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Abstract: Automatic sleep staging with only one channel is a challenging problem in sleep-related
research. In this paper, a simple and efficient method named PPG-based multi-class automatic
sleep staging (PMSS) is proposed using only a photoplethysmography (PPG) signal. Single-channel
PPG data were obtained from four categories of subjects in the CAP sleep database. After the
preprocessing of PPG data, feature extraction was performed from the time domain, frequency do-
main, and nonlinear domain, and a total of 21 features were extracted. Finally, the Light Gradient
Boosting Machine (LightGBM) classifier was used for multi-class sleep staging. The accuracy of the
multi-class automatic sleep staging was over 70%, and the Cohen’s kappa statistic k was over 0.6.
This also showed that the PMSS method can also be applied to stage the sleep state for patients with
sleep disorders.

Keywords: PMSS; physiological signal; multimodal sleep staging; LightGBM

1. Introduction

Sleep plays a very important role in our daily life and is closely related to the operation
of many physiological systems in the body. Poor sleep quality not only affects people’s daily
life but also causes insomnia, narcolepsy, and other sleep disorders [1]. These acquired sleep
disorders and congenital disorders are highly correlated with the duration of each sleep
phase [2]. Not only that, sleep staging has been used to monitor the physiological status of
some diseases in intensive care units, such as stroke, cardiovascular and cerebrovascular
diseases, etc.

In the early study of sleep staging criteria, researchers divided sleep into non-rapid
eye movement (NREM), wake, and rapid eye movement (REM) stages, and labelled
rapid eye movement (REM) according to the state of the brain, blood pressure, heart rate,
oxygen content in the blood, energy consumption, and other indicators of REM [3]. With the
development of modern technology and further research on sleep, the non-rapid eye move-
ment phase has been refined into sleep 1 (s1), sleep 2 (s2), sleep 3 (s3), and sleep 4 (s4) [4,5].
Among them, s1 and s2 are collectively referred to as light sleep, and s3 and s4 are collec-
tively referred to as slow-wave sleep [6]. At present, the international standard staged sleep
activity into five phases: REM, NREM I (N1), NREM II (N2), NREM III (N3), and wake
(W) [7]. It is derived from researchers’ use of polysomnography (PSG) and the American
Academy of Sleep Medicine (AASM) sleep scores and related event rulebook divisions [8,9].
The “gold standard” for assessing the sleep stage is a sleep staging method based on PSG
technology consisting of multiple digital signals, including electroencephalogram (EEG),
electrocardiogram (ECG), leg and chin electromyography (EMG), electrooculogram (EOG),
respiration, oxygen saturation, and airflow. PSG technology is usually performed by multi-
ple certified researchers by analyzing PSG signals for sleep staging at 30 s intervals [10].

Traditionally, sleep physiologists perform sleep staging by visually examining PSG
signals. This method not only consumes expensive human resources but also relies on the
professional level and experience of the evaluator [11]. In recent years, automatic sleep
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staging technology has liberated the limitations of manpower and improved the efficiency
of sleep staging, which has become the main direction of people’s research at this stage
and has achieved good results. In the early stage of the development of automatic sleep
staging technology, researchers mainly used a combination of physiological signals to
perform sleep staging, and the accuracy rate of 5-class sleep staging could reach more than
92% [12,13]. To reduce the impact of data collection on the subjects, the researchers turned
to single-channel EEG signals, single-channel EOG signals, and single-channel ECG signals.
Hassan and Bhuiyan used single-channel EEG signals to perform 5-class sleep staging
with an accuracy of 91% [14]. Rahman et al. used single-channel EOG signals with over
90% accuracy for 5-class sleep [15]. Yücelbaş et al., Yoon et al., and Xiao et al. used ECG
signals for 3-class sleep staging with an accuracy of more than 87% [7,16,17]. However,
the above methods will affect the sleep state of subjects during the physiological signal
collection process, and some methods must be performed in professional environments
such as hospitals. To this end, Fonseca et al. and Beattie et al. tried to use the PPG signal
extracted by the optical sensor for sleep staging and demonstrated the feasibility of the
approach [18,19]. High-precision sleep staging and home sleep monitoring methods that
reduce the impact on subjects become the next major goals for sleep staging researchers.

