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Abstract: The combination of network sciences, nonlinear dynamics and time series analysis
provides novel insights and analogies between the different approaches to complex systems. By
combining the considerations behind the Lyapunov exponent of dynamical systems and the average
entropy of transition probabilities for Markov chains, we introduce a network measure for character-
izing the dynamics on state-transition networks with special focus on differentiating between chaotic
and cyclic modes. One important property of this Lyapunov measure consists of its non-monotonous
dependence on the cylicity of the dynamics. Motivated by providing proper use cases for studying
the new measure, we also lay out a method for mapping time series to state transition networks
by phase space coarse graining. Using both discrete time and continuous time dynamical systems
the Lyapunov measure extracted from the corresponding state-transition networks exhibits similar
behavior to that of the Lyapunov exponent. In addition, it demonstrates a strong sensitivity to
boundary crisis suggesting applicability in predicting the collapse of chaos.

Keywords: Lyapunov exponents; state-transition networks; time series analysis; dynamical systems

1. Introduction

Complex network theory has had many interdisciplinary applications in different
domains of social sciences, epidemiology, economy, neuroscience, biology etc. [1]. In recent
years different network approaches have been also developed for nonlinear time series
analysis. For a detailed review see [2]. Proper mapping between a discrete time series and
a complex network in order to apply the tools of network theory in an efficient manner is
not a trivial question. In case of continuous-time dynamical systems it can be even more
complicated. There are several approaches to this problem, here we mention three large cat-
egories [2]: (1) Proximity networks are created based on the statistical or metric proximity
of two time series segments. The most studied variant of proximity networks are recurrence
networks [3]. These have found many applications, in the characterization of discrete [4]
and continuous dynamical systems [5,6], in the classification of medical signals [7], and in
the analysis of two-phase flows [8]. A special version are joint recurrence networks, which
were developed for the detection of synchronization phenomena in coupled systems [9].
(2) Visibility graphs capture the convexity of subsequent observations [10]. The methods of
natural and horizontal visibility graphs belong to this class. Visibility graphs were used for
the analysis of geophysical time series [11], for the characterization of seismic activity [12],
two-phase fluid flows [13], and for algorithmic detection of autism [14]. (3) State-transition
networks (STN) represent the transition probabilities between discretized states of the
dynamics. These can be threshold-based networks [15] or ordinal partition networks [16].
These also have found many applications in the domain of biological regulatory net-
works [17], study of signals of chaotic circuits [18], electrocardiography [19], economic
models [20] and climate time series [21]. STNs are in fact an equivalent representation of
discrete-time finite-state Markov chains with a time-homogeneous transition matrix [22].
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The adjacency matrix of the STN is the transition matrix of the Markov chain, and it is
a right stochastic matrix (a real square matrix, with each row summing up to one [23]),
having many known properties [22], see Section 2.1 for details. One of the frequently
used entropy-type measures for characterizing Markov chains is the Kolmogorov–Sinai
entropy [24].

While these approaches have been extremely useful - as shown by the wide range of
applications, people have always concentrated on applying graph theory tools to obtain a
new understanding of the dynamics, employing several traditional network measures [1,2].
Here we would like to take an inverse step and generalize a prominent measure from
nonlinear dynamics theory on STNs. The Lyapunov exponent is one of the most used
quantities for analyzing dynamical systems [25]. However, its estimation for time series,
when the dynamical equations are not available, is seldom trivial [26]. Here we introduce
an analogous measure on STNs that can become an effective measure also in time series
analysis. Inspired by the theory of dynamical systems we look at the trajectory length of a
system evolving over discrete time according to the transition probabilities defining its STN.
We show that by associating the appropriate length measure to the transitions the combined
ensemble and time average of the length of a single step yields the Kolmogorov–Sinai
entropy. The new quantity, we name it Lyapunov measure, is defined in analogy to the
Lyapunov exponent by estimating the variance of trajectory lengths during a random walk
over the network. We find that the Lyapunov measure is able to distinguish between peri-
odic and chaotic time series, and detect furthermore crisis-type bifurcations by presenting
pronounced peaks in the vicinity of these parameters.

After a short description of the STNs, we present the new Lyapunov measure and its
properties. We test and compare its behaviour with the Kolmogorov–Sinai entropy on a
theoretical network model with cyclic properties, the discrete-time Henon map [27], and
the continuous-time Lorenz system [28].

