
entropy

Article

Improving Deep Interactive Evolution with a Style-Based
Generator for Artistic Expression and Creative Exploration

Carlos Tejeda-Ocampo * , Armando López-Cuevas and Hugo Terashima-Marin

����������
�������

Citation: Tejeda-Ocampo, C.; López-

Cuevas, A.; Terashima-Marin, H.

Improving Deep Interactive Evolution

with a Style-Based Generator for

Artistic Expression and Creative

Exploration. Entropy 2021, 23, 11.

https://dx.doi.org/10.3390/e23010011

Received: 29 September 2020

Accepted: 16 December 2020

Published: 24 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland. This

article is an open access article distributed

under the terms and conditions of the

Creative Commons Attribution (CC BY)

license (https://creativecommons.org/

licenses/by/4.0/).

School of Engineering and Sciences, Tecnologico de Monterrey, 64849 Monterrey, Mexico;
acuevas@tec.mx (A.L.-C.); terashima@tec.mx (H.T.-M.)
* Correspondence: carlos_tejeda300@hotmail.com

Abstract: Deep interactive evolution (DeepIE) combines the capacity of interactive evolutionary
computation (IEC) to capture a user’s preference with the domain-specific robustness of a trained
generative adversarial network (GAN) generator, allowing the user to control the GAN output
through evolutionary exploration of the latent space. However, the traditional GAN latent space
presents feature entanglement, which limits the practicability of possible applications of DeepIE.
In this paper, we implement DeepIE within a style-based generator from a StyleGAN model trained on
the WikiArt dataset and propose StyleIE, a variation of DeepIE that takes advantage of the secondary
disentangled latent space in the style-based generator. We performed two AB/BA crossover user tests
that compared the performance of DeepIE against StyleIE for art generation. Self-rated evaluations of
the performance were collected through a questionnaire. Findings from the tests suggest that StyleIE
and DeepIE perform equally in tasks with open-ended goals with relaxed constraints, but StyleIE
performs better in close-ended and more constrained tasks.

Keywords: generative adversarial networks; interactive evolutionary computation; deep interactive
evolution; StyleGAN; latent space exploration; neural art; evolutionary art

1. Introduction

In 1987, Richard Dawkins introduced a system of simulated selective breeding of
artificial organisms called Biomorph [1], becoming a milestone in the birth of interactive
evolutionary computation (IEC) and evolutionary art (EArt) as areas of research [2,3]. EArt
can be understood as the development and application of evolutionary computation tech-
niques for the generation of computer graphics [2]. Traditionally, evolutionary computation
(EC) [4] exerts pressure over the population through a fitness function that evaluates the
candidates in order to solve an optimization problem. However, evaluation becomes a
challenge in problems where the fitness function results are intractable or subjective, such
as creative and artistic tasks. The Biomporh was one of the first examples of evolutionary
algorithms with user preference as the selection pressure. Since then, a significant amount
of research on IEC was conducted on the generation of graphic art, animation, music,
and other forms of EArt [3], as well as more technical applications such as online news
aggregation [5], online services [6] and search engines [7]. More novel approaches for
evolutionary computation include music recommendation systems based on emotion [8]
and community detection [9]. IEC applied to EArt can allow the human user to generate an
artistic artifact of complexity and aesthetic value beyond their skill or to explore a novel set
of aesthetics. However, IEC still faces some practical problems, such as user fatigue. To sort
these issues, the combination of deep generative models and IEC has been proposed in [10].
This novel approach is called deep interactive evolution (DeepIE).

This paper explores the intersection of generative adversarial networks (GANs) and
interactive evolutionary computation (IEC) within the context of artistic artifact genera-
tion and creative expression. GANs are state-of-the-art generative models that have been
applied in artifact generation involving video, audio, 3D models, virtual ambiance and
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videogames [11–14], but have found most of their success in the generation of 2D im-
ages [15]. GANs generate new artifacts by sampling from a learned latent space; however,
this sampling process is mostly done stochastically and offers little control over the final
output. IEC is a branch of evolutionary computation (EC) that includes the subjective
evaluation of a human user to work in tandem with an evolutionary algorithm to solve
an optimization problem. IEC is particularly useful in problems where the solution is
subjective, such as art generation [3]. However, IEC still faces some practical problems,
principally user fatigue and genotype-to-phenotype mappings that are not conducive to
human-guided search. Deep interactive evolution (DeepIE) is a novel approach to artifact
generation that combines GANs and IEC in a way that helps to overcome the shortcomings
of both [10]. DeepIE uses the generator part of a generative adversarial network (GAN)
trained on a specific target domain to map between the genotype and phenotype in an IEC
algorithm. On one hand, the search is reduced mostly to desirable artifacts, thus reducing
user fatigue. On the other hand, the IEC algorithm allows for directed evolutionary explo-
ration of the GAN latent space. DeepIE was tested in [10] with encouraging results, thereby
opening the possibility of employing this tool for creative exploration, particularly in the
generation of artistic images. This possibility is supported by the success of Artbreeder [16],
a popular collaboratory art generator based on a similar evolutionary exploration of GAN
latent space.

We first began exploring the capabilities of DeepIE for artistic production in [17], and
while the overall results were positive, we observed that DeepIE presented challenges
commonly associated with generative models such as GANs, mainly feature entanglement.
Feature entanglement is a phenomenon within generative models that are not capable
of mapping parts of the input vector to specific features. Features are then entangled
with each other among the input vector and can not be modified individually, making the
outputs of such models difficult to control. This problem severely restricts the potential of
DeepIE as an artistic tool. As a solution, we theorized that implementing DeepIE alongside
a generative architecture resistant to feature entanglement should improve the evolutionary
process. Fortunately, such a model already exists in the form of the style-based generator
architecture for generative adversarial networks (StyleGAN) [18]. We adapted the DeepIE
algorithm to work in the secondary disentangled latent space of the style-based generator
in a manner that facilitates user control over the evolutionary process on specific feature
styles of the resulting artifacts. We called this new approach deep style-based interactive
evolution (StyleIE). As a result of our study, we can now describe the main contributions:
this is both the first study that explores the potential of deep interactive evolutionary
systems for creative exploration and the first implementation of a DeepIE variant within
the style-based generator, taking advantage of the intermediate latent space of the mapping
network as a more complex genotype representation to allow crossover operation over
disentangled features.

The rest of this paper is structured as follows. After an overview of the theoretical
background in Section 2, we illustrate our DeepIE implementation in StyleGAN and our
proposed StyleIE algorithm in Section 3. We propose a methodology for the experimental
validation by user testing in Section 4 and the results of said testing are shown in Section 5.
Section 6 is dedicated to the discussion of results. Finally, Section 7 contains conclusions,
limitations, and contributions.

