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Abstract: Cardiac signals have complex structures representing a combination of simpler struc-
tures. In this paper, we develop a new data analytic tool that can extract the complex structures of
cardiac signals using the framework of multi-chaotic analysis, which is based on the p-norm for
calculating the largest Lyapunov exponent (LLE). Appling the p-norm is useful for deriving the
spectrum of the generalized largest Lyapunov exponents (GLLE), which is characterized by the
width of the spectrum (which we denote by W). This quantity measures the degree of multi-chaos
of the process and can potentially be used to discriminate between different classes of cardiac sig-
nals. We propose the joint use of the GLLE and spectrum width to investigate the multi-chaotic
behavior of inter-beat (R-R) intervals of cardiac signals recorded from 54 healthy subjects (hs), 44
subjects diagnosed with congestive heart failure (chf), and 25 subjects diagnosed with atrial fibril-
lation (af). With the proposed approach, we build a regression model for the diagnosis of pathol-
ogy. Multi-chaotic analysis showed a good performance, allowing the underlying dynamics of the
system that generates the heart beat to be examined and expert systems to be built for the diagnosis
of cardiac pathologies.

Keywords: Lyapunov exponent; chaos; R-R interval time series; logistic regression model

1. Introduction

In modern society, heart disease is one of the major causes of mortality [1].Most
clinical research in cardiology is based on the analysis of electrocardiograms (ECGs). One
important characteristic of an ECG is the duration of one cardiac cycle, namely, the R-R
interval. Indeed, R-R interval time series may contain information that indicates the
presence of certain cardiovascular diseases. There has been considerable attention de-
voted to investigating the various aspects of the cardiac physiology using methods for
nonlinear analysis, such as fractal analysis [2-4], chaos theory [5-9], and others [10,11].
One of the goals of such studies is to determine the most effective parameters for build-
ing expert systems for the diagnosis (and differentiation) of cardiac diseases. This is a
particularly important issue, especially when creating modern portable devices for
monitoring cardiac activity. Therefore, it is necessary to develop mathematical tools for
non-linear analysis that can discriminate between healthy physiological and pathological
R-R interval time series.

Many biomedical signals, such as cardiac signals, have complex structures repre-
senting a combination of simpler structures. These interactions reflect the influence of
numerous vital processes. For example, recent studies have shown that many biomedical
signals have a multifractal structure [12-15]. Such signals represent a complex fractal
structure, which cannot be sufficiently characterized by a single summary value (e.g., the
Hurst exponent). Multifractal signals are a combination of various simpler monofractal
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structures, each characterized by a single Hurst exponent. Therefore, to characterize a
multifractal signal, the spectrum of generalized Hurst exponents is used, where each
generalized Hurst exponent characterizes a certain monofractal structure.

To obtain this spectrum from the signal, Kennel et al. [16] suggested applying the
g-th order fluctuation function, where g# 0. This procedure is called a multifractal
detrended fluctuation analysis (MFDFA). Therefore, the MFDFA procedure for a sto-
chastic time series { X (¢)} consists of calculating the g-th order fluctuation function
[12,16]:
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where the square bias F*(Af) = (Y((j —1)x At +i)— P((j —1) x At +1))* is defined over
each sliding window of interval A7, and time series { Y (¢) } is determined in the follow-

ing way:
Y, =2 (X, - (X)), @)
il
where <X >l_ defines the cumulative moving average for X, ..., X,; P(x)—a line of

best fit over each sliding window of length Az; N is the number of points; and

At = int(g) , where n=234,...,n_ [12].The value n_, depends on the maximum size

of the time series. In order to reduce the saturation effects owing to the finite size, it
should be 7, <<N [12]. The In-In plot of F,(Af)~ A", as a function of Af,
yields a straight line with slope h(g), defined as the generalized Hurst exponent h(g).
Figure 1 shows the In-In plot of F, (Af) ~ At"® for random time series data (white

noise) for g=-1,2, and 5.
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Figure 1. This plot shows the relationship between In(F q (At)) and In(Af) for random time

series data for g=-1, 2, and 5.

The generalized Hurst exponent h(g) indicates the multifractal property of a signal.
For a monofractal signal, h(g) is a constant, equaling the Hurst exponent h(q) = H. Con-
versely, for a multifractal signal, /i(q) decreases as g increases. The singularity spectrum is
assessed using the succeeding relation:
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a=h(q)+qh'(q) and f(@)=qla—h(g)]+1, 3)
where ¢ defines the strength of a singularity spectrum and f'(«) is the fractal dimen-
sion of a points set with a particular & value. For a monofractal signal, the series f()

is converted into a single point. The measure of degree of multifractality is estimated by
the width of its spectrum, which evaluates the range of @ where f(a) > 0:

W = amax - amin 4 (4)

where f(,, )= f(a,,)=0. Larger values for the width indicates a higher level of

multifractality of the spectrum [12,16,17].