2. Results
2.1. State-Transition Networks

Mapping a dynamical system into an STN requires us to assign the different states
of the dynamics to certain nodes of the network [15,16]. Directed edges of the network
correspond to transitions between the discrete (or discretized) states of the system, charac-
terized by the transition probability pij from state i to j, where the probability of leaving
the node equals to one (we have a right stochastic matrix),

∑
j

pij = 1 , pijk = pij pjk . (1)

Trajectories consisting of several consecutive timesteps of the dynamics determine a path
between distant nodes i and k of the STN, with the probability of selecting a particular
path, e.g., i → j → k, given that the trajectory starts from node i is hence being given
by the product of the respective transition probabilities. The transition probabilities, pij
introduced in Equation (1) are conditional by their definition assuming that the starting
node of the transition is i. Therefore, the non-conditional probability of visiting edge i→ j
can be expressed by the Bayes-formula,

qij = xi pij , (2)

where xi is the probability of residing in node i.
Analogously to geometric distance, one may assign a length lij as weights to the

respective edges [29], which takes low values for high probabilities and vice-versa:

lij = − ln pij , Lijk = lij + ljk . (3)

The total length Lijk of such a i→ j→ k path is then given by the sum of lengths of the links
along the path. A time series can hence be encoded by an STN as described above. Nodes
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of the network represent the spatial structure, while the time-like behavior is encoded by
weighted and directed edges.

Mathematically, the weighted adjacency matrix of transition probabilities, (P)ij = pij,
determines the time evolution of an ensemble of trajectories on the STN:

x(t + 1) = P>x(t) , ||x(t)|| = 1 , (4)

where x(t) = (x1(t), . . . , xi(t), . . . , xN(t))>, and xi(t) denotes the probability of finding the
system in state (node) i at time t. This process may also be seen as a time-homogeneous
discrete-time Markov chain with a finite state space [24]. For STNs the stationary distribu-
tion is given by the renormalized eigenvector corresponding to the unit eigenvalue,

P>x∗ = 1 · x∗ , x∗(t + 1) = x∗(t) = x∗ , ||x∗|| = 1 . (5)

Note that since the evolution operator P> of the STNs considered here is a stochastic irre-
ducible matrix [23], its largest eigenvalue is always 1 and the existence of the corresponding
positive eigenvector is guaranteed by the Perron-Frobenius theorem [30]. For aperiodic
transition matrices the long-term distribution is independent of the initial conditions, the
system evolving over time to the stationary state x∗. In case of periodic solutions however
the long-time averaged distribution is also given by the stationary solution,

lim
t→∞

1
t

t

∑
k

x(k) = x∗ . (6)

2.2. Lyapunov Measure

In the context of dynamical systems theory, Lyapunov exponents are the best known
quantities used to characterize the system’s behavior [25,26]. Here, we introduce an
analogous quantity for STNs. Given a STN, one may define trajectories similarly to random
walks on graphs: for any given initial state i the next state j is chosen randomly, using the
transition probabilities pij. As described above, the weighted length of such a trajectory
segment is given by Equation (3). By concatenating t subsequent segments one may
construct an ensemble of different trajectories each of length

L(t) =
t

∑
k=1

lk , (7)

where lk is the length associated to the kth segment in the trajectory. For a large enough
ensemble, in the limit of long times, both the average of the total path length 〈L〉 and its
variance ∆L scales linearly with the total number of steps, t (see the Erdős-Rényi-type
weighted random graphs in Figure 1A and the respective average lengths 〈L〉 and variance
∆L as a function of time in Figure 1B):

〈L(t)〉 ∝ t , ∆L(t) = 〈L(t)2〉 − 〈L(t)〉2 ∝ t . (8)

As we shall see in the following the first observation allows for the measurement of the
Kolomogorov–Sinai entropy [24] for STNs, while the second one enables us to define a
novel network measure, similar in spirit to the Lyapunov exponents.

While the above scaling behavior offers an intuitive picture of the properties of average
path length and its variance, an alternative approach allows a straightforward mathematical
treatment and facilitates computation to a great extent. In the limit of infinitely large
ensemble of infinitely long walks the problem reduces to a basic Markov process. Using
the definition of the total trajectory length (7), one can easily show that the asymptotic
behavior, that is when t→ ∞, of the ensemble averaged path length,
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〈L(t)〉 → 〈l〉t , lim
t→∞
〈l(t)〉 = −

N

∑
i,j

q∗ij ln pij = 〈l〉 (9)

grows linearly in time. The scaling factor, given by the average edge length of the STN, 〈l〉,
weighted by the non-conditional occurrence probability, q∗ij = x∗i pij, of visiting the edge
i→ j in the asymptotic limit (compare Equation (2)), turns out to be equivalent with the
Kolmogorov–Sinai entropy for Markov chains [24],

SKS = lim
t→∞

〈L(t)〉
t

= 〈l〉 , (10)

measuring the average entropy of transition probabilities, with respect to the stationary
distribution x∗i given by Equation (5).