2. Background and Related Work
2.1. Interactive Evolutionary Computation

IEC can be defined as an evolutionary computation optimization method whose fit-
ness functions are replaced by the subjective evaluation of a human user. IEC can also be
understood as a cooperative endeavor between the human user and the EC system that
maps the computational parameters with the psychological space in the user’s mind. Inter-
active versions of most EC techniques such as genetic algorithms, evolutionary strategy,
and genetic programming exist. Genetic operators such as crossover and mutation are
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common in IEC applications, especially in a subtype of IEC know as simulated breeding or
user selection [3]. For some optimization problems, it can be difficult or even impossible to
design an explicit fitness function. This is the case for systems that produce outputs that
must be subjectively evaluated, such as art or music. In those cases, IEC is an effective
optimization method, because it has the capacity to embed human preference and subjec-
tive perception into the optimization process. In IEC, the human and the EC cooperatively
optimize a target based on a mapping relationship between the computational search space
of the genotype, the solution search space of the phenotype, and the psychological space
of human preference. Individuals are evaluated according to the distance between the
imagined target in the psychological spaces and the actual system outputs, with the human
acting as a black box evaluator. It should be noted that human preference fluctuates, so in
IEC the target is constantly moving, sometimes in response to the output of the EC. Since
every output the human user considers to be equally satisfactory or indistinguishable can
be considered acceptable as a solution, the global optima is not a point, but an area [3],
and not unique [19]. Global optima cannot be narrowly defined in an IEC problem; since
computationally different outputs can be equally psychologically satisfactory for the user,
it is better to understand global optima in this context as an area rather than a point in
the search space. One of the strengths of IEC is that it embeds human preferences and
intuition into optimization systems, which is very useful in problems with no tractable
fitness function, such as in EArt. Downsides of IEC include the fact that population sizes
are limited by the number of individuals the human user could meaningfully evaluate;
for this reason, populations in IEC are exponentially smaller than their EC counterparts.
Moreover, user fatigue limits the number of search generations [3]. Genotype-to-phenotype
mapping, also known as the representation problem in EArt [20], greatly influences user
fatigue, user satisfaction, and the resulting artifact [2,10].

2.2. Generative Adversarial Networks

GANs were first introduced by Goodfellow et al. [21], rapidly gaining popularity
among the machine learning community and being mostly employed in the task of im-
age generation [15]. In the GAN framework, two models are trained simultaneously as
adversaries: a generative neural network model G that learns the data distribution from
a noisy sample, denoted by the letter Z, and a discriminative neural network model D
that learns to distinguish between the original training data and the fake output of G.
The adversarial training corresponds to a minimax game, where the training goal for G
is to maximize the probability of D making a mistake. The networks compete until a
Nash equilibrium is reached; at this point, the fake samples should be indistinguishable
from the real data [21]. Both the generator and discriminator can be arbitrary neural
networks [22]. The original GAN proposal used fully connected neural networks and
Jensen–Shannon divergence to measure the difference between the original and the learned
data distribution. Numerous improvements have been built upon the initial architecture,
such as employing the Wasserstein distance in place of Jensen–Shannon [23], including
gradient penalization to improve training speed [24], convolutional architectures for image
generation [24], and batch normalization [25]. Training adversarial models in high resolu-
tions remains challenging: higher resolutions mean that the real and generated images are
easier for the discriminator to tell apart. Memory constraints also limit the mini-batch size
for large resolution images. Karras et al. [26] introduced progressive training (ProGAN),
which grows both networks progressively: starting from a low resolution, new layers are
added both on the discriminator and the generator as training progresses. This incremental
approach accelerates and stabilizes the process. In lower resolutions, the network learns
the large-scale structure of the images, and in higher resolutions, the learning is shifted
towards finer details. The generator and discriminator are mirrors of each other and
grow simultaneously.
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2.3. A Style-Based Generator

Style-based generators were introduced by Karras et al. [18] in the StyleGAN architec-
ture. StyleGAN further improves the progressive training of ProGAN by redesigning the
generator to adjust the style of each convolutional layer and avoids feature entanglement.
ProGAN can generate high-quality images but provides a very limited ability to control
the specific features of the generated images. The reason for this is that when the generator
learns to represent the training in the latent space, such a representation has to follow the
probability density of the training data. Feature entanglement in the latent space happens
when the GAN model encodes features into multiple dimensions. This means that specific
features can not be modified without modifying other features. A disentangled latent space
would consist of linear subspaces, each controlling a specific feature. The major challenge
for disentangling latent spaces is that the probability of the latent space should match
the density of the training data. The style-based generators introduce a solution for this
problem as a mapping subnetwork and an intermediate learned latent space W. Ideally,
disentangling the latent space means that the dimensions in the latent vectors correspond to
no more than one feature. In practice this is still far from being perfectly achieved; however,
StyleGAN represents an important step in that direction [27]. The generator consists of two
subnetworks: a mapping network and a synthesis network. The mapping network consists
of eight fully connected layers and receives its input directly from the Gaussian distribution
Z with a dimensionality of 512. The synthesis network consists of 18 convolutional layers,
two for each resolution (starting from 4× 4 up to 1024× 1024), and receives a learned con-
stant as an input, instead of sampling from Z. The mapping network is a fully connected
network that encodes the original latent vector into an intermediate latent space denoted
by W, which does not have to follow the original probability distribution Z. This new
vector in the intermediate latent space is called the style vector and is then transformed
and incorporated into each block of the generator model after the convolutional layers via
an operation called adaptive instance normalization or AdaIN, which encodes the w vector
from the mapping network into the generated images. An AdaIN module is incorporated
into each convolutional layer in the synthesis network, defining the visual expression of
the characteristics in that level [27]. AdaIN is a type of instance (or contrast) normalization
used for style transfer between images [28]. AdaIN receives the convolutional feature
maps of two image inputs (which are tridimensional matrices), a content input x and a
style input y, and performs style transfer from y to x by aligning the mean and variance
of each channel of x to match the mean (µ) and variance (σ) of each channel of y. AdaIN
does not depend on learned parameters; instead, it normalizes the input x with σ(y) and
µ(y). In other words, AdaIN performs style transfer in the feature space by normalizing
the channel-wise mean and variance of specific feature maps given by Equation (1):

AdaIN(x, y) = σ(y)
(

x− µ(x)
σ(x)

)
+ µ(y) (1)

In the context of StyleGAN, the style vector w is transformed by a fully-connected
layer into scale and bias terms for each channel that corresponds to the σ(y) and µ(y) terms
for the AdaIN operator. The AdaIN operator standardizes the feature map output of each
convolutional layer into a Gaussian distribution; then scales and bias them using the σ(y)
and µ(y) parameters computed from w. In StyleGAN, the style y is computed from vector
w instead of an image’s feature map. Thus, the information from w is translated to a visual
representation, allowing w to control styles in the generated images.