Here, the PMSS (PPG-based multi-class automatic sleep staging) method was pro-
posed on a single-channel optical PPG signal for sleep staging. With less impact on the
subjects during data collection, mobile monitoring and home monitoring can be easily
achieved. In the CAP sleep database [20,21], PSG signals from more than 27,000 periods
of 27 subjects were used to extract PPG signals as data, and the process of collecting
physiological signal data would not affect the subjects’ natural sleep and will not cause
psychological distress to the subjects. After preprocessing the data, feature extraction
was performed from the frequency domain, time domain, and nonlinear domain. Finally,
the Light Gradient Boosting Machine (LightGBM) classification model was used to perform
sleep staging according to multiple classification principles. The classification results are
described based on various indicators such as confusion matrix, accuracy rate, recall rate,
F1 value, and Cohen’s kappa statistic. The method in this paper is suitable for family
monitoring of different subjects, and the obtained results are equivalent to the results of
PSG signal sleep staging.

2. Materials and Methods

PPG, based on a reflection-type detector based on an LED light source, measures
the attenuation of reflected light, some of which is absorbed by human blood vessels
and tissues. The pulse state of the blood vessel is then recorded, and the pulse wave is
plotted. PPG signal can extract physiological signals such as heart rate, SpO2, and heart rate
variability. This PPG-based test is usually applied to the fingertips, so it is safe, painless,
and contains all the information needed for sleep staging and long-term monitoring. It is
the first choice for portable sleep staging.

The PPG data collected in the CAP sleep database was abstracted to verify the PMSS
method. The CAP sleep database is a collection of 108 polysomnography records registered
by the Ospidere Marjorie Sleep Disorders Center in Palma, Italy. Using the Rechtschaffen
and Kales (R&K) guidelines [8] and the AASM guidelines [9], several experts annotated
all PSG records for a sleep phase every 30s and assigned the sleep phase to each data
epoch. Due to the lack of PPG signal data in the PSG signal of 108 subjects, the sleep data
of 27 subjects without PPG signal loss were used in this experiment, including 4 healthy
subjects, 8 patients with REM sleep behavior disorder, 10 patients with nocturnal frontal
lobe epilepsy, and 5 patients with insomnia. The subject information was extracted as
shown in Table 1.
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Table 1. Subject’s personal information.

Pathology Male Female Age Identification
Number

No pathology 1 3 28–35 n2, n3, n5, n11
Nocturnal frontal lobe Epilepsy 5 5 14–41 nfle1–nfle10

Insomnia 1 4 47–64 ins2, ins5–ins8
REM behavior disorder 7 1 70–82 ins2–ins9

In this study, small changes in PPG signals at different sleep stages were used to
conduct multi-class sleep staging. Since there was be a lot of interference in the collection
process of physiological signals, this study first preprocessed the PPG signals. Then,
the features extracted from time-domain features, nonlinear-domain features, and heart
rate variability signals were prepared for the preprocessed signals. Then, the frequency-
domain features of heart rate variability were extracted. Finally, the extracted features were
put into the machine learning model for sleep staging. The basic flow is shown in Figure 1,
and the details of each step are described below.

Figure 1. Flow diagram of automatic sleep staging mechanism.

2.1. Preprocessing of Raw Data

For noise, such as baseline drift and power frequency interference of PPG signal,
the wavelet transform method was adopted in this experiment, and the BiOR3.5 wavelet
was selected for filtering. At the same time, the 6 classification tags in the original data
were converted into a multimodal tag, as shown in Figure 2. In addition, this study still
used the division of sleep stage every 30 s in the original data and manually deleted some
data without sleep state annotations, and finally obtained 27,333 sleep state data.

Figure 2. Multimodal sleep staging.

2.2. Feature Extraction Process

In this experiment, all features were extracted from the PPG signal, and these features
can be divided into, time-domain features, frequency-domain features, and nonlinear
domain features.
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2.2.1. Time-Domain Feature Extraction of PPG Signal

The time-domain characteristics of the PPG signal can intuitively reflect the changes
of sleep stage with time. The time-domain features extracted in this paper are shown in
Table 2, where Z stands for PPG data.

