculate the values W during enrollment, stored as the public helper
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data, such that (V, W, Yn) can be used during reconstruction to estimate the key S with
length n−m1 −m2, which is depicted in Figure 9. We assign the all-zero vector to V, so to
not increase storage, which does not affect the average distortion E[q] between Xn

q and Xn

defined below; see [51] (Lemma 10) for a proof.

PX Xn BSC(pA)

Yn

Polar
Decoder C1

Un

Helper Data
and Key

Extraction

S

W

Polar
Decoder C

Ûn

Key
Extraction

Ŝ

V W VPolar
Transform

BSC(q ∗ pA)

Xn
q

Enrollment Reconstruction
Figure 9. Second WZ-coding construction for the GS model.

During enrollment, the PUF outputs Xn ∼ Bernoullin( 1
2 ) are observed by a polar

decoder of C1 and considered as noisy measurements of a sequence Xn
q measured through

a BSC(q), i.e., Xn is quantized into Xn
q by a polar decoder of C1. The polar decoder puts out

the sequence Un and the bit values W at its indices Fw are publicly stored as the helper
data. Furthermore, the bit values at indices j ∈ {1, 2, . . . , n} \ F are assigned as the secret
key S. We remark that the polar transform of Un is the sequence Xn

q that is the quantized
(or distorted) version of Xn. Consider the error sequence En

q = Xn⊕Xn
q , which also models

the distortion between Xn
q and Xn. The error sequence is shown in [51] (Lemma 11) to

resemble a sequence that is distributed according to Bernoullin(q) when n tends to ∞.
During reconstruction, a polar decoder of C then observes Yn, a noisy version of Xn

measured through a BSC(pA). The frozen bits V = [V, W] of C are available to the polar
decoder in order to estimate Un, from which the secret key estimate Ŝ can be obtained by
finding the bit values at indices j ∈ {1, 2, . . . , n} \ F .

Next, a design procedure to implement practical nested polar codes that satisfy these
properties is summarised.

Nested polar codes C ⊆ C1 must be constructed jointly such that the sets of indices
F and F1 result in codes that satisfy the security and reliability constraints simultane-
ously. Suppose the block length n, key length n−m1 −m2, target block-error probability
PB = Pr[S 6= Ŝ], and BSC crossover probability pA are given, which depends on the PUF
application considered. Then we have the following design procedure [45]:

• Design a polar code C with rate
n−m1−m2

n
, corresponding to fixing its indices F that

determine the frozen bits. This step is a conventional error-correcting code design task.
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• Find the maximum BSC crossover probability pc for which the code C achieves the
target block-error probability PB, which can be achieved by evaluating the perfor-
mance of C for a BSC over a crossover probability range. Using the inverse of the
star-operation pc = E[q] ∗ pA, the target distortion averaged over a large number of

realizations of Xn that should be achieved by C1 is E[q] =
pc − pA
1− 2pA

. This step can be

applied via Monte-Carlo simulations.
• Find an index set F1, representing the frozen set of C1, such that F1 ⊂ F and the

target distortion E[q] is achieved with a minimal amount of helper data. This step
can be applied by starting with F ′1 = F and then computing the resulting average
distortion E[q′] obtained from Monte-Carlo simulations. If E[q′] is greater than E[q],
we remove elements from F ′1 according to polarized bit channel reliabilities. This step
is repeated until the resulting average distortion E[q′] is less than the target (or desired)
distortion E[q].

An additional degree of freedom is provided by varying the distortion level in the
design procedure above, making the design procedure suitable for numerous applications.
Using this degree of freedom, PUFs with different BSC crossover probabilities pA can be
supported by using the same nested polar codes with different distortion levels. Similarly,
different PUF applications with different target block-error probabilities PB can also be
supported by using the same nested codes with different distortion levels.

9.2. Designed GS Model Nested Polar Codes

We design nested polar codes to generate a secret key S of length log |S|=n−m1−m2=
128 bits, used in the AES. Furthermore, the common target block-error probability for PUFs
used in an FPGA is PB = 10−6 and the common BSC PY|X crossover probability for SRAM
and RO PUFs is pA = 0.15 [6,36]. We consider these PUF applications and parameters to
design nested polar codes that improve on previously proposed codes.