In a traditional GAN, the generator receives the latent vector Z through the input layer.
The style-based generator omits the input layer and starts from a learned constant instead.
The latent vector z is fed to a non-linear mapping network f : Z → W which produces
w ∈W. Learned affine transformations then specialize w to styles y that control the AdaIN
on each convolutional layer. Each feature map of x is normalized separately and scaled
and biased using the components of style y. This allows the model to compute spatially
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invariant styles for each layer for unsupervised style-transfer. This means that different
styles of the image are encoded into a specific style latent vector for each layer, starting from
the coarse styles of lower resolutions and ending in the fine styles of higher resolutions.
Explicit noise is broadcast to all feature maps and added to the output of the convolution,
to generate stochastic detail in the resulting images. The input for the generator can be
encoded in an 18× 512 style matrix, on which the learned styles obtained from AdaIN are
encoded into a specific style vector within the matrix and no longer entangled. Each row
within the style matrix corresponds to a style vector that controls a specific style in the
output image.

The synthesis network works on nine resolutions, from 4× 4 to 1024× 1024. For each
resolution, there are 2 convolutional layers, meaning that the network consists of 18
convolutional layers in total. The resulting latent representation in w is actually an 18× 512
matrix with a row-vector for every convolutional layer that encodes a different feature style
of the image. The authors in [18] noted that we can visually identify general characteristics
in the encoded styles of W, according to the resolution of the convolutional layers involved
in their encoding. We can observe that lower resolution layers (the first four row-vectors
in the matrix) encode coarse styles. Middle resolution layers (the next four row-vectors)
encode “middle styles.” High resolution layers (the last ten row-vectors) encode “finer
styles.” This allows for style transfer within w latent matrices, as seen in Figure 1.

Figure 1. Two sets of images were generated from their respective latent code (sources a and b); the
rest of the images were generated by copying a specified subset of styles from source b and taking
the rest from source a. Copying the styles corresponding to coarse spatial resolutions (42–82) brings
high-level aspects of source b (such as general face shape and shape) while finer and middle aspects
remain from source a. Middle resolution styles (162–322) from b bring specific details, such as subtle
facial details, and fine styles (642–10242) principally bring the color scheme. Adapted from [18].

2.4. Deep Interactive Evolution

DeepIE is a novel approach to the artifact generation problem that combines IEC
and GANs to avoid some of the disadvantages of traditional IEC [10]. DeepIE follows
the structure of a simple interactive genetic algorithm (IGA) [29], where the genotype
is the latent vector z sampled from a Gaussian distribution fed to the GAN, and the
phenotypes are the generated images. DeepIE is a form of simulated breeding that relies
on evolutionary operators such as crossover and mutation. The crossover and mutation
operators are done at the genotype level, where the components of the latent vector are
the alleles. The rationale behind DeepIE is that the trained generator of a GAN can be
used as a map between genotype and phenotype within a particular domain. The latent
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space of the generator becomes the search space of the IGA. The objective of the DeepIE
system is to map the search space of the IEC to the psychological search space in the user’s
mind. This is the main conceptual appeal of DeepIE compared to other IEC techniques:
better artifact representations and a learned search space where every point corresponds
to viable artifacts. The generative model produces an initial population of n individuals
from random latent vectors. The user selects the images of their preference. The latent
vectors of the selected images are included in the mating pool. Pairs of images are selected
through random choice and (through uniform crossover and mutation) their respective
latent vectors are used to create a new population of latent vectors. The new population
can be enriched by the introduction of foreigners. The new latent vectors are used as input
for the generative model to create a new set of images. The user is then free to select images
from the new population and continue the iterative process. The end condition can be
either the user’s decision to stop or a maximum number of generations achieved.

However, DeepIE still faces some challenges. The principal problem is that traditional
GAN generator usually presents feature entanglement in their latent spaces and vectors.
In the context of generating images, this means that single visually recognizable features
may be entangled within multiple variables of the latent code. Thus, there is no way to
modify the latent code in a way that selectively alters a specific feature. This poses a chal-
lenge for conducting genetic operators such as crossover in the latent vectors of the model.
For example, a crossover in the genotype of the parents (two latent vectors from Z) may
not translate into a satisfactory combination in the phenotype of the children. A crossover
between latent vectors presenting entanglement may lead to non-intuitive results.

3. Solution Model
3.1. StyleGAN for Art Generation

For this study, we implemented the DeepIE algorithm to work with the style-based
generator of a StyleGAN model trained to generate visual art, particularly of the western
academic canon. Two versions were implemented: the original DeepIE, as described in [10],
and our modified version for the StyleGAN architecture, which we named StyleIE.

3.1.1. The WikiArt dataset

The WikiArt website has a substantial collection of historical artworks consisting of
80,000 high-resolutionimages that encompass the following styles: abstract art, abstract
expressionism, art informal, art nouveau (modern), baroque, color field painting, cubism,
early renaissance, expressionism, high renaissance, impressionism, magic realism, man-
nerism (late renaissance), minimalism, naive art (primitivism), neoclassicism, northern
renaissance, pop art, postimpressionism, realism, rococo, romanticism, surrealism, sym-
bolism, and Ukiyo-e [30]. Table 1 shows the distributions of images by artistic style on the
WikiArt dataset.

3.1.2. Style-Based Generator on the WikiArt-Dataset

We trained a StyleGAN model using the WikiArt dataset, maintaining the same
parameters and training configurations used in [26]. The resulting images resembled
artistic style, and while they may still suffer from some of the distortion endemic to GAN-
generated images, those distortions are more problematic in photo-realistic face generation
than in the case of neural art. Some authors have even argued that these distortions can be
unique components of the aesthetics of neural art [31]. Moreover, the feature separation
into three levels of styles observed in [18] still holds in the WikiArt trained model, as seen
in Figure 2.
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Table 1. Images by artistic style on the WikiArt dataset.