This approach is a powerful tool for analyzing biomedical signals. In [13], MFDFA
was applied to a human gait time series to compare and contrast the pathology and
non-pathology group. The results of the research suggested that the degree of multifrac-
tality is higher for non-pathology groups. Using the multifractal spectrum of electroen-
cephalogram (EEG) signals, the authors of [14] developed a technique for the automated
detection of epilepsy, and in [15], the analysis reveals interesting results on neural acti-
vation of the alpha (8-12 Hertz) and theta (4-8 Hertz) brain rhythms while listening to
simple acoustical stimuli. This research demonstrates the ability to qualify emotions us-
ing MFDFA.

The work [12] shows the high efficiency of applying the multifractal approach for
analyzing R-R interval time series. Therefore, using the g-th order fluctuation function,
we built a two-factor logistic regression model for diagnosis of the pathology of cardiac
signals with an area under the receiver operating characteristic curve (ROC curve) of 0.96
(95% CI 0.92-0.99).These results serve as inspiration for creating a four-factor logistic re-
gression model that is able to differentiate between congestive heart failure (chf) signals
from other pathologies, namely, the atrial fibrillation (af) and sudden death (sd) groups.
Here, the area under the ROC curve is 0.91 (95% CI 0.84-0.97).

However, unlike fractal analysis, which permits the structure of signals to be eval-
uated, chaos analysis explores the base dynamics of the system, which forms the ob-
served signal. Therefore, fractal analysis does not allow a more detailed study of the
dynamic properties of the system [18]. Therefore, it is necessary to develop mathematical
tools for chaotic analysis which has the power to differentiate between healthy and
pathological signals (and moreover, finer differentiation across different subclasses of the
pathology).

Chaotic analysis usually begins with reconstructing the phase space of a dynamical
system. For reconstructing the phase space of a dynamical system, two parameters, spe-
cifically, the embedding dimension m and time delay J, are used [19,20].The time delay |
is usually estimated either by examining the autocorrelation function (acf) [20] or mutual
information (MI) [21]. The estimate of the time delay | is the smallest possible value that
produces reconstructed attractors whose coordinates are as independent as possible (as
measured by correlation or MI). Using the acf, the time delay | is generally chosen in ac-
cordance with the lag, where the absolute value of the acf first attains a zero (or close to
it) and then flattens out. This method is quite simple and does not require massive cal-
culations. Moreover, for Gaussian signals, a zero autocorrelation for some lag | or beyond
implies the independence of observations at time points with absolute lag of at least J.
However, for non-Gaussian signals, a zero correlation does not necessarily imply inde-
pendence. For this reason, the delay | derived from the autocorrelation may produce
misleading results.

Fraser and Swinney [21] have demonstrated that the MI function is a more accurate
measure of independence compared to the acf. In the method proposed by Fraser and
Swinney, the optimal time delay ] is selected according to the first minimum MI function.
Liebert and Schuster [22] demonstrated that the minima of the MI function match the
minima of the correlation integral function, which requires less computation than the MI
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function [22]. Therefore, the application of the correlation integral function is more con-
venient for practical use.

The following approaches can be used to estimate the embedding dimension: The
false nearest neighbor (FNN) method [23], Cao’s method [24], or the correlation dimen-
sion method [25,26]. The idea of the FNN method was developed using the factthat when
the embedding dimension is small, points that are distant in the original phase space are
brought together in the reconstruction space [24]. If m is defined as an embedding di-
mension by the embedding theorems [27,28], then the true neighbors are any two points
which are close in the m-dimensional reconstructed space and that remain close in the
(m+1)-dimensional reconstructed space. On the contrary, there are false neighbors. How-

ever, the FNN method is not accurate enough to determine the parameters R, ;, and
A

sion. Cao’s method [24] overcomes the shortcomings of the nearest neighbor method,
which makes it more attractive for practical applications such as cardiac signals.

One of the conditions for the chaotic state of a dynamic system is sensitivity to the
values of the initial conditions [19,20]. The largest Lyapunov exponent (LLE) is often
considered as one quantitative measure of this sensitivity. The largest Lyapunov expo-
nent characterizes the degree of exponential divergence of close trajectories [20]. The
presence of a positive Lyapunov exponent in the system indicates that any two close
trajectories quickly diverge over time, that is, there is sensitivity to the values of the initial
conditions. Therefore, determination of the Lyapunov exponent recognizes the existence
of chaotic behavior [19,20].

It is understood that many biomedical signals have a complex chaotic structure,
which is the result of the interaction of various chaotic systems involved in the regulation
of vital processes in the body. This complex structure is a combination of simpler chaotic
structures. To calculate the characteristic values of these chaotic structures, the
non-Euclidean norms can be used. The family of Minkowski norms [29,30] are parame-
terized by their exponents p=1,2,...:

Dx,y :(kai _yi)|Pj

Generalizations of Minkowski norms are presented in [29] for the event where p is a
positive real number. For p=> 1, those extensions are actually norms, but for 0 <p< 1, the
triangle inequality does not remain and they cannot be regarded as norms. Therefore,
p-norms with p < 1 were named fractional norms. Below, we denote the Minkowski norm

o - Therefore, this approach may lead to incorrect estimation of the embedding dimen-

1/p

®)

and a fractional norm as p-norm H H .
p

In this paper, to characterize the chaotic structure, we propose only considering the
largest Lyapunov exponent. Therefore, we will not consider the entire spectrum of values
of the Lyapunov exponent for a given chaotic structure, calculated for the corresponding

p-norm H o which will greatly simplify the calculations. Each p value of p-norm H Hp

will correspond to its largest Lyapunov exponent LLE(p). Therefore, a complex chaotic
structure will be characterized by the spectrum of LLE(p) for p€ (0;+ 0 ). If the entire
spectrum of LLE(p) values is characterized by a single value, then this structure will have
mono-chaotic behavior. If some variability of the LLE(p) values is observed, then the
considered structure is said to possess multi-chaotic behavior.