Table 2. The symbols and meanings of time-domain features.

Name Meaning Formula

Med_PPG median Median (Zi)
Max_PPG maximum value Max (Zi)
Min_PPG minimum value Min (Zi)

Dif_PPG difference between the maximum and
the minimum Max (Zi)−Min (Zi)

Var_PPG variance 1
n

n−1
∑

j=0

(
Zij − Zi

)2

Ske_PPG Coefficient of skewness E[
(

Zij−m
r )3

]
Kur_PPG Coefficient of kurtosis E[

(
Zij−m

r )4
]

Mean_PPG mean value 1
n

n−1
∑

j=0
Zij

En1st_PPG Comentropy of first order difference Comentropy(1st)
En2nd_PPG Comentropy of Second order difference Comentropy(2nd)

En1st_2nd_PPG
Comentropy of first-order difference
divided by entropy of second-order

difference

Comentropy(1st)
Comentropy(2nd)

2.2.2. Frequency-Domain Features

The frequency-domain characteristics of the heart rate variability signal extracted
from the PPG signal clearly reflect the activity of the human autonomic nervous system.
The features include the frequency band power of each frequency band of heart rate
variability. According to the PPG signal, the R-R intervals can be accurately obtained,
thereby reliably obtaining heart rate variability. Heart rate variability is usually obtained
by ECG signals. In this study, there is a strong correlation between the heart rate variability
signals obtained by PPG signals and the heart rate variability signals extracted by ECG
signals using PSG datasets, which has also been proven by some scholars [22]. The fre-
quency band of heart rate variability can be divided into low frequency (LF.0.04–0.15) and
high frequency, (HF.0.15–0.4), where LF can be further divided into true low frequency
(TLF.0.04–0.1) and medium frequency (MF.0.1–0.15). The power of LF and HF bands is
related to the regulation of the sympathetic nervous system (SNS) and parasympathetic
nervous system (PNS), respectively.

2.2.3. Nonlinear Features

The information extracted by frequency-domain features and time-domain features
was still limited, so this experiment introduced many advanced nonlinear feature extraction
methods to further extract PPG signal features. Since the PPG signal sampling time at
each sleep stage is only 30 s, this paper adopted a nonlinear feature extraction method
suitable for short-term PPG signals. These methods included, approximate entropy (ApEn),
sample entropy (SampEn), fuzzy entropy permutation entropy, and recurrence Plot.

In order to solve the difficulty of solving entropy in chaos, Pincus proposed the
concept of ApEn analysis: an indicator used to measure the complexity of time series from
nonlinear time series [23,24]. The theoretical implementation of the ApEn algorithm is
shown below:
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Perform m-dimensional spatial reconstruction on an N-dimensional time series
[u(1), u(2),. . . , u(N)] obtained by sampling at equal time intervals. The reconstructed
i-th vector is expressed as Equation (1):

X(i) = [u(i), u(i + 1), . . . , u(i + m− 1)] (1)

For 1 ≤ i ≤ N − m + 1, calculate the number of vectors that satisfy the following
Formula (2). Given the threshold r, usually r = 0.1~0.25 SD (SD is the standard deviation
of the sequence X(i):

Cm
i (r) = (number o f x(j) such that d[X(i), X(j) ≤ r])/(N −M + 1) (2)

where d[X(i), X(j)] represents the maximum distance between X(i) and X(j), m is the
pre-selected mode dimension. ApEn is calculated as:

Φm(r) =
1

N −m + 1

N−m+1 ∑ Cm
i

∑
i=1

ln (3)

ApEn = Φm(r)−Φm+1(r) (4)

During the calculation of ApEn, the m is set as 2 and the r is 0.15 SD.
SampEn is also a method to describe the complexity of time series, which is improved

based on the ApEn method [25]. It has applications in assessing the complexity of physio-
logical time series and diagnosing pathological state. The SampEn algorithm steps for an
original time series [u(1), u(2), . . . , u(N)] are as follows:

Firstly, using the original time series construct a set of m dimensional vectors, where X(i) =
[u(i), u(i + 1), . . . , u(i + m− 1)]. For 1 ≤ i ≤ N −m + 1, calculate the number of vectors
that satisfy the following formula [26–28]. Define the function:

Bm
i (r) =

number of X(j) such that d[X(i), X(j)] ≤ r
N −m + 1

, j 6= i (5)

Bm(r) = (N −m + 1)−1
N−m+1

∑
i=1

Bm
i (r) (6)

Then, define another function, let k = m + 1:

Ak
i (r) =

number of X(j) such that d[X(i), X(j)] ≤ r
N −m + 1

, j 6= i (7)

Ak(r) = (N − k + 1)−1
N−k+1

∑
i=1

Bk
i (r) (8)

For a finite dataset, the SampEn is estimated as follows:

SampEn = −ln
[

Ak(r)/Bm(r)
]

(9)

Fuzzy entropy is similar to the physical meaning of ApEn and SampEn. It mea-
sures the magnitude of the probability that the new model produces. The larger the
measure, the greater the probability that the new pattern will produce, meaning that the
sequence complexity is greater. The fuzzy entropy algorithm steps for an original time
series [u(1), u(2), . . . , u(N)] are as follows [29,30]:
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Firstly, using the original time series construct a set of m dimensional vectors, where X(i) =
[u(i), u(i + 1), . . . , u(i + m− 1)]− 1

m ∑m−1
j=0 u(i + j), j = 1, 2, . . . , N−m+ 1. Then, add fuzzy

membership function:

A(x) =

{
1, x = 0

exp
[
−ln(2)

( x
r
)2
]
, x > 0

(10)

Am
ij = exp

−ln(2) ∗
(

dm
ij

r

)2
, j = 1, 2, . . . , N −m + 1, and j 6= i (11)

Cm
i (r) =

1
N −m

N−m+1

∑
j=1,j 6=i

Am
ij (12)

Φm(r) =
1

N −m + 1

N−m+1

∑
i=1

Cm
i (r) (13)

Therefore, the fuzzy entropy of the original time series is as follows:

FuzzyEn (m, r) = lim
N→∞

[
ln Φm(r)− ln Φm+1(r)

]
(14)

For a finite dataset, the fuzzy entropy is estimated as follows:

FuzzyEn (m, r, N) = ln Φm(r)− ln Φm+1(r) (15)

where dm
ij = d[X(i), X(j)] represents the maximum absolute distance between the window

vectors X(i) and X(j), r is the similar tolerance limit, and m is the preselected modal size.
The paper takes m = 2 and r = 0.15SD.

The permutation entropy is the same as the ApEn, SampEn, and fuzzy entropy men-
tioned above, and is an indicator for measuring the complexity of time series. The difference
is that it introduces the idea of permutation when calculating the complexity between
reconstructed subsequences [31]. The permutation entropy algorithm steps for an original
time series [u(1), u(2), . . . , u(N)] are as follows: First, phase space reconstruction of time
series X (phase space size is denoted as m) yields a matrix: rearrange the ascending order
of each row of the reconstructed matrix, and if the same two values are encountered,
arrange them according to the subscript, thus generating a sequence of symbols. Finally,
the number of occurrences of row subscript order is calculated as the row probability,
and the entropy of arrangement is the sum of the entropy of all rows in the time series.

The recurrence plot method is an innovative tool for analyzing periodicity and nonlin-
earity of time series, and it can dig out the internal structure of time series. The recursive
graph is used in the experimental data by Eckmann et al. [32,33] and its definition is
as follows:

Ri,j = Θ
(
εi − ‖xi − xj‖

)
, xi ∈ Rm, i, j = 1, . . . , N (16)

Recurrence rate is the density of recursive points in a recursive graph, which is the
percentage of recursive points (the proportion of the total number of black points in the
recursive graph); determinism is the percentage of recursive points that form a diagonal in
the recursive graph (the proportion of black points on the line segment that constitutes the
parallel diagonal direction). The measure is defined as follows:

DET =
∑N ∑

l=lmin
l

∑N
i,j Ri,j

(17)

2.2.4. Summary of PPG Features

A total of 27 features were explored and are summarized in Table 3.
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Table 3. Summary of photoplethysmography (PPG) features.