Art Style Number of Images Percentage

Color Field Painting 1258 1.53
Surrealism 4799 5.84

Neoclassicism 2700 3.28
Realism 10,090 12.28
Baroque 3992 4.86

Romanticism 6569 7.99
Rococo 1928 2.34

Art Informel 969 1.17
Magic Realism 1011 1.23

Symbolism 4063 4.94
Naive Art (Primitivism) 2026 2.46
Abstract Expressionism 2091 2.54

Pop Art 1129 1.37
Expressionism 5844 7.11

High Renaissance 1275 1.55
Impressionism 121,641 14.81

Minimalism 1267 1.54
Cubism 1686 2.05

Abstract Art 1006 1.22
Post-Impressionism 5998 7.30

Mannerism (Late Renaissance) 1192 1.45
Northern Renaissance 2405 2.92

Art Nouveau 4163 5.06
Ukiyo-e 1178 1.43

Early Renaissance 1330 1.61
Total 82,133 100

Figure 2. Copying the styles from coarse spatial resolutions (42–82) brings the theme and forms
of source b while retaining the composition and texture from source a. Middle resolution styles
(162–322) from b to a bring the composition from b and maintain the forms and texture of a. Fine
resolutions (642–10242) brings only the color, texture and pictorial style from b, while leaving the rest
of the image intact.

3.2. Implementing DeepIE on the Style-Based Generator
3.2.1. Original DeepIE

For this study, we adapted the DeepIE algorithm to work with the style-based gen-
erator of a trained StyleGAN model. Our implementation did not differ substantially
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from the one used in [10] and described in Section 2.4. The population has a constant
size of 20 individuals and is randomly initialized. The user can select any number of
individuals from the current population to form the mating pool. Pairs of individuals
are selected through random choice to serve as parents to the children individuals of the
next population; 20 pairs are randomly selected to generate 20 new individuals through
crossover and mutation on their z latent vectors.

In their work [10], the authors recommend using spherical linear interpolation (slerp)
as a crossover operator to maintain the expected distribution of the latent space. Interpola-
tion between latent vectors is a common way of exploring and visualizing the latent space
of generative networks [32]. Utilizing it as a crossover operator is the natural extension
of this practice for DeepIE. For this reason, we employed spherical linear interpolation
(slerp) [33] as the crossover operator for our implementation. Let a and b be vectors; t
is the interpolation amount parameter where 0 ≤ t ≤ 1 and Ω = arccos (a · b); the slerp
parameter is given by Equation (2):

Slerp(a, b, t) =
(

sin (1− t)Ω)

sin Ω

)
a +

(
sin (tΩ)

sin Ω

)
b (2)

We employed the mutation operator with 50% probability and mediated by a strength
parameter set by the user. Mutation is applied as a vector of random noise that is added
to the latent vectors. The strength parameter is a coefficient between 0 to 1 that controls
the magnitude of the noise vector. We also allowed the user to decide the number of
foreign individuals to include in the next population. Foreign individuals take the place of
children, so the population size remains constant. In our case, the foreign individuals were
generated by randomly sampling from the Z latent space. This way the user could obtain
novel options for selection in case the population becomes too homogeneous or if it does
not include interesting or useful individuals.

In our DeepIE implementation, we treat the style-based generator as any other black
box GAN generator. StyleGAN accepts latent input vectors z of 512 m length. If we
assume the rest of the model as a black box, the output of the model is a 1024× 1024 image.
The vector input then takes the role of the genotype and the resulting image becomes the
phenotype. Using this approach, the DeepIE allows us to treat each variable in vector z
as an allele and apply genetic operators on them. First, the generative model produces an
initial population Z of n individuals from random latent vectors sampled from the normal
distribution N(µ, σ2). Then, a population of images is generated by G(Z). The user selects
the images S of their preference, which adds to the mating pool. The next step is to create
a new generation Z of latent vector individuals z. For every z in Z we randomly choose
two parents from the mating pool and pair them to generate a new child. This child is
generated by slerp crossover between the parents and then receives mutation with a 50%
probability, mediated by the strength parameter set by the user. The user selects a number
of foreigners F sampled from N(µ, σ2) to be introduced in the new generation, taking the
place of a child, so the size n remains constant. The new population of latent vectors Z
is used to generate a new set of images G(Z). The user is free to continue the iterative
evolutionary process until he decides to stop or a maximum number of generations is
reached. Algorithm 1 and Figure 3 outline our implemented DeepIE iterative process.
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Figure 3. DeepIE Iteration: First, latent vectors enter the StyleGAN generator to produce images. Next, the user selects the images
of their preference. Third, the mating pool consists of corresponding vectors of the selected images. Pairs of parents are formed
by random choice; enough pairs are formed to generate a complete new population. Fourth, the new population of latent vectors
is created through the crossover between the parent pairs. Then the population is mutated and foreign individuals are introduced
through migration. Last, the new population of latent vectors enters the generator to produce new images.

3.2.2. Style-Based DeepIE

The literature reports that giving users the ability to focus the evolution on a partic-
ular phenotypic feature of the individuals can be beneficial for the performance of IEC
algorithms [34,35]. For this reason, we believe that DeepIE could benefit from the partic-
ular architecture of the style-based generator and offer the user more direct control over
specific image features. In our DeepIE implementation, the population Z of individuals in
a generation is an n×m matrix where n is the number of individuals and m is the length
of the latent vectors. In our proposed modification, the population of individuals W is an
n× l × m matrix where n is the number of individuals, l is the number of style vectors
and m is the length of those vectors. This opens the way to, instead of naively applying
the crossover operator on the latent vector z, applying the crossover at the intermediate
matrix w. We applied the operator row-wise among the two style matrices of two parents
(see Figure 4). In StyleIE, individuals are two-dimensional latent matrices of size l ×m.
Every row li of length m encodes a particular style of the resulting image. This means that
when applying crossover between two w individuals, crossover should only be applied
between corresponding li rows. Let wa and wb be our l ×m parent individuals. Every row
li of child wab will be generated by the crossover of row li in wa with row li in wb, from li to
ll . This way we ensure that the crossover operator is only applied between vectors that
encode the same feature style, so features will not be merged across different styles in the
resulting images. In other words, while in the original DeepIE the genotype is a vector of
512 dimensions, in our version, the genotype is a matrix of 18× 512 (however, it should be
noted that the crossover operations between two genotypes should only be done between
rows of the same level).
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Algorithm 1: DeepIE.
Defaults: m← 512, n← 20, p← 0.5, G ← trained StyleGAN generator.