Code 1: Suppose a block length of n = 1024 bits and a fixed list size of 8 for polar
successive cancellation list (SCL) decoders are used for nested codes. First, the code C
with rate 128/1024 is designed to determine pc, which is defined in the design procedure
steps above, obtained by using the SCL decoder. We obtain the crossover probability value
pc = 0.1819, corresponding to a target distortion of E[q] = 0.0456. This target distortion is
obtained with a minimal helper data W length of m2 = 650 bits.

Code 2: Suppose a block length of n = 2048 bits. Applying the design procedure steps
given above, we obtain for Code 2 the value pc = 0.2682, resulting in a target distortion of
E[q] = 0.1689. This target distortion is obtained with a minimal helper data W length of
m2 = 611 bits.

For these nested polar code designs, the error probability PB is considered as the
average error probability over a large number of input realizations, corresponding to
a large number of PUF circuits that have the same circuit design. This result can be
improved by satisfying the target error probability for each input realization, which can be
implemented by using the maximum distortion rather than E[q] in the design procedure
discussed above. A block-error probability that is ≤10−6 can be guaranteed for 99.99%
of all realizations of input Xn by including an additional 32 bits for the helper data W
for Code 1 and an additional 33 bits for Code 2. The numbers of additional bits included
are small because the distortion q has a small variance for the block lengths considered.
For code comparisons below, we depict the sizes of helper data needed to guarantee the
target block-error probability of PB = 10−6 for 99.99% of all PUF realizations.

9.3. Comparisons of Codes

The boundary points of Rgs,bin for pA = 0.15 are projected onto the storage-key
(Rw, Rs) plane and depicted in Figure 10. The point (R∗s , R∗w), defined in Section 3.1, is also
depicted. Furthermore, we use the random coding union bound from [44] (Theorem 16)
to obtain the rate pairs that can be achieved by using the FCS or COFE. These points are
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shown in Figure 10 in addition to the rate tuples achieved by the previous SW-coding based
polar code design from [47], and Codes 1 and 2 discussed above.Entropy 2020, 1, 0 20 of 24
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Figure 10. Storage-key rates for the GS model with pA = 0.15. The (R∗w, R∗s ) point is the best
possible point achieved by SW-coding constructions, which lies on the dashed line representing
Rw + Rs = H(X). The block error probability satisfies PB ≤ 10−6 and the key length is 128 bits for all
code points.

coding method in the binary case. The previous SW-coding based polar code construction improves the
rate tuples achieved by the COFE and FCS in terms of the ratio of key vs. storage rates. Code 1 achieves
the key-leakage-storage tuple of (0.125, 0.666, 0.666) bits/source-bit and Code 2 of (0.063, 0.315, 0.315)
bits/source-bit, which significantly improve on all previous code constructions without any private
key assumption. Thus, Codes 1 and 2 results also suggest that for these parameters increasing the
block length increases the Rs/Rw ratio, which is 0.188 for Code 1 and 0.199 for Code 2. Furthermore,
the privacy-leakage and storage rate tuple achieved by Code 2 cannot be achieved by using previous
constructions without applying the time sharing method, because Code 2 achieves the privacy-leakage
(and storage) rate of 0.315 bits/source-bit that is less than the minimal privacy-leakage (and storage)
rates R∗` = R∗w = Hb(pA) ≈ 0.610 bits/source-bit that can be achieved by using previous code
constructions.

To find an upper bound on the the ratio of key vs. storage rates for the maximum secret-key
rate point, we apply the sphere packing bound from [52, Eq. (5.8.19)] for the channel pA = 0.15 and
code parameters n = 1024, and PB = 10−6. The sphere packing bound shows that the rate of C, as
depicted in Figure 9, must satisfy RC ≤ 0.273 bits/source-bit. Suppose the key rate is fixed to its
maximum value Rs = RC and the storage rate is fixed to its minimum value Rw = 1− RC , so we
have the ratio of Rs/Rw ≤ 0.375. Similarly, for n = 2048 we obtain the ratio of Rs/Rw ≤ 0.437. The
two finite-length results that are valid for WZ-coding constructions with nested codes indicate that
ratio of key vs. storage rates achieved by Codes 1 and 2 can be further increased. Using different
nested polar codes that improve the minimum-distance properties, as in [53], or using nested algebraic
codes for which design methods are available in the literature, as in [54], one can reduce the gaps
to the finite-length bounds calculated for nested code constructions. We remark again that such
optimality-seeking approaches, for example, based on information-theoretic security, provide the right
insights into the best solutions for the digital era’s security and privacy problems.