Category Name Number

Time domain

Mad_PPG, Max_PPG, Min_PPG,
Dif_PPG, Var_PPG, Ske_PPG,

Kur_PPG, Mean_PPG, En1st_PPG, En2st_ PPG,
En1st_2st_PPG

11

Frequency domain LF_power, TLF_power, HF_power, MF_power 4

Nonlinear analysis ApEn, SampEn, FuzzyEn, PerEn, DET,
Recurrence Rate 6

In total 21

2.3. Classification Procedures

Following the completion of the above preparation phase, the feature dataset was
standardized and subjected to leave-one-out cross-validation. Afterward, the datasets were
classified by using the LightGBM and the sleep staging process was performed.

LightGBM is a gradient lifting algorithm based on Gradient Boosting Decison Tree
(GBDT) [34]. Its main improvement measures include histogram algorithm and leaf-wise
decision tree growth strategy with depth limitation. The decision tree submodel in Light-
GBM splits the nodes by tiling. Therefore, compared with XGBoost [35], its computational
cost is small. We must control the depth of the tree and the minimum data of each leaf node
to avoid the fitting phenomenon. The histogram-based decision tree algorithm divides
the feature values into multiple kegs and then searches for optimal partitions on those
buckets, thereby reducing storage and computational costs. This enhances the robustness
to noise while ensuring good evaluation accuracy and training speed. It is proposed to
solve the problems encountered by GBDT in massive data so that GBDT can be better
applied to reality.

First, given the training set X = {(xi,yi)}n
i=1, the purpose of the LightGBM algorithm

is to find a suitable p(x), as close as possible to p∗(x), to minimize the expected value of
the specific loss function L(y, p(x)), as follows:

p(x) = argmin pEy,X L(y, p(x)) (18)

LightGBM integrates a large number of T-regression trees ∑T
t=1 pt(X), which can be

approximated to the final model:

pT(X) =
T

∑
t=1

pt(X) (19)

The regression tree should be represented as Wq(x), q ∈ {1, 2, . . . , J} where J is the
number of leaves, q is the decision rule of the tree, and w is a vector of leaf node sample
weights. Hence, LightGBM is trained in the following form:

ϕt =
n

∑
i=1

L(yi, Pt−1(xi) + pt(xi)) (20)

The objective function is a fast approximate-place Newton method. For the sake of
simplicity, the constant term in (21) is removed and the formula becomes:

ϕt ∼=
n

∑
i=1

(
L
(

gi, pt(xi) +
1
2

hi p2
t (xi)

)
(21)
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where gi represents first-order statistics of loss function, hi represents second-order statistics
of loss function, and Ij is the sample set of the leaf j, and then (22) can represent the
following formula:

ϕt =
j

∑
i=1

∑
i∈Ij

gi

wj +
1
2

∑
i∈Ij

hi + γ

w2
j

 (22)

For the structure q(x) of the tree, the optimal leaf weight fraction of each leaf node w∗j
and the extreme value of ϕ∗T can be solved as:

w∗j = −
∑i∈Ij

gi

∑i∈Ij
hi + γ

(23)

ϕ∗T = −1
2

J

∑
j=1

(
∑i∈Ij

gi

)2

∑i∈Ij
hi + γ

(24)

ϕ∗T is an important scoring function of the tree structure q, then the objective function can
be expressed as:

G =
1
2

( (
∑i∈IL

gi
)2

∑i∈IL
hi + γ

+

(
∑i∈IR

gi
)2

∑i∈IR
hI + γ

+
(∑i∈I gi)

2

∑i∈I hi + γ

)
(25)

where IL and IR are the left and right branches of the sample set, and LightGBM will allow
the tree to grow vertically, which will be more efficient when processing large amounts
of data.

2.4. Decision Mechanism

In the field of machine learning, accuracy is the most basic statistical classification
evaluation indicator, but it cannot fully demonstrate model performance. In order to
visualize the performance of the sleep staging algorithm objectively and comprehensively,
the confusion matrix, recall rate and F1 score were used as evaluation criteria. In addition
to statistical criteria, Cohen’s kappa coefficient is used to represent the correlation of sleep
staging results [36].