Z ← n random individuals from N(µ, σ2) . Z is an n by m matrix
while not done do

images← G(Z)
S← individuals selected by user from Z
for zi in Z do

std← strength of mutation selected by user
zi ← mutation(CROSSOVER(S), std)

end
F ← number of foreigners selected by user
MIGRATION(F, Z)

end
function CROSSOVER(S):

a← random individual from S
b← random individual from S
t← random value from N(µ, σ2), where 0 ≤ t ≤ 1
return SLERP(a, b, t)

function SLERP(a, b, t):
Ω← arccos (a · b)
weighta ← sin ((1−t)Ω)

sin Ω

weightb ←
sin (tΩ)

sin Ω
return weighta × a + weightb × b

function MUTATION(s, std):
mutation← Bernoulli(p)
noise← vector of m length from N(µ, std)
return s + mutation× noise

function MIGRATION(F, Z):
for fi in F do

fi ← random individual from N(µ, σ2)
zn−i ← fi

end

Performing the crossover operators row-wise over the style vector of the w matrices
allows the user to have directed control over what feature to evolve. By restricting the
crossover operator to a particular set of style vectors, we can either manipulate coarse,
middle, and fine styles separately or evolve the image as a whole (see Figure 5). In our
implementation, for every new child created in a new generation, the crossover had 25% of
probability to be restricted to coarse style, 25% to middle styles, 25% to fine styles and the
final 25% of probability to be applied to all styles. We called this new algorithm style-based
DeepIE or StyleIE. Algorithm 2 outlines the StyleIE iterative process.
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Figure 4. StyleIE crossover diagram. In StyleIE, individuals are two-dimensional latent matrices of
size l × m. Every row li of length m encodes a particular style of the resulting image. When applying
crossover between two w individuals, crossover should only be applied between corresponding li
rows. Let a and b be our l × m parent individuals. This means that every row li of child ab will be
generated by the crossover of row li in a with row li in b, for every row li to ll .

Figure 5. Crossover operations over coarse, middle, fine and all styles.
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Algorithm 2: StyleIE.
Defaults: m← 512, n← 20, l ← 18, p← 0.5, Mn←mapping network of StyleGAN.

Z ← n random individuals from N(µ, σ2)
W ← Mn(Z) . W is an n by l by m matrix
while not done do

images← G(W)
S← individuals selected by user from Z
L← l by n by m empty matrix
for lj in L do

for wi in w do
lji ←Wij

end
end
for lj in L do

Z ← lj . Z is an n by m matrix
for zk in Z do

std← strength of mutation selected by user
zk ← mutation(Crossover(S), std)

end
lj ← Z

end
for wi in W do

for lj in L do
lij ← wji

end
end
F ← number of foreigners selected by user
MIGRATION(F, Z)

end
function CROSSOVER(S):

a← random individual from S
b← random individual from S
t← random value from N(µ, σ2), where 0 ≤ t ≤ 1
return SLERP(a, b, t)

function SLERP(a, b, t):
Ω← arccos (a · b)
weighta ← sin ((1−t)Ω)

sin Ω

weightb ←
sin (tΩ)

sin Ω
return weighta × a + weightb × b

function MUTATION(s, std):
mutation← Bernoulli(p)
noise← vector of m length from N(µ, std)
return s + mutation× noise

function MIGRATION(F, Z):
for fi in F do

fi ← random individual from N(µ, σ2)
zn−i ← fi

end



Entropy 2021, 23, 11 13 of 28

4. Methodology
4.1. Experimental Design

The experiments in [10] show that it is feasible to use DeepIE to guide the evolution
of a population of GAN-generated images in order to approximate a specific target. Our
interest was to study the potential of both DeepIE and StyleIE for art generation and creative
exploration. We also wanted to evaluate how they compared to each other. In order to do
this, we designed two user test experiments to evaluate and compare the performances of
the algorithms:

1. In the first experiment, volunteers were tasked to generate an artistic image belong-
ing to a determined genre and artistic style—in this case, an expressionist portrait.
The rationale behind this choice was to give the users a set of constraints to direct
their search, while still being open enough to allow them room for creative and artistic
expression. The expressionist portrait goal was chosen because expressionism is
a distinctive artistic style that is neither under nor overrepresented in the training
dataset (see Table 1). Thus, finding an instance of expressionist art in the search space
should be neither too easy nor too hard. On the other hand, portrait is one of the most
straightforward genres in painting, so we reduced some of the ambiguity inherent
to artistic tasks. Moreover, portrait is the most common paint genre in the WikiArt
dataset [36].

2. In the second experiment, volunteers were tasked to generate an artistic image re-
sembling a specific example, thereby introducing stronger constraints to the task.
Instead of asking them to generate an open-ended expressionist portrait, we asked
them to approximate a specific one: “The Scream” by Edvard Munch (see Figure 6).
It should be emphasized that the instruction was not to replicate the target image
but to approximate it instead.

Figure 6. “The Scream” by Edvard Munch (1893).

For both experiments, we asked the volunteers to perform the evolutionary process
until they believed they had created the most satisfactory image. Once they had finished,
they were asked to choose, from the pool of all selected images in every generation,
the image they considered to be the most successful for the assigned task. To keep the
duration of the activity within a reasonable time frame, we limited the experiments to a
maximum of 20 generations. Due to the fact that both experiments required familiarity
with artistic styles and genres, we decided that volunteers with artistic backgrounds would
be best suited for successfully completing the tasks. For this reason, we recruited senior
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undergraduate students from the School of Architecture, Art and, Design at Tecnológico de
Monterrey. The volunteers had familiarity with artistic styles and genres; however, they
did not have any previous experience with evolutionary interactive tools. For this reason,
before the experiment, we provided them with a video tutorial on how to use our system.

4.1.1. The AB/BA Test Design

We performed a user test experiment with an AB/BA crossover design. AB/BA
testing is a subtype of AB testing borrowed from medical literature [37]. AB tests are a type
of simple controlled experiment. In this kind of experiment, two versions of a system are
compared. These tests are useful for researching user experience and satisfaction. Version
A is usually the current version (DeepIE), while version B is modified in some respect
(StyleIE) [38]. In typical AB testing, users only see one of the two versions. In the AB/BA
test, a subgroup of users first test version A and then switch to version B, while another
subgroup starts with version B and then switches to version A. With AB/BA we can test
how the two versions compare to each other while observing if there are any differences
in performance that can be accountable for learning effect or user fatigue. It also has the
advantage of being able to directly ask the user what version of the algorithm they prefer.

We recruited 60 volunteers and divided them into two groups. Group 1 consisted of 20
volunteers that were assigned to experiment 1. Group 2 consisted of 40 volunteers assigned
to experiment 2. These groups contained enough individuals to yield valid results since
Nielsen and Landauer [39] concluded that the optimal number of test users in user testing
is 20. Following the AB/BA testing design, we divided both groups into two subgroups
of half the size of the original groups. These two subgroups were denominated AB and
BA. AB first performed the assigned task using DeepIE, then performed it a second time
using StyleIE. BA first used StyleIE, then switched to DeepIE (See Figure 7). Thus, each
user in both experiments completed the assigned task two times, using a different deep
interactive evolutionary system each time. After finishing the tasks, the users were asked
to select the image they considered to be the most successful and to fill a questionnaire
about their experience.

Figure 7. AB/BA test: The users are divided into two groups: The AB group first completes
experiment A (DeepIE) and then completes experiment B (StyleIE). The BA group starts with B and
continues with A.