Figure 1. Dependence of the Lyapunov measure defined in Equation (14) on the cyclicity parameter, c, for complete
graphs of different sizes, N, edges associated with probabilities defined in Equation (15) and lengths expressed by
Equation (3). (A) Examples of graphs with N = 10 nodes using different cyclicity parameters, c. The probabilities,
pij, associated with edges are represented by their width. (B) Dependence of the mean, 〈L〉, and variance, ∆L, of trajectory
length (see Equation (8)) on the number of steps, t, during simulated random walk on graphs similar to those in panel (A).
The size of the networks is N = 50. Data points correspond to ensemble averages of 1000 independent trajectories. (C) The
Lyapunov measure as a function of the cyclicity parameter, c, for graphs similar to those in panel (A). Noisy lines with
markers represent simulation results of random walk on these graphs. The measure is calculated according to Equation (14)
using ensemble averages of 1000 trajectories. Each trajectory includes 1000 steps. Starting nodes are chosen randomly with
uniform probability and the first 500 “thermalization” steps are ignored when estimating trajectory lengths. Dashed lines
represent simulation results on similar graphs by estimating the variance of the edge length according to Equation (13) with
〈C〉 = 0. Continuous lines represent the analytical model (see Equation (20)).
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Similarly, due to the intrinsic diffusive nature of the envisioned process the variance
of the trajectory length, ∆L, also grows linearly with the number of steps, t. The average
squared path length,

〈L2(t)〉 → 〈l2〉t + 〈l〉2t2 − 〈l〉2t + 〈C〉t , lim
t→∞
〈l2(t)〉 =

N

∑
i,j

q∗ij ln2 pij = 〈l2〉 , (11)

can be given in terms of the average lengths 〈l〉 and squared lengths 〈l2〉, and of the
asymptotic average of the correlation function C(k, k′) for timesteps k, k′ → ∞,

t

∑
k 6=k′

C(k, k′)→ 〈C〉t , C(k, k′) = 〈l(k)l(k′)〉 − 〈l(k)〉〈l(k′)〉 . (12)

The variance of the total path lengths

∆L(t) = 〈L2(t)〉 − 〈L(t)〉2 = σ2
l t + 〈C〉t , (13)

is hence proportional to the variance of edge lengths for the whole network, σ2
l = 〈l2〉− 〈l〉2,

weighted according to transition frequencies during the stationary Markov process and the
time averaged correlation function 〈C〉.

Traditional Lyapunov exponents measure the exponential divergence rate of initially
close-by trajectories during the time evolution of a dynamical system. For STNs, we can
define a network measure bearing similarities with the Lyapunov exponents by considering
the scaling of the length difference of pairs of random paths started from the same initial
node of the network. As a further simplification, we define the Lyapunov measure for
STNs using a proportional quantity, the variance of the total length of single trajectories,

Λ = lim
t→∞

∆L(t)
t

= σ2
l + 〈C〉 . (14)

For uncorrelated processes, viz when 〈C〉 = 0, we can estimate the mean 〈L〉 and the
variance ∆L of the trajectory lengths by the overall mean 〈l〉 and variance σ2

l in the length
“covered” in a single step, a methodology which will be first tested for random networks.

2.2.1. Properties of the Lyapunov Measure

The STN analog of limit cycles and strange attractors in dynamical systems would
be circular networks and high degree networks, respectively. Let us investigate the de-
pendence of a STN’s Lyapunov measure, Λ, on the degree of cyclicity of the network. We
shall build our description on a simple theoretical model consisting in a complete directed
graph of N nodes identified by their label i ∈ 0, 1, . . . , N − 1. In order to study the effect of
cyclicity the transition probabilities are associated to the edges in three steps: first, to each
of the N(N − 1) links we assign a random uij value distributed uniformly between zero
and one; second, we rescale these probabilities such that each node has a privileged target
and source node with transition probabilities:

pij(c) =

{
c + (1− c)uij , if j = (i + 1) mod n ,

(1− c)uij , if j 6= (i + 1) mod n ,
(15)

where “mod” denotes the modulo operation and c ∈ [0, 1] is the parameter quantifying
the cyclicity of the graph (see Figure 1A). At c = 1 we have a purely cyclic graph where
each node is only linked to the next node in the list while for c = 0 we retain the original
uij weights. As a last step, we normalize the outgoing weights according to Equation (1).
Computing the average and the variance for an ensemble of trajectory lengths, started
from random initial nodes, we obviously recover the theoretically calculated linear scaling
behavior (compare Equations (9) and (13)).
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The results of the simulation implementing Equation (14) are represented by the noisy
lines with markers in Figure 1C. There is an apparent dependence on the size of the network.
However, a complete graph with all links equivalent (c = 0) with weights distributed
uniformly yields Λ = 1/4 irrespective of the size of the network. A simple cycle with all
nodes having a single incoming and outgoing link (c = 1) eliminates all randomness and
hence the variance based Lyapunov measure goes to zero. For intermediate values of the
cyclicity parameter, c, the Lyapunov-measure evolves smoothly exhibiting a maximum
somewhere in the upper half of the unit interval.