3. Results and Discussion

This study used PPG data extracted from the CAP sleep database, which was derived
from 27 subjects, 4 of whom were healthy, 5 had insomnia, 10 had nocturnal frontal lobe
epilepsy, and 8 had REM behavior disorder. First of all, 27,333 periods were obtained after
data preprocessing such as data cleaning, data filtering, and data denoising. In order to
make the final result more authoritative, this study performed a balanced processing of
various types of data according to multimodal staging criteria.

After preprocessing, this study extracted features from the time domain, frequency
domain, and nonlinear domain and obtained 21 features in total. After effective features
were determined, the feature dataset were normalized, and the dataset was divided using
the 10-fold cross-validation method. Finally, the training set was used to train the LightGBM
classifier for sleep staging, the validation set was used to adjust the model, and the test set
was used to evaluate the model according to the above evaluation criteria.

In this experiment, four evaluation indexes including accuracy, recall rate, F1 score,
and Cohen’s kappa statistic k were used to evaluate the performance of the model. The re-
sults of multi-class sleep staging in the test dataset are shown in Table 4. Among them,
the accuracy rate of the 3-class was higher than 86%, and Cohen’s kappa statistic k was also
higher than 0.79, which was highly similar to the expert scoring results. The sleep staging
results of the 4-class and the 5-class were slightly inferior to the sleep staging results of the
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3-class, but the accuracy rate was also higher than 72% and the Cohen’s kappa statistic
k coefficient was also higher than 0.6, which basically meets the accuracy requirements
of most sleep staging scenes. From the experimental results, the PMSS method still lacks
the ability of multi-class sleep classification compared with the ability of multi-class sleep
staging using EEG signals. However, compared with other single-channel physiological
signals for sleep classification, such as ECG and respiratory signals, the accuracy was
significantly improved.

Table 4. Confounding matrix and evaluation index of multiple sleep stages.

3-Class

Predicted result by the proposed method

Clinical analysis
result

W NREM REM Precision Recall F1-
score

W 342 36 14 0.82 0.87 0.84
NREM 51 353 14 0.85 0.84 0.85
REM 26 24 340 0.92 0.87 0.90

Accuracy: 0.8625 Cohen’s kappa statistic k: 0.79

4-Class

Predicted result by the proposed method

Clinical analysis
result

W LS SWS REM Precision Recall F1-
score

W 360 25 20 6 0.81 0.88 0.84
LS 36 276 40 34 0.70 0.72 0.71

SWS 25 48 308 40 0.78 0.73 0.75
REM 21 43 29 289 0.86 0.76 0.77

Accuracy: 0.7706 Cohen’s kappa statistic k: 0.69

5-Class

Predicted result by the proposed method

Clinical analysis
result

W N1 N2 N3 REM Precision Recall F1-
score

W 193 1 11 14 11 0.78 0.84 0.81
N1 11 38 7 16 22 0.75 0.40 0.52
N2 13 4 156 21 10 0.68 0.76 0.72
N3 12 1 39 156 13 0.68 0.71 0.69

REM 18 7 17 23 160 0.74 0.71 0.73

Accuracy: 0.7217 Cohen’s kappa statistic k: 0.64

The divided test dataset contained a mixed dataset of some data from healthy subjects,
insomnia subjects, nocturnal frontal lobe epilepsy subjects, and REM behavior disorder
subjects. In order to verify the classifying ability of the experimental model for subjects
with sleep disorders, this article used four different health conditions of the subject data
to perform 4-class sleep staging. The results of sleep staging are shown in Figure 3.
Among them, the sleep staging ability is the best for healthy people, with an accuracy rate
of more than 80%. The sleep staging ability of the subjects with the disease was decreased,
but the consistency is more than 0.60. It can be concluded that the model is still suitable for
sleep staging of subjects with sleep disorders.
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Figure 3. The ability of the model to classify data of different diseases.