We believe that the R-R interval time series is a combination of various chaotic
structures that results in the interaction with the regulation of cardiac activity. To evalu-
ate the chaotic structure, we propose estimating the largest Lyapunov exponent using the

p-norm H o based on the well-known method proposed by Rosenstein et al. in [20].This

approach can allow us to identify the multi-chaotic behavior of R-R intervals. Conse-
quently, we anticipate improvement in the differentiation of the chaotic properties of R-R
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intervals for healthy and non-healthy subjects compared to the standard approach, pro-
posed by Rosenstein et al. in [20]. To demonstrate the effectiveness of the new approach,
we will construct logistic models for differentiating R-R intervals for healthy and
non-healthy subjects. In summary, the goal of this study is to design a new approach for
identifying the multi-chaotic behavior of time series and demonstrate its effectiveness for
evaluating the multi-chaotic properties of R-R intervals.

2. Materials and Methods
2.1. Clinical Datasets

In 2008, the editors of Chaos proposed the following research question: “Is the
Normal Heart Rate Chaotic?” [31]. For this study, PhysioNet [32] provided the records of
R-R intervals in the case of healthy subjects (hs) and patients with congestive heart failure
(chf) and atrial fibrillation (af). Since our research deals with this issue, we used the
proposed groups for exploring the multi-chaotic properties of R-R intervals. Therefore,
we explored the cardiac time series, producing 5000 points (=1 h) for the 24h R-R inter-
val time series of 54 hs (Normal Sinus Rhythm R-R Interval Database), 44 chf (Congestive
Heart Failure Database), and 25 af (MIT-BIN Atrial Fibrillation Database).

2.2. Statistical Methods

The Rosenstein method is a very popular approach for evaluating the largest Lya-
punov exponent of biomedical signals [20]. The algorithm outline is as follows. Let us

consider a stochastic time series { X' (#) }. The reconstructed trajectory, X ., is presented
as a matrix where each row is a phase-space vector:

X, =(X, X%, (6)

r2t M

where X, is the state of the system at discrete time i. For an N-point time series of {

s

X5 Xy 50 Xy 1, eachX.l. is defined by

Xri = (xi s Xy g Xin(m=1)J ) ’ (7)
where | is the time delay (lag), and m is the embedding dimension. Thereby, X , isan
M x m matrix, and the constants m, M, ], and N are related as M = N —(m—1)xJ
[20].

Rosenstein et al. [20] assumed that the ;" pair of nearest neighbors approximately
diverge at a rate presented by the largest Lyapunov exponent LLE :

d,(i)= CjeLLE(ixAt), ®)

where d j (i) is the distance between the jth pair of nearest neighbors after i dis-

crete-time steps, Af is the sampling period of the time series, and C ; 1is the initial sep-

aration. The largest Lyapunov exponent LLE is evaluated by a linear approximation of
the average line determined by

(i) = i(m d (1)), 9)

where <> designates the average overall values of j. In Rosenstein et al. [20], d (i) is

defined as follows:

2 2

d; (i) =min HX joi T K| TN (X =X )T (X =X )T e
Jmin Jmin s (10)
(X jianonyg =X mng) )

where H H denotes the Euclidean norm.
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Many biological time series have a complex structure in which the interweaving of
several chaotic structures can be observed. These time series cannot be characterized by a
single LLE value; and characterization requires a spectrum of LLE values measuring each
chaotic structure. Obviously, this spectrum will be characterized by a certain spectrum
width W, which will reflect the degree of multi-chaos of the studied process. Therefore,
the width W of the spectrum will be zero for a mono-chaotic series. Larger values of the
width W indicate a higher degree of multi-chaos in the time series. To estimate this
spectrum, we propose a new approach, which is based on a generalization of the Rosen-
stein method, used for estimating the largest Lyapunov exponent. We call this approach
a multi-chaotic analysis. Therefore, if the time series is characterized by a certain spec-
trum of LLE (accordingly, there is some variation of LLE), then it has a multi-chaotic be-
havior. Conversely, if the time series is characterized by a single LLE value, then it has
mono-chaotic behavior.

The application of p-norms H Hp allows the spectrum of LLE values that define the

rate of divergence of the j 4 pair of nearest neighbors to be determined for each p-norm.

The distance between the two vectors X i+ and X ; in an m-dimensional space for

P

i Jaivd "X ivitm-tys ~ Xjrm-1ys| )

p-norm H Hp is calculated as(‘x —xj‘p+‘x p+...+‘x

p , where p>0. Then, the distance between the jth pair of nearest neighbors in the

m-dimensional space for p-norm after i discrete-time steps is defined as follows:

d; (i)=min HXN -X.