2.2.2. Analytical Study of the Lyapunov Measure

For a conceptual grasp of the behavior shown in Figure 1C we further simplify our
model. In a fully connected graph of size N all li-s in Equation (7) can be regarded as
identical random variables, hence

Λ = σ2
l (16)

where σ2
l ≡ 〈l

2〉− 〈l〉2 is the variance of the variables. We can work with a single vertex and
extrapolate the results to all vertices. One neighbor of this “generic” vertex is privileged as
it is the next in the cycle (see Figure 1A). Let us assume that the rest of the N − 2 neighbors
are equivalent (their links have equal weights):

pi =

{
p , if i = 1 ,
(1− p)/n , if i = 2, N − 1 ,

(17)

where n = N− 2, and with the cyclicity parameter c ∈ [0, 1] the probability p = 1
n+1 +

n
n+1 c

will change between 1/(n + 1) (all links equivalent) and one (fully cyclic). The length of
link i is set to − ln pi, the probability of choosing that link is pi:

〈l〉 = −∑
i

pi ln pi = −p ln p− (1− p) ln
1− p

n
, (18)

〈l2〉 = ∑
i

pi ln2 pi = p ln2 p + (1− p) ln2 1− p
n

, (19)

Λ = p(1− p) ln2 np
1− p

. (20)

The 1/4 offset at c = 0 is a consequence of the fixed transition probability values in
Equation (17). Appendices A and C account for this offset. A detailed investigation of the
maximum is under Appendix B.

2.3. Time Series Analysis with STNs

The random network model in the previous section has the benefit of offering a basic
understanding of the Lyapunov measure. In order to test the scope of its applicability
we apply it to the well-known Henon map and the Lorenz system and compute Λ for
the STNs constructed for time series with different control parameters. We show that the
network measure is able not only to distinguish between periodic and chaotic regimes but
also presents pronounced peaks before crisis-type bifurcations. To that end we need to
map “real-world” time series to STNs. In this section we introduce a methodology which
is generic enough to be applied both on discrete- and continuous-time dynamical systems.

Construction of STNs

To construct the STN corresponding to the dynamics of the time series generated
by a dynamical system one needs to discretize space and time adequately. In case of
discrete-time systems time is inherently defined in terms of integer-valued timesteps. For
continuous-time systems this step is however not as straightforward. A time sampling
with a constant sampling rate may not be beneficial for all cases since the trajectory may
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evolve with various speeds in the phase space, having segments where it slows down
while at other parts advancing abruptly orders of magnitude further within the same time
interval. A too high sampling frequency would lead to a very high number of self-loops
in the STN, since for any finite spatial mesh there exist several consecutive time points
which fall within the same grid cell. On the other hand, a very low sampling rate leads to
the loss of time correlations. Here we propose to use the well-defined method of Poincare
sections, which naturally generates the equivalent map, i.e., the discrete-time version of
the dynamical system. The Poincare map can be constructed by tracking the consecutive
unidirectional intersection points of the trajectory and the Poincare surface, a 2D surface in
case of 3D systems.

On the other hand, for an STN one needs to assign the nodes of the network to different
states during the dynamics. One may hence discretize the phase space by dividing it into
equal sized bins, corresponding to the nodes of the network. Here we consider the effective
phase space of the system, viz the largest rectangle in the phase plane of the map/Poincare
map which fully covers the attractor, and construct a mesh, each of the newly created
bins defining a coarse-grained state of the original dynamical system. Directed edges of
the network correspond then to transitions between the discrete states of the phase space,
characterized by the transition probabilities pij.

To illustrate the methodology we present examples of different attractors with the
corresponding STNs for the discrete-time Henon map [27] and the continuous-time Lorenz
system [28] (see Figures 2 and 3). The two systems are briefly surveyed in Section 3.1.
For the Henon-map we use nmax = 104 steps long trajectories started from randomly
chosen initial conditions while discarding the first ntrans = 103 transient steps to let the
dynamics settle onto the attractor of the system. As a function of the a parameter the
attractor may have either a fractal structure of folded filaments or it may consist of discrete
points separated in the phase plane (see the top panels of Figure 2). For the Lorenz system
we used the method of Poincare sections, with the Poincare surface being a predefined 2D
plane. As an example, in Figure 3 we illustrate the projection of the x = 15 Poincare plane
by a dashed line in the (z, x) phase plane (top row). The corresponding Poincare map is
constructed using tmax = 5000 time unit long trajectories, discarding the initial ttrans = 300
time units. The choice of the Poincare section does not effect the results qualitatively. For
comparison, a second, perpendicular Poincare section, defined by y = 0, have also been
tested (not shown here). We found that the results are robust with respect to the choice of
the Poincare plane. The topology of the resulting Poincare sections also reflect faithfully
the structure of the attractors (middle row).