Figure 10. Storage-key rates for the GS model with pA = 0.15. The (R∗w, R∗s ) point is the best
possible point achieved by SW-coding constructions, which lies on the dashed line representing
Rw + Rs = H(X). The block error probability satisfies PB ≤ 10−6 and the key length is 128 bits for
all code points.

The COFE and FCS result in a storage rate of 1 bit/source-bit, which is strictly subop-
timal. The previous SW-coding based polar code construction in [47] achieves a rate tuple
such that Rs + Rw = 1 bit/source-bit, as expected because it is an SW-coding construction
that corresponds to a syndrome coding method in the binary case. The previous SW-coding
based polar code construction improves the rate tuples achieved by the COFE and FCS in
terms of the ratio of key vs. storage rates. Code 1 achieves the key-leakage-storage tuple
of (0.125, 0.666, 0.666) bits/source-bit and Code 2 of (0.063, 0.315, 0.315) bits/source-bit,
which significantly improve on all previous code constructions without any private key
assumption. Thus, Codes 1 and 2 results also suggest that for these parameters increasing
the block length increases the Rs/Rw ratio, which is 0.188 for Code 1 and 0.199 for Code 2.
Furthermore, the privacy-leakage and storage rate tuple achieved by Code 2 cannot be
achieved by using previous constructions without applying the time sharing method,
because Code 2 achieves the privacy-leakage (and storage) rate of 0.315 bits/source-bit that
is less than the minimal privacy-leakage (and storage) rates R∗` = R∗w = Hb(pA) ≈ 0.610
bits/source-bit that can be achieved by using previous code constructions.

To find an upper bound on the the ratio of key vs. storage rates for the maximum
secret-key rate point, we apply the sphere packing bound from [52] (Equation (5.8.19)) for
the channel pA = 0.15 and code parameters n = 1024, and PB = 10−6. The sphere packing
bound shows that the rate of C, as depicted in Figure 9, must satisfy RC ≤ 0.273 bits/source-
bit. Suppose the key rate is fixed to its maximum value Rs = RC and the storage rate is
fixed to its minimum value Rw = 1− RC , so we have the ratio of Rs/Rw ≤ 0.375. Similarly,
for n = 2048 we obtain the ratio of Rs/Rw ≤ 0.437. The two finite-length results that are
valid for WZ-coding constructions with nested codes indicate that ratio of key vs. storage
rates achieved by Codes 1 and 2 can be further increased. Using different nested polar
codes that improve the minimum-distance properties, as in [53], or using nested algebraic
codes for which design methods are available in the literature, as in [54], one can reduce the
gaps to the finite-length bounds calculated for nested code constructions. We remark again
that such optimality-seeking approaches, for example, based on information-theoretic
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security, provide the right insights into the best solutions for the digital era’s security and
privacy problems.

10. Discussions and Open Problems

• We want to use low-complexity scalar quantizers after transformation without extra
secrecy leakage; however, the decorrelation efficiency metric does not fully represent
the dependency between transform coefficients. What is the right metric to use
for choosing the transform used in combination with scalar quantizers? Is mutual
information between transform coefficients an appropriate metric for this purpose?
The choice of the transform should also depend on a reliability metric such as SNR-
packing efficiency so that the transform, quantizers, and the error-correction codes
can be designed jointly. What is the right reliability metric for this purpose?

• It is shown in [36] that the ambient temperature and supply voltage affect the RO
outputs deterministically rather than adding extra random noise, which was assumed
in the RO PUF literature. What are the right output models for common PUF types,
i.e., what are the deterministic and random components, and how are they related?

• SRAM PUFs are already used in products. In the literature there is no extensive analy-
sis of the output correlations between different SRAMs in the same device possibly
because SRAM outputs are binary and it is difficult to model the correlation between
binary symbols. However, SRAM outputs are modeled in [6] as binary-quantized
sums of independent Gaussian random variables. Is it possible to determine or approx-
imate the correlations between the Gaussian random variables of different SRAMs?
If yes, this might be useful for an attacker to obtain information about the secret
sequence generated from the SRAM PUF output, which causes extra secrecy leakage.