Jmin

P
+...

P
T +X.. .., =X,
min JHi x/mm ‘xﬂtﬁ x/m,ﬁJ

= min (‘x
p X

Jmin (11)
P 1/p
+‘xj+i+(m—l)./ - X +(m—1)./" ) .

Jmin

We denote these largest Lyapunov exponents as the generalized largest Lyapunov

exponents (GLLE). Therefore, the jth pair of nearest neighbors for p-norm H Hp will

approximately diverge at a rate presented by the GLLE :
dlp (l) — CjeGLLE(iXAt) ) (12)

The generalized largest Lyapunov exponent is evaluated by a linear approximation
of the average line determined by

v, ()= A1t<1n d’ (). (13)

From Equation (11), it is clear that using values p<1 makes it possible to enhance the
influence of small fluctuations (SF) between the coordinates of the vectors X j+; and

X ; on the estimate of the distance d} (i) compared to the Euclidean norm distance
d j (7) . On the contrary, using values p >> 1 makes it possible to enhance the influence of

large fluctuations (LF) between the coordinates of the vectors X j+i and X ; on the es-

i
timate of the distance d./'.) (7) compared to the Euclidean norm distance d j (7) In this
way, we can obtain a filter that enhances the contribution of the SF or LF component to
the evaluation of the distance d./'.) (i), according to an evaluation of the generalized
largest Lyapunov exponent. Therefore, multi-chaotic behavior is characterized by the

difference between SF and LF components of the distance d f (i) between the two vec-

tors X i and X j in them-dimensional space. The difference between SF and LF

components determines the spectrum width W.
Now consider the results of applying this approach to well-known chaotic dynam-
ical systems. Table 1 demonstrates the chaotic dynamical systems that were used to
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evaluate the GLLE(p) of the proposed approach. The fifth column presents the theoretical
values of the largest Lyapunov exponent. By applying fourth-order Runge-Kutta inte-
gration, the differential equations were solved numerically for using the x-coordinate

time series to reconstruct the dynamics.

Table 1. The chaotic dynamical systems that were used to evaluate the generalized largest Lya-

punov exponents(GLLE).
Theoretical
i At(s
System Equations Parameters (s) LLE [20]
x.,=wx.(1—x,
Logistic i = p (=) u =40 1 0.69
X, =1-ax} +)
Henon a=14 1 0.42
© b=03 '
Yin = bxi
X' =0(y—x)
' o =10.0
=x(R—z)—
Lorenz 2 T¥R=2=0 T e 0.01 150
b=8/3
z'=xy—bz
X'=-y-z
' x+a a=0.15
Rossler yo=xvay b=0.20 0.1 0.09

Z’:b+Z(x_C) c=10.0

Figure 2 demonstrates the relationship between<ln d; (l)> and ix At for the lo-

gistic map for p-norm = 0.1, 2, and 6, where “<In(divergence)>" denotes <ln d; (l)> and

“Time(s)” corresponds to ix Af.

<In(divergence)>

GLLE(0.1) = 0.69

GLLE(6) = 0.38

GLLE(2) = 0.69

Time (s)

Figure 2. The dependencies of<In(divergence)> versus time for the logistic map for p-norm=0.1, 2,

and 6.
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Table 2 shows the calculation results of GLLE(p) for the Logistic, Henon, Lorenz, and

Rossler chaotic dynamical systems using the p-norm H Hp. To estimate the spectrum
width W, we used the difference between the maximum and minimum values of GLLE:

AW=GLLE ,, ~GLLE ;..

max

Table 2. Calculation results of GLLE(p) for chaotic dynamical systems.

p-Norm I&‘Z“;L‘Zt(‘;) Henon, GLLE(p) Lorenz, GLLE(p) Rossler, GLLE(p)
0.1 0.69 0.42 144 0.07
0.5 0.69 0.43 1.50 0.09
1 0.69 0.43 151 0.09
2 0.69 0.42 1.52 0.09
3 0.67 0.42 1.51 0.09
4 0.62 0.39 1.53 0.09
5 0.49 0.34 1.52 0.09
6 0.38 0.30 1.30 0.06
7 0.29 0.25 1.25 0.06
8 0.25 0.22 1.32 0.06
9 0.22 0.18 1.26 0.06
10 0.22 0.16 1.27 0.06
AW 0.47 0.27 0.28 0.02

Table 2 demonstrates that for p-norm <1, decreasing the p-norm leads to a decrease
of GLLE(p). Apparently, this is due to the fact that increasing the SF component leads to
deterioration in the chaotic properties of the considered attractors. At the same time, for
p-norm > 1, we can see that increasing the p-norm leads to a decrease in GLLE(p) for the
Logistic and Henon maps. The reason for this is the deterioration of the chaotic properties
of attractors with an increasing LF component. A similar effect is observed for the Lorenz
attractor; however, some oscillations of GLLE(p) are present, which we associate with the
structure of the attractor. Therefore, the different influence of SF and LF components
leads to estimation of the spectrum width AW> 0. This indicates the multi-chaotic be-
havior of the Logistic map, the Henon map, and the Lorenz attractor.