For both the Henon map and Lorenz system we selected parameters corresponding
to qualitatively different dynamical regimes: traditional chaotic attractors with extended
fractal filaments (orange and red colors), partially predictable chaotic attractors with small
patches of Cantor-sets [31] (green color), and individual points for periodic attractors (blue).

The STNs are constructed using a 20× 20 mesh in the phase planes of the respec-
tive maps. For computing the transition probabilities pij we generate long discrete-time
trajectories as described above and count the number of i → j transitions along these
trajectories. The pij probabilities are finally given by normalizing the number of jumps
between consecutive states according to Equation (1). Chaotic dynamics generates densely
wired graphs (left columns of Figures 2 and 3) and widely distributed global transition
frequencies ∝ q∗ij (as illustrated by the width of the network connections), in contrast to
periodic motion for which the network collapses to a simple cyclic chain of edges and
vertices (right column of Figures 2 and 3). Though, seemingly two of the selected chaotic
attractors are identical (see the orange and red attractors in Figure 2 and 3), looking more
closely one realises that for the red colored STNs the global transition probabilities (the
widths of the edges) are more heterogeneous than for the orange colored STNs, allowing
for a more probable cyclic path in the network. Note that the random network model
introduced in Section 2.2.1 resembles this network structure for large (but smaller than 1)
cyclicity parameters, e.g., when c ∼ 0.75.
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Figure 2. Constructing state-transition networks for the Henon-map. Top row: Chaotic and periodic attractors of the
Henon-map in the (xn, yn) plane for a = 1.220/1.2265/1.24/1.27 (orange/red/blue/green), respectively. Bottom row: The
corresponding state-transition networks with a spanning layout respecting the (xn, yn) positions of the nodes in the phase
plane of the system. For illustration, the widths of edges are set proportionally to the occurrence of the respective transitions
during the dynamics. To construct the STN nmax = 104 steps long trajectories are started from randomly chosen initial
conditions while discarding the first ntrans = 103 transient steps. For discretization of the effective phase plane a 20× 20
mesh is constructed.

Figure 3. Constructing state-transition networks for the Lorenz system. Top row: Chaotic and periodic attractors of the
Lorenz in the (z, y) plane for ρ = 180.10/180.70/180.78/181.10 (orange/red/green/blue), respectively. Middle row: The
x = 15, ẋ < 0 Poincare sections of the attractors (see the top panels). Bottom row: The corresponding state-transition networks
with a spanning layout respecting the (z, y) positions of the nodes in the Poincare sections of the system. For illustration, the
widths of edges are set proportionally to the occurrence of the respective transitions during the dynamics. For illustrating the
Poincare maps tmax = 5000 time unit long trajectories are used, discarding ttrans = 300 long transients. For discretization of
the effective phase plane a 20× 20 mesh is constructed.
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2.4. Network Measures

To characterize the network with a single scalar parameter we compare the two STN
measures discussed in Section 2.2. First, we adopt here the well-known Kolmogorov–Sinai
(KS) entropy for Markov chains, as defined by Equation (9). Second, we compare the above
introduced novel measure (14) similar in idea to the well-known Lyapunov exponents. As
a basis of comparison we also provide the bifurcation diagrams of the Henon and Lorenz
systems, together with the classical largest Lyapunov exponent λm (see Figure 4).

As changing the control parameters a and ρ, for the Henon map (21) and for the
Lorenz system (22) respectively, both exhibit a whole series of complex bifurcations (see
the top panels of Figure 4). These bifurcation scenarios are, as expected, faithfully reflected
by the largest Lyapunov exponent values: λm < 0 and λm = 0 for periodic behavior of the
Henon map and Lorenz equations, respectively, while λm > 0 corresponding to chaotic
dynamics in both cases.

The Kolmogorov–Sinai entropy, SKS, is defined for the STNs obtained from the dy-
namical systems for the actual control parameter values. Here we implement both the
original definition based on the global transition probability matrix q∗ij and the algorithm
based on generating random trajectories in the STN and measuring their linear scaling
factor with time (compare Equations (9) and (10)). As expected the exact matching of the
two definitions is reflected by the numerical results as well (see Figure 4): SKS = 0 denoting
exactly cyclic networks, low positive values of SKS correspond to partially predictable
chaotic motion, while chaotic dynamics generates high entropy networks.