• The transform-coding approach discussed above provides reliability guarantees for
RO arrays with random outputs, which considers an average over all ROs manu-
factured. The worst case scenario is when the transform coefficient value is on the
quantization boundary, for which the secret-key capacity is 0 bit. If one replaces
the average reliability metric used above by a lower bound on the reliability of each
RO, i.e., a worst-case scenario metric, how would this change the rate of the error-
correction code used? For a fixed code, what should be the optimal bound on the
reliability of each RO to maximize the yield, i.e., the percentage of ROs among all
manufactured ROs for which the worst-case reliability guarantee is satisfied?

• Are the WZ problem and the GS model operationally equivalent?
• Linear block-code constructions discussed above are for uniformly-distributed PUF

outputs. Can one construct other (random) linear block codes that are asymptotically
optimal for nonuniform PUF outputs? Is it necessary to use an extension of the COFE
for this purpose?

• Consider the nested polar code design procedure given above. Construction of a
code for n ≤ 512 is not possible with the procedure discussed above because q ∗ pA
increases with increasing q for q ∈ [0, 0.5]. Is it possible to construct a nested polar
code for n = 512 by improving the decoder and the code design procedure?

Author Contributions: O.G. conceived the study, designed, and conducted the experiments; O.G.
and R.F.S. contributed to the writing of the paper and analyzed the data, and a combined effort
of O.G. and R.F.S. improved the algorithms discussed. All authors have read and agreed to the
published version of the manuscript.

Funding: O.G. and R.F.S. are supported by the German Federal Ministry of Education and Research
(BMBF) within the national initiative for “Post Shannon Communication (NewCom)” under the
Grant 16KIS1004. We acknowledge support by the German Research Foundation (DFG) and the
Open Access Publication (OAP) Fund of TU Berlin.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Entropy 2021, 23, 16 22 of 23

Data Availability Statement: Not applicable.

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses,
or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.
The authors declare no conflict of interest.

References
1. Shannon, C.E. Communication theory of secrecy systems. Bell Syst. Tech. J. 1949, 28, 656–715. [CrossRef]
2. Kahn, D. The Codebreakers: The Story of Secret Writing; Macmillan Publishers: New York, NY, USA, 1967.
3. Schneier, B. Applied Cryptography: Protocols, Algorithms, and Source Code in C, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1996.
4. Böhm, C.; Hofer, M. Physical Unclonable Functions in Theory and Practice; Springer: New York, NY, USA, 2012.
5. Gassend, B.; Clarke, D.; Dijk, M.V.; Devadas, S. Silicon physical random functions. In Proceedings of the 9th ACM Conference on

Computer and Communications Security, Washington, DC, USA, 18–22 November 2002; pp. 148–160.
6. Maes, R.; Tuyls, P.; Verbauwhede, I. A Soft Decision Helper Data Algorithm for SRAM PUFs. In Proceedings of the 2009 IEEE

International Symposium on Information Theory, Seoul, Korea, 28 June–3 July 2009; pp. 2101–2105.
7. Goldreich, O. Modern Cryptography, Probabilistic Proofs and Pseudorandomness; Springer: Berlin Heidelberg, Germany, 1998;

Volume 17.
8. Pappu, R. Physical One-Way Functions. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2001.
9. Wyner, A.D. The wire-tap channel. Bell Syst. Tech. J. 1975, 54, 1355–1387. [CrossRef]
10. Palanca, A.; Evenchick, E.; Maggi, F.; Zanero, S. A stealth, selective, link-layer denial-of-service attack against automotive

networks. In Detection of Intrusions and Malware, and Vulnerability Assessment; Springer: Cham, Switzerland, 2017; pp. 185–206.
11. Lee, Y.S.; Lee, H.J.; Alasaarela, E. Mutual authentication in wireless body sensor networks (WBSN) based on Physical Unclonable

Function (PUF). In Proceedings of the 2013 9th International Wireless Communications and Mobile Computing Conference
(IWCMC), Sardinia, Italy, 1–5 July 2013; pp. 1314–1318.

12. Simpson, E.; Schaumont, P. Offline hardware/software authentication for reconfigurable platforms. In International Workshop on
Cryptographic Hardware and Embedded Systems; Springer: Berlin/Heidelberg, Germany, 2006; pp. 311–323.