We can see that GLLE(p) of the Rossler attractor reaches a plateau for p-norm > 6 and
the estimation of the spectrum width A W=0. This indicates the mono-chaotic behavior
of the Rossler attractor. It is obvious that the application of the presented method is not
advisable for mono-chaotic behavior. Therefore, it can be seen that the GLLE(p) of at-
tractors can exhibit different behaviors; therefore, we recommend preliminarily estimat-
ing the interval of p-norm values. It should be noted that at close to zero p-norm values,
the GLLE(p) values become extremely unstable. At the same time, when the p-norm has a
large value, GLLE (p) becomes close to zero and loses its information content.

Since the presence of a random component is characteristic of biological signals (i.e.,
most biological signals are not perfectly deterministic), we consider the influence of a
random component on the spectrum width W. Table 3 shows the results of the estimation
of the spectrum width A W for chaotic dynamical systems, obtained by adding a random
component to the x-coordinate time series of the aforementioned chaotic dynamical sys-
tems. The random components have a normal distribution with a zero mean and stand-
ard deviations presented in Table 3.

Table 3. Calculation results of the estimation of the spectrum width A W for chaotic dynamical
systems with the addition of a random component, having a normal distribution with a zero mean
and different standard deviations, to the x-coordinate time series.
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sLLE

G

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Stalfda.rd Logistic, AW Henon, AW Lorenz, AW Rossler, AW
Deviation

0.001 0.50 0.31 0.26 0.01

0.01 0.28 0.23 0.21 0.01

0.05 0.20 0.17 0.21 0.01

Table 3 shows that increasing the standard deviation of the random component will
lead to a decrease of the estimation of the spectrum width AW. Therefore, when in-
creasing a random component of the signal, the spectrum width W decreases. An excep-
tion is the Rossler attractor, which is characterized by mono-chaotic behavior. Obviously,
in this case, the values of the spectrum width AW remain constant.

3. Results

We will now investigate the feasibility of applying multi-chaotic analysis to reveal
any possible difference among R-R interval time series of healthy subjects (hs), subjects
diagnosed with congestive heart failure (chf), and subjects diagnosed with atrial fibrilla-
tion (af). To estimate the delay time | along with the widely used methods of the acf and
the MI function, we used the correlation integral function C, (J), derived from [20]. The

embedded dimension m was evaluated by applying the method in [24]. Appendix A
contains graphs demonstrating the results of applying this method for one of the R-R
intervals recorded. Preliminary estimation of the interval of p-norm values showed us
that p € [0.1; 5] is the most appropriate interval for assessing the GLLE (p) of R-R interval
time series.

Figure 3 shows the results of calculating GLLE(p) for healthy (hs), congestive heart
failure (chf), and atrial fibrillation (af) groups.

0.14— I hs
i - hs 1 chf
, + chf I af
: 0.12
" - af
=
ﬁ 0.10—
&}
0.08—
0.06—
I I I
3 4 5
P
(a) (b)

Figure 3. (a) Generalized largest Lyapunov exponents GLLE(p) vs. order p for healthy (hs), congestive heart failure (chf),
and atrial fibrillation (af) groups. (b) The same values for p=3, 4, and 5. The error bars represent the standard error of the

mean.

From Figure 3a, it is clear that there is variation of GLLE(p) with p for healthy (hs),
congestive heart failure (chf), and atrial fibrillation (af) groups, where the values of
GLLE(p) decrease with increasing p. This indicates the multi-chaotic behavior of the R-R
interval time series considered. Figure 3b demonstrates that there is no statistically sig-
nificant difference (p-value> 0.05) among groups for GLLE (5). Therefore, for mul-
ti-chaotic analysis of the considered signals, it is sufficient to use p-norm < 5.



Entropy 2021, 23, 112

10 of 17

To characterize multi-chaotic behavior, let us consider estimation of the spectrum
width AW = GLLE  -GLLE _; . Since standard approaches analyze chaotic behavior
using the Euclidean norm, given the importance of this issue for the chaotic analysis of
R-R interval time series, we separately consider the values of the largest Lyapunov ex-
ponent GLLE(2). Table 4 shows the results achieved for the largest Lyapunov exponent
GLLE(2) and estimation of the spectrum width A W. Since the empirical distribution of
the estimated values differs from a normal distribution (p-value<0.05, Kolmogo-
rov-Smirnov test), we proceeded to use the median (Me) in order to evaluate the central

values of GLLE(2) and AW, and applied the first quartile (), and third quartile O, to

evaluate the variation or spread of the distribution of the considered values.

Table 4. Median of the largest Lyapunov exponent GLLE(2) and the estimation of the spectrum
width AW (Me—median, Ql —first quartile, and (J; —third quartile).

GLLE(2), AW,
Group Number Me (O-0,) Me (Q-0,)
hs 54 0.11(0.10-0.13) “ 1.28(0.78-1.95) “
chf 44 0.15(0.12-0.20)*."  2.61(1.70-4.23).“
af 25 0.08(0.07-0.10)*."  0.42(0.26-0.79).“

“ Significant difference between the GLLE(2) of healthy (hs) and pathological groups, p-value<

0.01 using the Kruskal-Wallis test; b significant difference between the GLLE(2) of congestive
heart failure (chf) and atrial fibrillation (af) groups, p-value< 0.01, where a Kruskal-Wallis test was

conducted; © significant difference between the AW of healthy (hs) and pathological groups,

p-value< 0.01, using the Kruskal-Wallis test; ¢ significant difference between the AW of conges-
tive heart failure (chf) and atrial fibrillation (af) groups, p-value< 0.01, using the Kruskal-Wallis
test.