Compared with articles using PPG signals for sleep classification in recent years,
this experiment only uses single-channel PPG signals as classification data and does not
require the assistance of other signals, which greatly reduces the impact of the experiment
on the subjects’ natural sleep. Judging from the classification results, the accuracy and
Cohen’s kappa statistic k of sleep staging in 3-class, 4-class, and 5-class in this experiment
are higher than those of the current study of sleep classification using PPG signals. Not only
that, the experimental sleep classification model has a strong generalization ability and can
meet the sleep staging needs of patients with sleep diseases. Nevertheless, this experiment
still encountered some problems. The collection of PPG signals is based on the principle of
light reflection. Therefore, when this method is used at a high light intensity, large errors
will occur, which will become a problem to be solved in the next step.

4. Conclusions

PMSS method was proposed with only PPG signal used to stage the sleeping status.
PMSS method can achieve 3-class, 4-class, and 5-class sleep staging, and the results of
multi-class sleep staging are highly consistent with the results of manual sleep staging
conducted by several experts based on PSG signals. The reason is that because PPG signals
can extract HRV signals and SpO2 signals, they have all the information of these signals.
At the same time, these signals have been recognized by many scholars as suitable for
sleep staging. It is well understood that PPG signals can be obtained in sleep staging
experiments. In addition, this method can also achieve a consistent result on PPG data
of subjects with sleep disorders. Therefore, this study believes that the PMSS method
has generalization ability and can be applied to home sleep monitoring for patients with
sleep disorders and healthy subjects, greatly reducing human resource consumption and
reducing the impact on the subject during sleep monitoring. In the next step of this study,
considering the accuracy of this method, we will try to apply this method to the diagnosis
of sleep disorders.
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17. Yücelbaş, Ş.; Yücelbaş, C.; Tezel, G.; Özşen, S.; Yosunkaya, Ş. Automatic sleep staging based on SVD, VMD, HHT and morpholog-

ical features of single-lead ECG signal. Expert Syst. Appl. 2018, 102, 193–206. [CrossRef]
18. Beattie, Z.; Oyang, Y.; Statan, A.; Ghoreyshi, A.; Pantelopoulos, A.; Russell, A.; Heneghan, C. Estimation of sleep stages in a

healthy adult population from optical plethysmography and accelerometer signals. Physiol Meas. 2017, 38, 1968–1979. [CrossRef]
19. Fonseca, P.; Weysen, T.; Goelema, M.S.; Møst, E.I.S.; Radha, M.; Scheurleer, C.L.; Heuvel, L.; Aarts, R.M. Validation of

Photoplethysmography-Based Sleep Staging Compared With Polysomnography in Healthy Middle-Aged Adults. Sleep 2017,
7, zsx097. [CrossRef]

20. Terzano, M.G.; Parrino, L.; Smerieri, A.; Chervin, R.; Chokroverty, S.; Guilleminault, C.; Hirshkowitz, M.; Mahowald, M.;
Moldofsky, H.; Rosa, A.; et al. Atlas, rules, and recording techniques for the scoring of cyclic alternating pattern (CAP) in human
sleep. Sleep Med. 2002, 3, 187–199. [CrossRef]

21. Goldberger, A.L.; Amaral, L.A.N.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.;
Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals.
Circulation 2000, 101, e215–e220. [CrossRef] [PubMed]

22. Electrophysiology, Task Force of the European Society of Cardiology the North American Society of Pacing. Heart rate variability:
Standards of measurement, physiological interpretation, and clinical use. Circulation 1996, 93, 1043–1065. [CrossRef]

23. Pincus, S. Approximate entropy (ApEn) as a complexity measure. Chaos Interdiscip. J. Nonlinear Sci. 1995, 5, 110–117. [CrossRef]
[PubMed]

24. Zhang, Z.; Chen, Z.; Zhou, Y.; Du, S.H.; Zhang, Y.; Mei, T.; Tian, X.H. Construction of rules for seizure prediction based on
approximate entropy. Clin. Neurophysiol. 2014, 125, 1959–1966. [CrossRef] [PubMed]

25. Yoo, C.S.; Yi, S.H. Effects of detrending for analysis of heart rate variability and applications to the estimation of depth of
anesthesia. J. Korean Phys. Soc. 2004, 44, 561.