13. Herder, C.; Yu, M.; Koushanfar, F.; Devadas, S. Physical Unclonable Functions and Applications: A Tutorial. Proc. IEEE 2014,
102, 1126–1141. [CrossRef]

14. Huth, C.; Guillaume, R.; Strohm, T.; Duplys, P.; Samuel, I.A.; Güneysu, T. Information reconciliation schemes in physical-layer
security: A survey. Comput. Netw. 2016, 109, 84–104. [CrossRef]

15. Lim, D.; Lee, J.W.; Gassend, B.; Suh, G.E.; Dijk, M.V.; Devadas, S. Extracting Secret Keys From Integrated Circuits. IEEE Trans.
Very Large Scale Integr. Syst. 2005, 13, 1200–1205.

16. Mandal, M.K.; Sarkar, B.C. Ring oscillators: Characteristics and Applications. Indian J. Pure Appl. Phys. 2010, 48, 136–145.
17. Suh, G.E.; Devadas, S. Physical Unclonable Functions for Device Authentication and Secret Key Generation. In Proceedings of

the 2007 44th ACM/IEEE Design Automation Conference, San Diego, CA, USA, 4–8 June 2007; pp. 9–14.
18. Guajardo, J.; Kumar, S.S.; Schrijen, G.J.; Tuyls, P. FPGA Intrinsic PUFs and Their Use for IP Protection. In International Workshop on

Cryptographic Hardware and Embedded Systems; Springer: Berlin/Heidelberg, Germany, 2007; pp. 63–80.
19. Günlü, O.; Kramer, G.; Skorski, M. Privacy and secrecy with multiple measurements of physical and biometric identifiers. In Pro-

ceedings of the 2015 IEEE Conference on Communications and Network Security (CNS), Florence, Italy, 28–30 September 2015;
pp. 89–94.

20. Dodis, Y.; Ostrovsky, R.; Reyzin, L.; Smith, A. Fuzzy extractors: How to generate strong keys from biometrics and other noisy
data. SIAM J. Comput. 2008, 38, 97–139. [CrossRef]

21. Juels, A.; Wattenberg, M. A fuzzy commitment scheme. In Proceedings of the 6th ACM Conference on Computer and Communi-
cations Security, Singapore, 1–4 November 1999; pp. 28–36.

22. Ignatenko, T.; Willems, F.M.J. Biometric systems: Privacy and secrecy aspects. IEEE Trans. Inf. Forensics Secur. 2009, 4, 956–973.
[CrossRef]

23. Günlü, O.; Kramer, G. Privacy, Secrecy, and Storage With Multiple Noisy Measurements of Identifiers. IEEE Trans. Inf. Forensics
Secur. 2018, 13, 2872–2883. [CrossRef]
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36. Günlü, O.; İşcan, O.; Kramer, G. Reliable secret key generation from physical unclonable functions under varying environmental

conditions. In Proceedings of the 2015 IEEE International Workshop on Information Forensics and Security (WIFS), Rome, Italy,
16–19 November 2015; pp. 1–6.

37. Lin, S.; Costello, D.J. Error Control Coding; Prentice-Hall: Englewood Cliffs, NJ, USA, 2004.
38. Ohm, J.R. Multimedia Signal Coding and Transmission; Springer: Berlin/Heidelberg, Germany, 2015.
39. Wang, R. Introduction to Orthogonal Transforms: With Applications in Data Processing and Analysis; Cambridge University Press:

Cambridge, UK, 2012.
40. Günlü, O.; Schaefer, R.F. Low-Complexity and Reliable Transforms for Physical Unclonable Functions. In Proceedings of the

2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020;
pp. 2807–2811.

41. Maes, R.; Herrewege, A.V.; Verbauwhede, I. PUFKY: A fully functional PUF-based cryptographic key generator. In Cryptographic
Hardware Embedded Systems; Springer: Berlin/Heidelberg, Germany, 2012; pp. 302–319.

42. Rukhin, A.; Soto, J.; Nechvatal, J.; Smid, M.; Barker, E. A Statistical Test Suite for Random and Pseudorandom Number Generators for
Cryptographic Applications; Technical Report; The National Institute of Standards and Technology: Gaithersburg, MD, USA, 2001.

43. Hong, Y. On Computing the Distribution Function for the Sum of Independent and Nonidentical Random Indicators; Technical Report;
Department of Statistics, Virginia Tech.: Blacksburg, VA, USA, 2011.

44. Polyanskiy, Y.; Poor, H.V.; Verdú, S. Channel Coding Rate in the Finite Blocklength Regime. IEEE Trans. Inf. Theory 2010,
56, 2307–2359. [CrossRef]
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