From Table 4, note that the chf group GLLE(2) = 0.15(0.12-0.20) is characterized by
higher values (p-value<0.05, ANOVA F-test) than hs GLLE(2) = 0.11(0.10-0.13). The af
group GLLE(2) = 0.08(0.07-0.10) has lower values (p-value<0.05, ANOVA F-test) com-
pared to the hs group GLLE(2). These results clearly demonstrate that for the Euclidean
norm, the chf heart rate control system is more sensitive to the initial conditions, whereas
the af heart rate control system is less sensitive to the initial conditions compared to the
hs heart rate control system. Nevertheless, Figure 3b demonstrates that when increasing
the p-norm, these differences degrade, which indicates the important role of the SF
component in the differentiation of the R-R interval time series.

Table 4 shows that pathology can be characterized by different spectral widths. Us-
ing the ANOVA method, we conclude that the spectrum width of the congestive heart

failure group AW, = 2.61(1.70-4.23) is significantly greater (p-value< 0.05, ANOVA

F-test) than each ofthe healthy group A W, =1.28(0.78-1.95) and atrial fibrillation group
A VVaf = 0.42(0.26-0.79). The spectrum width A W;f for the atrial fibrillation group has
significantly lower values (p-value< 0.05, ANOVA) than the healthy group A W,

.Therefore, the R-R interval time series of the chf group is characterized by the largest
difference between the SF and LF components, and the af group is characterized by the
smallest difference. This result leads us to make an assumption about the different level
of the random component in the groups of the studied signals. Therefore, we can infer
from these findings that the random component dominates in the af R-R interval time
series compared to the hs R-R interval time series. On the contrary, the contribution of the
random component in the congestive heart failure R-R interval time series is smaller
compared to in the hs R-R interval time series intervals.
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It is widely accepted that a good indicator of the level of the random component of a
chaotic signal is the correlation dimension D), . Argyris et al. [33] demonstrated that the

correlation dimension increases when increasing the level of the random component of
the chaotic signal. We now use this property of the correlation dimension to test our as-
sumption about the level of the random component in healthy, congestive heart failure,
and atrial fibrillation groups. Table 5 shows the results achieved for the correlation di-

mension D, .

Table 5. Median of the correlation dimension [, (Me—median, Q1 —first quartile, and O,
—third quartile).

D,,
Group Number
Me ( Ql - Q3 )
hs 54 0.57(0.50-0.66) “
chf 44 0.55(0.17-0.85)”
af 25 0.93(0.69-1.00)“

“ Significant difference betweenthe D2 of healthy (hs) and atrial fibrillation (af) groups, p-value<

0.01, using the Kruskal-Wallis test, and b significant difference betweenthe Dz of congestive heart
failure (chf) and atrial fibrillation (af) groups, p-value< 0.01, using the Kruskal-Wallis test.

Table 5 demonstrates that the correlation dimension of the af group D, =
0.93(0.69-1.00) is significantly greater (p-value< 0.05, ANOVA F-test) than each of the hs
group D, = 0.57(0.50-0.66) and chf group D,= 0.55(0.17-0.85). This confirms our as-

sumption that the variance contribution of the random component is larger in the af
group R-R interval time series compared to the hs group R-R interval time series. How-
ever, no statistically significant difference (p-value< 0.05, ANOVA F-test) was found
between the correlation dimension of the hs and chf groups.

By setting up a logistic regression model [34], we explored the capacity of mul-
ti-chaos analysis to discriminate between healthy group R-R interval time series and the
pathological group R-R interval time series. Predictors of the logistic regression model
were the attributes (GLLE_p) GLLE_0.1, GLLE_0.5, GLLE_1, GLLE_2, GLLE_3, GLLE_4,
and GLLE_5. Considering that the input parameters of the model have a small range of
changes, we multiplied them by a hundred. Therefore, the odds ratio can be estimated
more efficiently. The data were separated into the training set (85 cases) and the testing
set (38 cases). The output variable is denoted as Y = 0 if the subject belongs to the healthy
group and, accordingly, Y =1 if the subject belongs to the pathology group. To choose the
minimum set of factor attributes, a stepwise-variable selection (SVS) method was applied
[12,34]. Therefore, five attributes, introduced in Table 6, were selected. The estimated
parameters of the logistic regression model (model-1) for the log odds that a signal be-
longs to the pathology group is given by

-0.45+1.02 x GLLE_0.1 -5.18 x GLLE_0.5 - 7.09x GLLE_1 + 105.39 x GLLE_4 - 95.23 x

(14)
GLLE_5,

where P is the probability of belonging to the pathology group.

Table 6. The coefficients of the logistic regression five-factor model-1.