https://www.physionet.org/content/capslpdb/1.0.0/
http://doi.org/10.1038/s41467-018-07229-3
http://doi.org/10.1088/0967-3334/36/10/2027
http://www.ncbi.nlm.nih.gov/pubmed/26289580
http://doi.org/10.1016/j.bspc.2013.06.001
http://www.ncbi.nlm.nih.gov/pubmed/11422885
http://doi.org/10.5664/jcsm.2172
http://www.ncbi.nlm.nih.gov/pubmed/23066376
http://doi.org/10.1053/smrv.1999.0087
http://doi.org/10.1016/j.clinph.2017.12.039
http://doi.org/10.1109/JBHI.2015.2450196
http://doi.org/10.1016/j.jneumeth.2016.07.012
http://www.ncbi.nlm.nih.gov/pubmed/27456762
http://doi.org/10.1016/j.compbiomed.2018.08.022
http://doi.org/10.1088/1361-6579/aa63c9
http://doi.org/10.1016/j.eswa.2018.02.034
http://doi.org/10.1088/1361-6579/aa9047
http://doi.org/10.1093/sleep/zsx097
http://doi.org/10.1016/S1389-9457(02)00003-5
http://doi.org/10.1161/01.CIR.101.23.e215
http://www.ncbi.nlm.nih.gov/pubmed/10851218
http://doi.org/10.1161/01.CIR.93.5.1043
http://doi.org/10.1063/1.166092
http://www.ncbi.nlm.nih.gov/pubmed/12780163
http://doi.org/10.1016/j.clinph.2014.02.017
http://www.ncbi.nlm.nih.gov/pubmed/24690391


Entropy 2021, 23, 116 12 of 12

26. Pham, T.D. Time-shift multiscale entropy analysis of physiological signals. Entropy 2017, 19, 257. [CrossRef]
27. Costa, M.; Peng, C.K.; Goldberger, A.L.; Hausdorff, J.M. Multiscale entropy analysis of human gait dynamics. Phys. A Stat. Mech.

Appl. 2003, 330, 53–60. [CrossRef]
28. Pincus, S.M.; Gladstone, I.M.; Ehrenkranz, R.A. A regularity statistic for medical data analysis. J. Clin. Monit. 1991, 7, 335–345.

[CrossRef]
29. Chen, W.; Wang, Z.; Xie, H.; Yu, W. Characterization of surface EMG signal based on fuzzy entropy. IEEE Trans. Neural Syst.

Rehabil. Eng. 2007, 15, 266–272. [CrossRef]
30. Chen, W.; Zhuang, J.; Yu, W.; Wang, Z. Measuring complexity using fuzzyen, apen, and sampen. Med Eng. Phys. 2009, 31, 61–68.

[CrossRef]
31. Bandt, C.; Pompe, B. Permutation entropy: A natural complexity measure for time series. Phys. Rev. Lett. 2002, 88, 174102.

[CrossRef]
32. Webber, C.L., Jr.; Marwan, N. Recurrence Quantification Analysis; Springer: Cham, Switzerland, 2006.
33. Eckmann, J.P.; Kamphorst, S.O.; Ruelle, D. Recurrence Plots of Dynamical Systems. Europhys. Lett. 1987, 4, 17. [CrossRef]
34. Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. Lightgbm: A highly efficient gradient boosting decision

tree. Advances in Neural Information Processing Systems. 2017; pp. 3146-3154. In Advances in Neural Information Processing
Systems; Curran Associates Inc.: Red Hook, NY, USA.

35. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM Sigkdd International Conference
on Knowledge Discovery and Data Mining, ACM, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794.

36. Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [CrossRef]

http://doi.org/10.3390/e19060257
http://doi.org/10.1016/j.physa.2003.08.022
http://doi.org/10.1007/BF01619355
http://doi.org/10.1109/TNSRE.2007.897025
http://doi.org/10.1016/j.medengphy.2008.04.005
http://doi.org/10.1103/PhysRevLett.88.174102
http://doi.org/10.1209/0295-5075/4/9/004
http://doi.org/10.2307/2529310

	Introduction 
	Materials and Methods 
	Preprocessing of Raw Data 
	Feature Extraction Process 
	Time-Domain Feature Extraction of PPG Signal 
	Frequency-Domain Features 
	Nonlinear Features 
	Summary of PPG Features 

	Classification Procedures 
	Decision Mechanism 

	Results and Discussion 
	Conclusions 
	References