The Lyapunov measure, Λ, is computed here based on the estimation of the variance
in trajectory lengths for large ensembles of random paths, according to Equation (14) (see
Section 3.3 for details on ensemble statistics). In the examined parameter region, while
bearing many similarities with Kolmogorov–Sinai entropy, the Lyapunov measure exhibits
interesting behavior in the vicinity of crisis-type bifurcations points (abrupt disappearance
or reduction in size of the attractor, viz in the size of the black shaded regions in the
bifurcation diagram) [32]. Approaching the crisis from the direction of the chaotic region Λ
presents an abrupt peak, forecasting in some sense the collapse of the chaotic attractor (see
the red colored sharp peaks in the bottom panels of Figure 4).

As it is demonstrated using the random network model in Section 2.2.1, the Lyapunov
measure has a maximum point with respect to the cyclicity parameter (see also Appendix B).
The appearance of the peaks is closely related to this special cyclic topology in real systems
as well (as shown in Appendix D). The height of the peaks is furthermore boosted by the
correlations of edge lengths along the paths of random walks (see Equation (14)).

Interestingly these precursor peaks seem to be more pronounced for boundary crisis
than for the case of interior crisis (compare for example the red-colored peak of the Lorenz
system with the peak around the parameter value denoted by the red dot).

Our results, summarized in Figure 4, demonstrate that STNs can encode all the relevant
information about the dynamics of the system. For chaotic dynamics with positive maximal
Lyapunov exponent λm > 0 the network measure Λ is also positive. For periodic motion
both quantities are zero, λm = Λ = 0. Interestingly, while the Lyapunov exponent decreases
when approaching the bifurcation point where chaos disappears, the here introduced
Lyapunov measure shows a diverging tendency.
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Figure 4. Network measures for STNs generated from time series of discrete- and continuous-time dynamical systems.
(Left) Results for the Henon-map as function of the a ∈ [1, 1.4] control parameter. (Right) Results for the Lorenz sys-
tem, for the ρ ∈ [180, 182] parameter interval. From top to bottom: Bifurcation diagrams, largest Lyapunov exponents λm,
Kolmogorov–Sinai entropy SKS = 〈l〉, and Lyapunov-type network measure Λ = ∆L/t for the same parameter intervals as
for the bifurcation diagrams. The colored dots denote the parameter values for which the attractors, Poincare maps and
STNs are shown, respectively, in Figures 2 and 3. To construct the STNs the Henon-map is iterated for 3 × 104 timesteps
omitting the initial 1000 transient steps, respectively for the Lorenz system 5000 timeunits were used ignoring the first
500 units long transients. The Kolmogorov–Sinai entropy is computed both using the adjacency matrix of global transition
probabilities q∗ij (compare Equations (9) and (10)) and by generating and ensemble of random paths using the same number
of steps as for the Lyapunov measure. The Lyapunov network measure, defined by Equation (14), is calculated over an
ensemble of 100 random trajectories of 104 steps, neglecting the initial 5000 steps (see Section 3.3). As an example of
boundary-crisis precursor, a single peak in the Lyapunov measure is colored in red for both systems.

3. Materials and Methods
3.1. Discrete- and Continuous-Time Dynamical Systems

The Henon-map is considered as a prototype system for studying bifurcations and chaos
in discrete-time dynamical systems [32]. The mapping from state (xn, yn) to (xn+1, yn+1) is
defined by

xn+1 = 1− ax2
n + yn , yn+1 = bxn . (21)

The effect of the nonlinear term x2
n in the dynamics may be tuned by changing param-

eter a, hence in most of the studies it is considered the control parameter, while choosing
b = 0.3 standard value for the other parameter. As a function of the a parameter the
attractor may have either a fractal structure of folded filaments or it may consist of discrete
points separated in the phase plane (see the top panels of Figure 2).

The Lorenz system is probably the most known continuous-time dynamical systems
exhibiting chaos on a butterfly-shaped attractor. Being a 3D system defined as

ẋ = σ(y− x) , ẏ = x(ρ− z)− y , ż = xy− βz , (22)
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it is one of the simplest examples which allows for the presence of chaotic behavior. While
we consider the standard σ = 10 and β = 8/3 parameters, we select with ρ ∈ [180, 182]
a parameter interval for which one finds not only chaotic and periodic behaviors, but
also partially predictable chaos (PPC), as introduced in [31]. The respective attractors are
illustrated in Figure 3.