Value

Regression Coefficients Value Odds Ratio
b+m P (95% CI)
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GLLE_0.1 1.02+0.28 <0.01 2.78 (1.59-4.84)
GLLE_0.5 -5.18+2.11 <0.01 5.62x10  (8.88x10 - 3.55x10 ")
GLLE_1 -7.09 +3.53 <0.01 8.29x10 *(8.11x10 7 - 8.47x10 ")
GLLE_4 105.39 +29.21 <0.01 5.92x10* (7.96x10 %" - 4.41x10 )
GLLE_5 -95.23 + 26.57 <0.01 4.37x10 " (1.0x10 - 1.84x10 ")
Constant -0.45+1.89 <0.01

Table 6 indicates that an increase of one unit in the GLLE_0.1 (from baseline) indi-
cates that the odds of being in the pathology group is 2.78 times the odds at the baseline,
keeping the other factors constant. Similarly, increasing GLLE_4 by 1.0 unit leads to an
increased odds of belonging to the pathology group. On the contrary, keeping all attrib-
utes constant, increasing GLLE_0.5, GLLE_1, or GLLE_5 by 1.0 unit leads to an increased
odds of being in the healthy group.

Since we had unbalanced samples, we used the Precision-Recall Curve (PRC) to
evaluate the performance of the classifier [35]. Figure 4 demonstrates the PRC curve of
model-1 built on the training set. The area under the PRC curve (AUC) equals 0.93 (95%
CI 0.88-0.97), suggesting a good performance. Analyzing the PRC curve allowed us to
determine the associated criterion, defining the threshold of model-1, which is greater
than 0.46.

S
9
&
=
2 i
2 < traininig set
£ 04
-9
- 4 testing set
0.2 -
0.0 [ I | | I | I | I |
0.0 0.2 0.4 0.6 0.8 1.0

Recall (Sensitivity)
Figure 4. The Precision-Recall Curves of model-1, building on the training set and the testing set.
Taking into account the values of the associated criterion and Equation (14), classi-
fication results of model-1 for the training and testing sets were determined. The classi-

fication results of model-1 are given in Table 7.

Table 7. Classification results of model-1.

Set
Traini Testi
Classification raining o esting
Results Classification
Healthy Group 108 Healthy Group  * 2 oi08i!
Group Group

Correct 31 39 11 20
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Incorrect 8 7 4 3
Total cases 39 36 15 23

To assess the performance of the classifier, the Matthews correlation coefficient
(MCC) [35] was calculated, based on the training set, to be MCC= 0.65 and based on the
testing set, to be MCC = 0.57. These results indicate the good quality of the model in terms
of both the training set and testing set. Furthermore, evaluating the quality of the model,
its PRC curve was constructed based on the testing set. This PRC curve is shown in Fig-
ure 4, where AUC equals 0.95 (95% CI 0.88-0.98), demonstrating a good performance.
Since that there is no statistically significant difference (p-value> 0.05) between the AUC
of the PRC curve built on the testing set and the AUC of PRC curve built on the training
set, it can be assumed that this model has the potential to be used for diagnostic purpos-
es. Nevertheless, for use in diagnostics, this model requires additional research based on
a larger sample.

Given the difference in multi-chaotic behavior in the RR intervals time series of the
chf and af, the next step is to identify the values that differentiate between the congestive
heart failure and the atrial fibrillation groups. Unfortunately, due to the small sample
size, we did not split the sample into a training and testing set. Therefore, the results of
this model are preliminary and require further additional research with a larger sample
size.

By constructing a logistic regression model as a classifier based on the attributes
(GLLE_p) GLLE_0.1, GLLE_0.5, GLLE_1, GLLE_2, GLLE_3, GLLE_4, and GLLE_5, we
defined statistically significant values and assessed their impact. To avoid uncertainty in
the form of infinity, we multiplied the attributes by a hundred. The output variable is
denoted by Y = 0 for the congestive heart failure group and, accordingly, Y =1 for the
atrial fibrillation group. To choose the minimum set of factor attributes, the SVS method
was applied[12,34]. Consequently, three factor values were identified, which are intro-
duced in Table 8.The estimated parameters of the logistic regression model (model-2) for
the log odds that a signal belongs to the atrial fibrillation group are given by

P
ln(l Pj =3.34-4.851 x GLLE_1 +75.71 x GLLE_4 - 70.84 x GLLE_5. (15)

Table 8. The coefficients of the logistic regression three-factor model-2.

Regression Coefficients Odds Ratio
Value ® btm p-Value (95% CI)
GLLE_1 ~4.851+1.95 <0.01  7.82x10°(1.73x10*-355x10"")
GLLE_4 75.71 +31.29 <001  7.62x102(1.77x10° -3.28x10%)
GLLE_5 ~70.84 +29.37 <001  171x107'(1.72x107° ~1.69x 10 °)
Constant 3.34+3.01 <0.01

Table 8 indicates that an increase of one unit in the GLLE_4 (from the baseline) in-

dicates that the odds of being in the atrial fibrillation group is 7.62 x 10 ? times the odds
at the baseline, keeping the other factors constant. On the contrary, when keeping all at-
tributes constant, increasing GLLE_1 or GLLE_5 by 1.0 unit leads to the odds of being in
the congestive heart failure group being increased.