4.1.2. The Questionnaire

IEC is a technique where a human user and an EC cooperatively optimize a target
system. For this to be possible, there must exist a mapping relation between the compu-
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tational search space of the EC and the psychological solution space in the user’s mind.
Users evaluate the individuals according to the perceived distance between the target in
their psychological space and the actual output of the system. The EC searches for an
optimal solution guided by that psychological distance [3]. From this, it follows that the
performance and success of an IEC system are highly dependent on the robustness of the
mapping between both the computational and psychological search spaces. However,
measuring and evaluating this relation can be challenging, since both involve the subjective
perceptions of the users [29]. For this reason, it is often necessary to employ subjective tests
and evaluations when measuring the success of IEC. Subjective self-evaluation through
questionnaires is standard practice among IEC research, and questionnaires similar to our
own have been used in IEC literature [10,29,34,40,41]. To assess user performance and
perception of our systems, we asked them to answer the following questionnaire:

• Answer the following question with respect to version A.

– Rate on a scale from 1 to 5 your success in the task.
– Rate on a scale from 1 to 5 how you perceive the usefulness of the program for

artistic and creative expression.

• Answer the following question with respect to version B.

– Rate on a scale from 1 to 5 your success in the task.
– Rate on a scale from 1 to 5 how you perceive the usefulness of the program or

artistic and creative expression.

• Answer the following question with respect to both versions.

– Which version do you consider better? Why?
– Did you employ any kind of strategy for achieving the goal? Explain.
– Do you have any observations about the creative process of the system?

Our questionnaire consisted of seven questions divided into three sections. The first
section is related to version A of the system employed and consisted of two rating questions.
The second section is similar to the first one, but belonging to version B instead. The third
section asked the user to take into account their comparative experiences with both versions
and three open questions were included. For this section, we were mainly interested in
assessing which system was preferred by the users. Part of our questionnaire was similar
to the one used in [10] since we were asking them to self-rate their success on the same
discrete scale. However, we also asked them to rate how they perceive the usefulness of
the systems for creative expression.

4.1.3. The Interface

The experiments were conducted remotely using Google Colab Notebooks. A simple
interface was implemented to display the current population and allow the user to select
the preferred individuals, and set the mutation strength and the number of foreigners for
each generation. Our Colab Notebooks and implementation code can be consulted in the
Supplementary Material.

5. Analysis of Results
5.1. Experiment 1

The objective of this experiment was to evaluate and compare the performances
and results of DeepIE and StyleIE in an open-ended problem with relaxed constraints.
For this experiment, we recruited 20 volunteers with artistic academic backgrounds. They
were divided into two subgroups, AB and BA, of 10 subjects each. The users in each
subgroup were asked to generate an expressionist portrait two times. AB generated the
first portrait with DeepIE and the second one with StyleIE. BA used the systems in reverse
order. The users persisted in the task until they believed they had found a satisfactory
image that fulfilled the requirements but had an upper limit of 20 generations to achieve it.
After generating the two images, they answered the questionnaire and chose which of all
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the selected images from every generation was the most satisfactory. The resulting images
can be seen in Figures 8–11. For comparing the means of obtained survey results between
each group, we employed t-test and analysis of variance (ANOVA) using the standard α
level of 0.05. Our raw data, as well as t-test and ANOVA calculations for this experiment,
can be consulted in the Supplementary Material.

Figure 8. Best images from the AB group using DeepIE.

Figure 9. Best images from the AB group using StyleIE.

Figure 10. Best images from the BA group using StyleIE.
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Figure 11. Best images from the AB group using DeepIE.

5.1.1. Quantitative Survey Analysis

We divided our volunteers into two groups following the AB/BA crossover design.
Each group consisted of 10 subjects. The AB group was asked to generate expressionist
portraits using DeepIE. Then they were asked to perform the task again using StyleIE
instead. The BA group performed the same tasks but switching the order of the systems.
After completion, both groups were asked to answer a survey. In the survey, they self-rated
(on a scale from 1 to 5) their success in achieving their goal with the system and how
useful they considered the system to be (1 to 5). Figure 12 shows the self-rated success
among groups and the perceived usefulness in experiment 1. The means of these values are
summarized in Table 2 across user groups and systems. ANOVA test showed no significant
difference between these groups.

Figure 12. Survey results from experiment 1.

Table 2. Group survey means.

Self-Rate Success Perceived Usefulness

AB DeepIE 3.9 4.3
AB StyleIE 3.5 3.8
BA DeepIE 3.9 3.7
BA StyleIE 3.7 3.6



Entropy 2021, 23, 11 18 of 28

In the survey we, also asked the participants to express the preference or ambivalence
for any of the systems. Results do not seem to strongly favor any specific system, as shown
in Table 3 and Figure 13.

Table 3. Preferences of participants.

AB Group BA Group Total

DeepIE 4 4 8
StyleIE 5 1 6

NA 1 5 6

Figure 13. Preferences by group.

5.1.2. Generations Ratio

To gain insight into how far into the evolutionary process the best image occurred, we
also measured the ratio between the generation the best image was found in and the total
number of generations. Figure 14 shows that the ratios are clustered close to 1, meaning
that the image continued to improve throughout the experiment. This is in accordance
with the findings of [10], who obtained similar results when evolving human faces with
DeepIE. ANOVA test did not find statistically significant differences among the ratios on
both groups and methods.

Figure 14. Best image generation ratio among groups.

Table 4 shows the mean values of total generations, generation of the best image, and
the ratio between them across both groups and methods.
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Table 4. Generation means.

Total Generations Generation of Best Image Ratio

AB DeepIE 10.7 8.3 0.794
AB StyleIE 10.4 7.9 0.783
BA DeepIE 8 6 0.750
BA StyleIE 7.4 5.8 0.783

When comparing the performance of the same individual when using DeepIE and
when using StyleIE, we employed a paired t-test. We found no significant difference
between the total number of generations between the two systems. The same was the case
with the generation of the best image found. However, the BA group arrived early to the
best image and had an overall lower number of generations with both systems. While
the t-test indicates a slight statistical difference among both groups, the variances in those
metrics were significantly higher in group AB, meaning that this could be just the effect of
an outlier (See Table 5).

Table 5. Generation variances.

Total Generations Generation of Best Image

AB DeepIE 19.78 20.67
AB StyleIE 17.6 6.766
BA DeepIE 4.66 3.33
BA StyleIE 1.15 1.28

We found no statistical evidence that the order of the experiments altered the results of
the survey or the duration of the process, suggesting that neither user fatigue nor learning
effect were major issues. We then proceeded to aggregate the results of DeepIE and SytleIE
in both groups (See Tables 6 and 7). We found no statistically significant difference between
the performance of DeepIE and StyleIE for experiment 1.