3.2. Phase-Space Discretization and Poincare Sections

The binning of the phase space is a cornerstone in the construction of STN networks.
For a low number of bins one loses information regarding the dynamical states of the system.
On the other hand for a too high resolution the STN collapses to chain-like networks even
for an otherwise complex dynamics, requiring exponentially long time series to overcome
the statistical unreliability of the data. For chaotic time series, the number of nodes of
the obtained STN increases with the binning resolution. Yet the measure proposed here
turns out to be reliable since it is a monotonous function of the number of nodes (compare
Equation (20) and Figure 1). The choice of the Poincare section also does not affect the
results qualitatively. For comparison, two perpendicular Poincare sections have been tested,
defined by x = 15 and y = 0, respectively. We found that the results are robust with respect
to the choice of the Poincare plane used for the construction of the STN.

3.3. Ensemble Averages and Asymptotic Behavior

Given a STN, the Lyapunov measure (14) is computed numerically by constructing
random trajectories of total length Li(t) at time t, and measuring their variance over an
ensemble of n paths, i = 1, . . . , n. For a large enough ensemble the ∆L/t converges to
a steady state value, termed here as the Lyapunov network measure and denoted by Λ.
For the STNs obtained from the Lorenz-system generated time series for ρ = 180.7 the
fluctuations become relatively small for an ensemble average computed over n > 103

random trajectories and for t > 5000 time units (see the left panel of Figure 5). In order to
reduce the fluctuations one may further average over the stationary ∆L/t values in time.
Different dynamical behaviors correspond to separated plateaus in the time series of ∆L/t,
leading to well-defined and different Lyapunov-measure values for four parameter settings
presented in Figure 3 (compare the right panel of Figure 5).
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∆
L
/t

ρ = 180.70, n = 102

ρ = 180.70, n = 103
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0 5000 10000
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L
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Figure 5. Lyapunov measure: variance of path lengths for random trajectories using the STNs
generated for the Lorenz system. (Left) Averaged over an ensemble of n trajectories (see the legend)
for the chaotic regime with ρ = 180.7. (Right) Averaged over n = 104 trajectories for chaotic and
periodic dynamics using ρ = 180.10/180.70/180.78/181.10, respectively (orange/red/green/blue).

4. Discussion

Complex dynamics in continuous phase space and time bears similarities and differ-
ences compared to those occurring on networks. Inspired by the utility of the Lyapunov
exponent in dynamical systems theory we introduced a somewhat analogous network
measure for STNs based on the Kolmogorov–Sinai entropy for graphs. The random STN
model shows that using the variance instead of the mean length, equivalent with the
Kolmogorov–Sinai entropy, contributes to a surge in the measure as we approach cyclicity
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(see Figure 1C). Our analytical study explains the important properties of the new mea-
sure as they manifest in the case of random networks. In order to assess the connection
between the new measure and the classical Lyapunov exponent we also introduced a novel
procedure for converting time series to STNs. Our examples include both discrete-time
(Henon-map) and continuous-time (Lorenz) systems. The Kolmogorov–Sinai entropy of
the so obtained Henon/Lorenz STNs reproduces the control-parameter dependence of the
Lyapunov exponent of the corresponding dynamical systems. The newly introduced Lya-
punov measure, however, exhibits an additional and unexpected property. It appears to be
sensitive to boundary crisis where a chaotic attractor is suddenly created or destroyed (see
bottom panels of Figure 4). This extreme jump in the measure during crisis is due to the cu-
mulation of the basic increase experienced also with random networks (see Figure 1C) and
the effect of correlations due to the heterogeneity of the Henon/Lorenz STNs. In present
paper the Lyapunov measure for these networks was estimated based on trajectory simula-
tions. However, accounting for the correlations as introduced in Equation (12) should be
possible based solely on the transition probabilities, pij. In this sense, similarly to the case
of the Lyapunov exponent, it may allow two slightly different but –for the case of ergodic
systems– equivalent interpretations: one may either follow trajectories and compute the
quantities of interest along them or determine the natural/stationary distributions under-
lying the dynamics and calculate spatial averages according to these probabilities [32]. The
pronounced peaks during boundary crisis suggests possible applications for forecasting
transitions from chaos to periodicity.

The proposed method can be applied to any stationary time series and any dynamical
system with attractors. It might not always provide as relevant output as for the two examples
given in the paper. We expect, however, similar results for most of the commonly studied
systems. In case of multistable dynamical systems the Lyapunov measure has to be computed
separately for each attractor, similarly to the traditional Lyapunov exponent. For non-stationary
time series the proposed methods and quantities may need further developments.
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Appendix A. Offset at c = 0 in the Lyapunov Measure According to the Random
Network Model

The 1/4 offset at c = 0 is a consequence of the fixed transition probability values
in Equation (17) as compared to the uniformly distributed random values prescribed
by Equation (15). The offset can be recovered by replacing the set 1/(N − 1) values by
random numbers distributed uniformly between 0 and 2/(N − 1). This distribution is
asymptotically, N → ∞, correct for sum-normalized random numbers (see Appendix C).
The searched variance can be approximated by

σ2
l =

2
α

p ln2 p− 4
α2 p ln p

2
, (A1)

where p = αx, α = 2/(N − 1) and p.d.f(x) = 1. Making use of the identities∫ 1

0
x ln x dx =

∫ 1

0
x ln2 x dx =

1
4

(A2)

we get Λ = 1/4.