Figure 5 shows the PRC curve of model-2. The area under the PRC curve equals 0.87
(95% CI 0.74-0.95), demonstrating good performance.
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Figure 5. The Precision-Recall Curve of model-2.

The associated criterion, defining the threshold of model-2, is greater than 0.48. In
view of the values of the associated criterion and Equation (15), the classification results
of model-2 were defined. The classification results of model-2 are given in Table 9.

Table 9. Classification results of model-2.

Set
Classification Results Congestive Heart Failure Atrial Fibrillation Group
Group
Correct 40 19
Incorrect 4 6
Total cases 44 25

The Matthews correlation coefficient equals 0.68. These results indicate the good
performance of model-2. Therefore, the preliminary model demonstrated the good po-
tential of the proposed approach to discriminate between the congestive heart failure and
atrial fibrillation patients. However, this study should be continued with a larger sample.

4. Discussion

We developed a new method for analyzing and evaluating the behavior of nonlinear
time series. This method is based on the assumption that some biological time series have
a complex chaotic structure, which is formed of a combination of simpler chaotic struc-
tures. These types of time series cannot be adequately characterized by a single LLE val-
ue, but have to be characterized by a spectrum of LLE values. To determine this spectrum

of LLE values, p-norms H Hp were used. The application of p-norms H Hp allows the

contribution of the SF component or LF component to the estimate of the distance d j‘.’ @)

between the j g pair of nearest neighbors in the m-dimensional space to be strength-

ened. Obviously, a larger difference between SF and LF components indicates a more
complex chaotic structure of the studied signal. The difference between SF and LF com-
ponents defines the spectrum width W.

As a result of using this approach for analyzing the Logistic map, Henon map, and
Lorenz attractor, we note that these attractors produce the estimation of the spectrum
width of AW> 0 and, accordingly, are characterized by multi-chaotic behavior. However,
the Rossler attractor, having A W =0, is characterized by mono-chaotic behavior.
Therefore, the time series can be characterized by mono-chaotic or multi-chaotic behav-
ior.
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Since the biomedical signal is a product of an interaction of a large number of dif-
ferent biological systems, this leads to the presence of a random component in the bio-
medical signal. Therefore, we conducted studies on the influence of the random compo-
nent on the multi-chaotic behavior of the investigated chaotic systems. As a result, we
found that as the variance contribution of the random component increases, the spectrum
width W decreases.

This approach has been applied to discover possible differences among R-R interval
time series of healthy subjects (hs), subjects diagnosed with congestive heart failure (chf),
and subjects diagnosed with atrial fibrillation (af).As a result of the study, it was found
that for the Euclidean norm, the heart rate control system in chf subjects is more sensitive
to the initial conditions than in hs subjects. Moreover, for the Euclidean norm, the heart
rate control system in af subjects is less sensitive to the initial conditions than in hs sub-
jects. We believe that these distinctions are related to the difference in the chaos control
strategy [7].

Studies have demonstrated that estimation of the spectrum width AW can be used
as one of the parameters to evaluate the level of the random component of the chaotic
biomedical signal. As a result of evaluating the spectrum width AW and the correla-
tion dimension D), , it was found that the contribution of the random component in the
atrial fibrillation group R-R interval time series is larger compared to in the hs R-R in-
terval time series and chf R-R interval time series.

By applying multi-chaos theory, we built a five-factor logistic model that is able to
distinguish the hs signal from the pathological groups, i.e., the chf and af groups. This
model has been demonstrated to have a good diagnostic performance. However, in order
to use this model for diagnostic purposes, it should be tested at the appropriate medical
center. This approach will allow the sample size to be significantly increased and im-
prove the quality of the model. Since multi-chaotic analysis revealed the difference in
multi-chaotic behavior within the pathological group, this allowed us to build a prelim-
inary three-factor logistic model that is able to distinguish the chf from the af signal. This
model has demonstrated a good performance, which makes this approach promising for
building an expert system to discriminate between congestive heart failure and atrial fi-
brillation signals. However, to study the diagnostic characteristics of this approach, ad-
ditional research with a larger sample is required.

In our study, multi-chaotic analysis exhibited a good performance, allowing the
underlying dynamics of the system that generates the heart beat to be examined. This
approach has a good potential for being used in the construction of expert systems for the
diagnosis of cardiac pathologies.
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Appendix A

For estimating embedding dimension m, we applied the method in [24]. This method
is based on the idea that increasing the dimension of the phase space reconstruction leads
to a decreasing number of trajectory self-crossings and false neighbor decreases. In this
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method, a certain estimated E1 value is calculated, which reaches a plateau if the re-
quired embedding dimension is achieved (for more details, see [24]). Figure Al shows

the plots of E1 (m) for different p-norm H Hp for the R-R interval time series (Normal Si-

nus Rhythm RR Interval Database —nsr002).
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Figure Al. The dependencies of E1(mm) versus m for R-R interval time series data forp-norm = 0.1,
0.5, and1-5.

As can be seen from the graph, the optimal embedding dimension is m = 9. This did

not reveal a change in the optimal embedding dimension m with a changing p-norm H Hp
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