Supplementary material

"Wave-particle duality relation with a quantum which-path detector" by Dongyang Wang, Junjie Wu, Jiangfang Ding, Yingwen Liu, Anqi Huang, and Xuejun Yang

In this document, we exhibit the measured coincidence counts which are used to calculated the quantum coherence C and path distinguishability D.

I. COINCIDENCE COUNTS FOR THE MEASUREMENT OF C

We derived the quantum coherence C from the density matrix ρ_{q} of the quanton photon, which is obtained by the single-qubit tomography (QST) on it. Since for most of the cases, the quanton photon is entangled with the QWPD (i.e. quantum which-path detector) photon, ρ_{q} can be represented as follows,

$$
\begin{equation*}
\rho_{q}=p_{H} \rho_{q H}+p_{V} \rho_{q V} \tag{1}
\end{equation*}
$$

where p_{H} is the probability that the QWPD photon is found to be in the state of $|H\rangle_{d}$, and $\rho_{q H}$ is the density matrix of the quanton photon under such a circumstance. p_{V} and $\rho_{q V}$ have the similar definitions for $|V\rangle_{d}$.

In experiment, we first set the polarization projection on the QWPD photon as $|H\rangle\langle H|$, and then recorded the six kinds of coincidence counts when the polarization projection on the quanton photon was set as $|H\rangle\langle H|,|V\rangle\langle V|$, $|D\rangle\langle D|,|A\rangle\langle A|,|R\rangle\langle R|$ and $|L\rangle\langle L|$, respectively, where $|D\rangle=\frac{1}{\sqrt{2}}(|H\rangle+|V\rangle),|A\rangle=\frac{1}{\sqrt{2}}(|H\rangle-|V\rangle),|R\rangle=\frac{1}{\sqrt{2}}(|H\rangle+$ $i|V\rangle$), and $|L\rangle=\frac{1}{\sqrt{2}}(|H\rangle-i|V\rangle)$. These counts are denoted as $n_{H H}, n_{H V}, n_{H D}, n_{H A}, n_{H R}$ and $n_{H L}$, respectively. $\rho_{q H}$ was calculated from these six counts by QST. The same procedures were repeated when the polarization projection on the QWPD photon is $|V\rangle\langle V|$, and we recorded counts as $n_{V H}, n_{V V}, n_{V D}, n_{V A}, n_{V R}$ and $n_{V L}$, respectively, and obtained $\rho_{q V} \cdot p_{H}$ and p_{V} were derived from

$$
\begin{equation*}
p_{H}=\frac{n_{H H}+n_{H V}}{n_{H H}+n_{H V}+n_{V H}+n_{V V}}, \quad p_{V}=1-p_{H} \tag{2}
\end{equation*}
$$

Finally, ρ_{q} was obtained from Eq.(1), and C was calculated as twice the absolute value of ρ_{q} 's off-diagonal element.
Average of the coincidence counts are listed in Table.S1, which were recorded per 0.5 second. When $\alpha=\frac{\pi}{2}\left(90^{\circ}\right)$, since the QPWD photon is in the state of $|H\rangle_{q}$ (i.e. $p_{H}=1$), only the first six kinds of coincidence counts were required.

TABLE S1. Average of the coincidence counts for the measurement of C

α	$n_{H H}$	$n_{H V}$	$n_{H D}$	$n_{H A}$	$n_{H R}$	$n_{H L}$	$n_{V H}$	$n_{V V}$	$n_{V D}$	$n_{V A}$	$n_{V R}$	$n_{V L}$
0°	12.8	156.6	54.3	72.1	57.1	59.0	107.6	9.8	50.0	66.7	51.3	67.2
10°	12.8	171.5	61.9	123.1	102.8	75.8	109.2	8.1	60.4	67.9	61.0	67.7
20°	17.3	180.3	48.1	152.8	110.8	84.4	106.7	7.4	59.3	66.0	58.3	60.9
30°	23.4	170.4	35.3	134.8	105.5	78.3	100.9	6.5	54.0	56.0	61.0	54.1
40°	35.0	169.9	24.6	184.0	116.0	78.0	85.7	5.4	40.8	55.4	51.2	45.2
50°	42.3	154.2	16.6	194.5	107.3	71.3	70.8	4.9	31.2	44.2	47.2	29.0
60°	51.5	126.0	6.8	180.0	106.0	61.3	44.5	4.0	18.0	34.1	28.5	24.8
70°	59.6	103.5	3.2	174.6	98.0	47.1	28.7	3.9	14.8	20.7	16.1	19.5
80°	69.3	81.5	2.1	161.0	64.7	79.6	14.0	4.6	4.5	11.4	8.4	8.3
90°	72.6	65.4	4.5	145.1	59.4	63.4						
100°	38.0	54.8	1.6	90.4	41.3	48.1	14.1	3.8	8.8	10.3	9.9	9.1
110°	43.0	29.3	5.4	69.3	35.7	32.8	7.8	6.0	11.3	3.5	4.9	8.7
120°	39.6	17.3	20.8	33.9	40.5	11.6	23.3	7.0	21.3	10.7	8.6	23.7
125°	22.2	2.4	14.3	15.5	9.0	6.9	28.2	3.8	16.7	14.2	15.4	14.8
130°	31.1	40.1	32.3	52.1	65.1	3.9	50.5	7.1	33.8	29.0	13.1	45.1
140°	10.9	13.7	21.0	2.4	7.5	10.4	51.7	3.8	29.7	29.6	13.0	9.9
150°	10.6	20.2	26.6	3.6	11.1	12.7	64.6	3.7	27.8	29.8	19.3	24.3
160°	20.8	86.8	53.6	50.3	78.2	12.4	117.2	7.4	71.8	62.4	36.1	83.7
170°	12.7	94.7	55.6	55.3	80.3	22.4	123.8	6.8	70.5	69.4	36.7	87.7
180°	8.4	115.8	54.5	69.9	60.3	49.8	132.0	6.4	75.3	75.3	64.0	67.2

II. COINCIDENCE COUNTS FOR THE MEASUREMENT OF D

In this section, we list in Table S2 the coincidence counts of $n_{H 0}, n_{H 1}, n_{V 0}$, and $n_{V 1}$, which correspond to Eq.(31) in the main text. The experiment settings are the same as those used for the measurement of C.

TABLE S2. Average of the coincidence counts for the measurement of D

α	$n_{H 0}$	$n_{H 1}$	$n_{V 0}$	$n_{V 1}$
0°	11.6	121.1	116.0	8.7
10°	10.5	129.5	124.5	9.3
20°	8.5	123.2	131.5	9.0
30°	8.9	116.4	127.7	7.9
40°	11.1	102.9	126.1	10.2
50°	10.7	88.9	105.2	11.1
60°	13.5	63.9	56.4	11.3
70°	17.7	43.3	65.9	12.4
80°	24.8	27.6	43.2	14.1
90°	15.2	22.1	19.2	20.4
100°	9.2	50.8	12.5	17.4
110°	7.3	47.1	10.6	12.8
120°	3.8	31.6	10.8	4.2
125°	6.7	58.3	11.7	7.3
130°	4.1	54.2	16.0	8.9
140°	7.1	45.3	20.6	6.3
150°	6.4	56.4	53.9	8.7
160°	9.8	83.8	80.4	7.6
170°	8.2	91.3	94.0	5.4
180°	8.6	114.0	119.8	5.7