Table 6. Aggregated survey means.

Self-Rate Success Perceived Usefulness

DeepIE 3.9 4
StyleIE 3.6 3.7

Table 7. Aggregated generation means.

Total Generations Generation of Best Image Ratio

DeepIE 9.35 7.15 0.772
StyleIE 8.9 6.85 0.783

5.1.3. Qualitative Survey Analysis

In the survey, we asked the participants to explain the reason for their preference for
one system over the other or the lack thereof. Two participants reported that they chose the
second system they tried because of their accumulated practice at that point, suggesting
that learning effect had some impact on their decision. More “integration of the images,”
precision, and practicality were mentioned as the reasons for preferring StyleIE. A more
smooth “flow of the images” and more adaptability were listed as well as a reason for
preferring DeepIE.

In [10], the authors identified three strategies that surged spontaneously from the user
while using DeepIE:
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• Collect distinct traits: Identifying distinct traits of the target and selecting images that
present these traits. The process is continued until the desired traits are merged.

• Select best likeness: Identifying images that overall resemble more closely the target.
• Hierarchical trait selection: Similar to the first strategy, but focusing on one single trait

at a time.

We were curious if similar strategies would also naturally arise in our experiment,
so we asked in the survey if the participant had used some kind of strategy. Five users
reported strategies that resembled collect distinct traits and six users select best likeness.
Interestingly, four out of five users that used collect distinct traits preferred StyleIE, while
four out of six users that reported select best likeness preferred DeepIE. This could indicate
that strategies based on traits can be more suitable for StylyIE, while strategies based
on general likeness work better on DeepIE. The rest of the users could not identify any
particular strategy.

5.2. Experiment 2

The objective of this experiment was to evaluate and compare the performances and
results of DeepIE and StyleIE in a closed-ended problem with strict constraints. For this
experiment, we recruited 40 volunteers with an artistic academic background. They were
divided into two subgroups AB and BA, of 20 subjects each. The users in each subgroup
were asked to approximate the famous expressionist painting “The Scream” by Edvard
Munch. As in experiment 1, the AB group first completed the task with DeepIE, and then
did it again with StyleIE. The BA group switched the order of the systems. The users
persisted in the task until they believed they had found a satisfactory image that fulfilled
the requirements but had an upper limit of 20 generations to achieve it. After generating
the two images, they answered the questionnaire and chose which of all the selected
images from all generations was the most satisfactory. The resulting images can be seen
in Figures 15 and 16. Our raw data, as well as t-test and ANOVA calculations for this
experiment, can be consulted in the Supplementary Material.

Figure 15. Image selected as the most successful by the users in experiment 2 using DeepIE.
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Figure 16. Image selected as the most successful by the users in experiment 2 using StyleIE.

5.2.1. Quantitative Survey Results

After completion of experiment 2, both groups AB and BA were asked to answer a
survey. In the survey, they self-rated (on a scale from 1 to 5) their success in achieving their
goal with the system and how useful they considered the system to be (1 to 5). Figure 17
shows the self-rated success among groups and the perceived usefulness in experiment 2.

Figure 17. Survey results from experiment 2.

Table 8 shows the mean scores of self-rate success and perceived usefulness for both
groups and systems. To measure whether the order of use had any impact on the reported
results, we first performed ANOVA testing among groups and systems in the scores
of self-rated success and perceived usefulness. ANOVA testing showed a statistically
significant difference between the means. Then we proceeded to compare the results of
AB DeepIE with BA DeepIE and AB StyleIE with BA StyleIE. In order to do this, we used
an independent t-test, since the compared results were from different individuals. We
found no statistically significant differences in any of the means, except in the perceived
usefulness of StyleIE with both groups. The implications of these results are discussed in
Section 6.

Table 8. Group survey means.

Self-Rate Success Perceived Usefulness

AB DeepIE 2.75 3.15
AB StyleIE 3.7 4.4
BA DeepIE 2.65 2.95
BA StyleIE 3.8 3.9
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To measure how both systems compared to each other in the survey results, we
compared the rating scores among DeepIE and StyleIE in the same group. StyleIE presented
higher mean scores for both self-rated success and perceived usefulness in both AB and
BA (See Tables 9 and 10). Since we compared results within the same users, we employed
paired t-test. Results from t-tests showed that there is a statistically significant difference in
the rating of both systems among the two groups.

Table 9. AB group survey means.

Self-Rate Success Perceived Usefulness

AB DeepIE 2.75 3.15
AB StyleIE 3.7 4.4

Table 10. BA group survey means.

Self-Rate Success Perceived Usefulness

BA DeepIE 2.65 2.95
BA StyleIE 3.8 3.9

We proceeded to aggregate the results of both groups and compare the means.
The mean ratings of questions for StyleIE were higher than those of DeepIE (See Table 11).
Paired t-tests showed that the differences between those means were statistically significant.

Table 11. Aggregated survey means.

Self-Rate Success Perceived Usefulness

DeepIE 2.7 3.05
StyleIE 3.75 4.15

As in experiment 1, we also asked the participants to express the preference or ambiva-
lence for any of the systems. Five participants reported preferring DeepIE, 30 participants
preferred StyleIE and five had no preference; 75% of test users expressed preference of
StyleIE over DeepIE or no preference (see Figure 18).

Figure 18. Preferences by system.

5.2.2. Generations Ratio

As in experiment 1, we kept track of the ratio between the generation of the best
imaged that was generated and the total number of generations. Figure 19 shows the
distribution of ratios in both groups with the two systems. ANOVA test found a statistically
significant difference between the means of the groups and systems. Table 12 shows the
mean values of total generations, generation of best image and the ratio between them
across both groups and systems.
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Table 12. Generation means.

Total Generations Generation of Best Image Ratio

AB DeepIE 12.2 8.8 0.67
AB StyleIE 10.45 7.8 0.73
BA DeepIE 12.68 6.78 0.56
BA StyleIE 13.47 9.89 0.75

We compared the total number of generations, the generation of the best image found,
and the ratio between them with both DeepIE and StyleIE in the AB group using paired
t-tests. We found no statistically significant differences between the means of total number
of generations, the generation of best image, and ratio of DeepIE to StyleIE in the AB group.
In the BA groups, there was no statistically significant difference in the total number of
generations of DeepIE and StyleIE, but we found a statistically significant difference in
the means of the best generations found and the ratio. StyleIE found the best image later
than DeepIE, but its ratio was closer to 1. The authors in [10] interpreted a ratio close to 1
as a sign that images kept improving the longer the evolutionary process was continued.
When we aggregated the results of both groups we found no statistical difference in the
total number of generations and the generation of the best image found in DeepIE and
StyleIE. However, there is a statistically significant difference in the ratios of both systems.
The ratios in StyleIE were closer to 1 than those in DeepIE.