Appendix B. Location and Size of the Maximum in the Lyapunov Measure According
to the Random Network Model

The maximum can be studied via the stationarity criterion dΛ/dp = 0 leading to
the equation

ln
(

p
1− p

)
+

2
1− 2p

= − ln n . (A3)

Both terms on the lhs can match the divergence on the rhs either by p ↘ 0 or p ↘
1/2, respectively. In the former case the required asymptotic dependence becomes p ∼
1/e2n which is below the 1/(n + 1) lower limit prescribed by Equation (17), therefore not
acceptable. However, the divergence of the second term can be achieved by c ≈ p ∼
1/2 + 1/ ln n yielding a maximal Lyapunov-measure diverging as

Λmax =
1
2

ln2 n +O(ln n) . (A4)

Appendix C. Distribution of Uniform Random Numbers Normalized over Large Sets

Let x0, x1, . . . , xn ∈ [0, 1) be uniformly distributed random variables. The distribution
of the normalized variables xj/ ∑n

i=0 xi is the same for all j = 0, 1, . . . , n. For very large n
the correlation between the numerator and the denominator tends to disappear therefore
we can as well look at the distribution of z = x/sn where sn = ∑n

i=1 xi and x = x0.
According to the central limit theorem the distribution of sn ∈ [0, n) can be approximated
by a Gaussian centered at n/2 and a width growing only as

√
n (see Figure A1). The

cumulative distribution function of z in the limit of large n becomes

c.d. f (z) =
∫

x<zsn
dx dsn p.d. f (x)p.d. f (sn) =


z

n
2

, z ≤ 2
n

1 , z >
2
n

, (A5)

yielding

p.d. f (z) =
d
dz

c.d. f (z) =


n
2

, z ≤ 2
n

0 , z >
2
n

. (A6)



Entropy 2021, 23, 103 14 of 15

Figure A1. Depiction of the essentials behind Equation (A5).

Appendix D. Insight into the Emergence of Precursor Peaks

The surge in the Lyapunov measure as we approach the collapse of chaos (see the
region in red in the bottom panels of Figure 4 is a cumulative result of three factors: (i)
the random network model in Section 2.2.1 shows that as cyclicity grows the measure
attains a maximum (see Figure 1C); (ii) below we provide evidence for a superlinear
growth in the cyclicity itself close to the bifurcation point; (iii) nontrivial correlations (see
Equation (12)) present in real STNs can further boost the effect. Within the presented
conceptual framework cyclicity can be quantitatively defined only through the random
network model of Section 2.2.1. Its scope can be extended to general networks through
Equations (9) and (18). Following Equation (9) we can compute the Kolmogorov–Sinai
entropy, ergo, the mean length 〈l〉 of an edge for any STN. By inverting the relationship
〈l〉(c) from Equation (18) we can extract information on the cyclicity, c, of these networks.
Subsequently, the Lyapunov measure can be estimated from Equation (20). There is
an inherent mismatch between the two approaches to the mean lengths formalized in
Equations (10) and (18). As opposed to a general STN the analytical model assumes a
complete graph making the degree of the nodes and the size of the network coincide.
This discrepancy can be to some extent bridged by using the average node degree as n
when inverting the relationship in Equation (18). The results depicted in Figure A2 are the
counterparts of those shown in the bottom right panel of Figure 4.

180.0 180.25 180.5 180.75 181.0 181.25 181.5 181.75 182.0

ρ

0.0

0.5

1.0

Λ

0.5

0.75

1.0

c
Lyapunov

cyclicity

Figure A2. Semianalytic estimation of the cyclicity, c, and Lyapunov measure, Λ, of the Lorenz STNs created according
to the procedure described in Section 2.3. The values of the mean edge length, 〈l〉, are computed following the definition
of the Kolmogorov–Sinai entropy for STNs expressed by Equation (9). The cyclicity parameter is estimated by inverting
numerically the 〈l〉(c) relationship in Equation (18). As a last step, the Lyapunov measure was approximated using the
analytical expression from Equation (20). The random walk simulation counterpart of the image is presented in the bottom
right panel of Figure 4. For more details, refer to Appendix D.
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