Figure 19. Best image generation ratio among groups.

5.2.3. Qualitative Survey Analysis

In the qualitative part of the survey, users expressed their opinion about the systems.
We asked them to explain their reasons for a preference of one system over the other. We
showcase some of the feedback reported:

• A participant commented that they preferred StyleIE because it reflected better their
intention when trying to combine the image.

• Another expressed that StyleIE led to more interesting variations and could be useful
to explore novel ideas.

• Another expressed that StyleIE was more predictable.
• A user noted that while he preferred DeepIE, he often found that an element he wanted

to preserve got lost.
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We also asked them about the strategies that they employed when conducting the
evolutionary process. Most users reported using a strategy resembling collect distinct traits
or hierarchical trait selection, regardless of their preferred system.

6. Discussion

We found that users performed equally using DeepIE and StyleIE in an open-ended
task with relaxed goal constraints, but StyleIE outperforms DeepIE in a closed-ended task
with strong goal constraints. In the first experiment, the totality of users showed no strong
preference for either system, suggesting that both were equally effective in aiding them
towards the desired goal. In the second experiment, 75% preferred StyleIE over DeepIE,
suggesting that StyleIE is more useful the more specific the target. Our self-rated success
mean scores in both experiments surpass those reported in [10] for generating a specific
celebrity face (mean score of 2.2 for self-rated success) and are similar to those obtained for
generating a shoe design (mean score of 3.8 for self-rated success). This could be because
modeling a human face using DeepIE could be very challenging since they are operating in
an entangled latent space. However, since the tasks evaluated are different and [10] did
not provide the raw data of their experiments, we can not validate the similarity of our
results with theirs using ANOVA testing. Thus, we should take any similarity between
them cautiously.

The scores for the perceived usefulness of the system were generally good in ex-
periment 1 for both systems. In experiment 2, the scores favored StyleIE. We found no
correlation between self-rated success and perceived usefulness, meaning that the users
judged the usefulness of the system independently of their perceived performance with
it. In the qualitative part of the survey, users indicated interest and excitement for the
evolutionary system, which in conjunction with the reported usefulness, suggests that
deep interactive evolutionary systems have a potential market and applications in the
creative industries.

According to the best image generation ratios in experiment 1, the best image was
usually found in the last generations, which is a positive indicator that the subjective quality
of images kept improving for the users. This indicates that the systems are conductive for
user-guided search and that the systems have the potential to keep improving the images
in subsequent generations. In experiment 2, ratios were closer to 1 when using StyleIE than
when using DeepIE. This suggests that StyleIE is more conducice to the search when the
goal is more strongly constrained.

Survey results in experiment 1 indicate that preference for one or another system may
be correlated with the chosen strategy of each user. Most users that preferred StyleIE used
strategies based on collecting specific traits in the desired image, reporting a more precise
robust combination of the traits. On the other hand, users that preferred DeepIE reported
a more steady flow of exploration and employed strategies based on general likeness.
This can be interpreted as that DeepIE could be more suitable for best likeness strategies
that evolve the generality of the image and StyleIE could favor trait selection that offers
the possibility of fine-tuned evolution. However, experiment 2 seems to contradict this
idea, since most users preferred trait-based strategies regardless of their preferred system.
An explanation for this could be that in experiment 1, the relaxed constraints gave the users
more freedom to explore different strategies, while the stronger constraint of experiment 2
prompts the users to employ trait-based strategies. This is an intriguing matter indeed and
more research on the optimal strategy for deep interactive evolutionary systems should
be worthwhile.

7. Conclusions

IEC can be used to embed the user’s preference as guidance for a search algorithm and
deep generative models can learn distributions of large collections of human knowledge
and artifacts to later synthesize plausible instances from them. DeepIE was proposed as a
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new paradigm for combining IEC with deep generative models; however, its suitability for
creative and artistic exploration remained to be evaluated under research conditions.

This study implemented DeepIE with the style-based generator of a StyleGAN model
trained to produce works of visual art. We discovered that the style-based generator
allowed us to implement DeepIE in a novel way that takes advantage of the disentangled
intermediate space in the mapping network, allowing us to perform genetic operators
among specific feature style vectors. We named this modification StyleIE.

Finally, we tested the performances of DeepIE and StyleIE in two experiments. The first
experiment consisted of a task with relaxed goal constraints. The second experiment had
a more strongly constrained goal. DeepIE and StyleIE performed equally under relaxed
constraints. StyleIE outperformed DeepIE under stronger constraints. Due to its style-based
architecture, StyleIE provides more control over specific features of the generated images.
Under the relaxed constraints, the area of the global optima is wider, meaning that more
individuals satisfy the constraint requirements and there is no need for fine control over
specific features. Therefore, StylIE offers no advantage to DeepIE under those conditions.
However, if we constrain the problem, the area of the global optima narrows, meaning that
fewer individuals are acceptable solutions. In this case, control over specific features offers
a significant advantage to the users.

Research on deep interactive evolutionary systems is still in its infancy. However,
we have obtained preliminary evidence that deep interactive evolutionary systems have
potential applications in creative and artistic tasks, and that our proposed method, StyleIE,
offers a significant advantage over DeepIE under certain goal conditions. This could lead
to developing interesting applications in diverse fields related to the creative industries
such as design, art, and multimedia projects.

7.1. Contributions

• To our knowledge, this is the first study that explores the potential of deep interac-
tive evolutionary systems for creative exploration using students from a school of
architecture, art, and design.

• This is also the first study to implement DeepIE within the style-based generator,
taking advantage of the intermediate space of the mapping network to produce a more
complex genotype and offering the possibility of applying crossover over disentangled
features.

7.2. Limitations

The user interface constitutes a huge limitation, as was also noted in [10]. A more
amicable design may improve the performance and commodity of the users. More user-
friendly features, such as the ability to save promising items for later use and a ranking
system that prioritizes certain items in the “mating pool” could provide a better experience
for the users. On the other hand, our questionnaire was rather simple in its design and
scope. We did not employ cross-check questions or redundant questions to validate the
consistency and coherency of the answers.

We centered our experiments around a particular artistic style, expressionism. This
was done for practical and time limitations. While we did not test the performance of the
systems when optimizing for other styles, in principle, there is no reason to believe that
the results should not generalize. As long as the target style in question is present in the
training data, it should be possible to guide the evolutionary process towards it.

Another limitation is that we did not evaluate the usability of the tool. We leave open
the possibility of addressing this issue in future work.
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