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Abstract: Credit scoring is an important tool used by financial institutions to correctly identify
defaulters and non-defaulters. Support Vector Machines (SVM) and Random Forest (RF) are the
Artificial Intelligence techniques that have been attracting interest due to their flexibility to account
for various data patterns. Both are black-box models which are sensitive to hyperparameter settings.
Feature selection can be performed on SVM to enable explanation with the reduced features,
whereas feature importance computed by RF can be used for model explanation. The benefits
of accuracy and interpretation allow for significant improvement in the area of credit risk and
credit scoring. This paper proposes the use of Harmony Search (HS), to form a hybrid HS-SVM to
perform feature selection and hyperparameter tuning simultaneously, and a hybrid HS-RF to tune
the hyperparameters. A Modified HS (MHS) is also proposed with the main objective to achieve
comparable results as the standard HS with a shorter computational time. MHS consists of four
main modifications in the standard HS: (i) Elitism selection during memory consideration instead
of random selection, (ii) dynamic exploration and exploitation operators in place of the original
static operators, (iii) a self-adjusted bandwidth operator, and (iv) inclusion of additional termination
criteria to reach faster convergence. Along with parallel computing, MHS effectively reduces the
computational time of the proposed hybrid models. The proposed hybrid models are compared
with standard statistical models across three different datasets commonly used in credit scoring
studies. The computational results show that MHS-RF is most robust in terms of model performance,
model explainability and computational time.

Keywords: credit scoring; support vector machines; random forest; harmony search; feature selection;
hyperparameter tuning; artificial intelligence

1. Introduction

Credit risk evaluation is a crucial routine of risk management in financial institutions.
Credit scoring models are the main tool utilized to make credit granting decisions where the probability
of default resembles the entropy concept, i.e., probabilistic measure of uncertainty. Hence to better
measure risk, more accurate classification models are needed. Though statistical models are usually
the preferred option, Artificial Intelligence (AI) models are beginning to be favoured for their accuracy
and flexibility in the face of the volume of data. Advances in these techniques have further increased
their popularity particularly in risk assessments. Support Vector Machines (SVM) and Random Forest
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(RF) are the main AI classifiers used in this study as recommended in two large scale benchmark
studies by [1,2], respectively, due to their competitive performance as compared to other classifiers.
There are two issues to be considered when using SVM and RF, i.e., sensitivity to hyperparameters
settings and the black-box property.

For hyperparameter tuning, Grid Search (GS) has always been the conventional tuning tool for
both SVM and RF. Recently, the metaheuristic approaches (MA) have shown potential as a competitive
tool to tune SVM hyperparameters [3]. Some works utilized Genetic Algorithm (GA) [4,5] and Particle
Swarm Optimization (PSO) to tune SVM [6,7]. A recent work experimented with MA [8] by using
Artificial Bee Colony (ABC). These MA techniques have reported competitive results, indicating the
potential of MA to be used to tune SVM hyperparameters.

For RF hyperparameter tuning, the major approach is the repeated trial-and-error tuning which
requires subjective judgement from researchers [9–13]. Some researches tune the hyperparameters
by examining a certain input range which is available in some software toolbox [2,14]. The GS is still
a popular technique to tune RF [15,16]. Reference [16] compared GS with Random Search and PSO,
and pointed out the benefit of PSO. Despite manual tuning being the common approach, experiments
with PSO [16] shows the potential of MA.

Solving the black-box property is a challenging task. For SVM, feature selection strategy to enable
explanation on reduced features is frequently attempted. GA has shown its potential in developing a
different wrapper GA-SVM with the ability to reduce the features of SVM, yet maintaining a good
model performance. References [17,18] incorporated information from a filter technique as the input
to the GA wrapper. References [19,20] proposed a hybrid GA-SVM to perform hyperparameter
tuning and feature selection simultaneously, whereas [20] included feature weighting in the wrapper
GA-SVM model.

RF has the advantage of being able to explain the attributes with the computed feature importance.
References [9,13] provided attributes information based on the feature importance. Reference [12]
used this benefit for feature screening. Reference [10] incorporated the feature importance with profit
measures while [11,21] built new credit scoring models with the feature ranking.

Despite being the most common technique for hyperparameter tuning, GS is a rigid brute force
technique that will search through all possible combinations of the hyperparameters. For continuous
hyperparameters, the computational effort will increase as the granularity of the search range increases.
In addition, using GS to conduct feature selection will tremendously increase the computational
time due to the increased features search space. Thus, to address both hyperparameter tuning and
model explainability simultaneously, MA is a potential candidate tool to be hybridized with SVM
and RF, with GA being the most commonly used method in the past. Recently, Harmony Search
(HS) has received attention to be hybridised with SVM [22–24] and RF [25] in various domains for
the purpose of hyperparameter tuning or feature selection. The authors of [26] have reviewed works
using HS to conduct feature selection along with the use of different machine learning algorithms
across various domains. Despite the successful implementations of HS for hyperparameter tuning
and feature selection, ref. [27] has been the only study utilizing HS for feature selection in the nearest
neighbourhood credit scoring model.

To the best of our knowledge, HS has yet to be hybridized with SVM and RF for the purpose
of simultaneous hyperparameter tuning and model explainability in credit scoring. The HS first
developed by [28] is inspired by the music improvisation process, where musicians tune their
instruments’ pitch to achieve perfect harmony in seeking for an optimal solution. Hence, two hybrid
models, i.e., HS-SVM and HS-RF are proposed in this study. HS-SVM conducts hyperparameter
tuning and feature selection simultaneously to select appropriate hyperparameters and explain the
attributes based on the reduced features. The HS-RF conducts hyperparameter tuning to ensure
good model performance to provide reliable feature importance. SVM and RF are then hybridized
with a modified HS (MHS) to improve the computational efficiency yet maintaining a comparable
performance of the GS and HS. Parallel computation is applied on MHS hybrid models to improve
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the computational time. Then, the proposed models are compared with standard statistical models
across two well-known credit scoring datasets and a peer-to-peer lending dataset. The discussions
are based on model performances, model explainability, and computational time. Competitive results
of the proposed models highlight the flexibility of utilizing HS as compared to GS, i.e., the ability
to conduct feature selection and search for continuous hyperparameters without the need to specify
the granularity of the search range. In addition, the competitiveness of MHS hybrid models further
demonstrates the flexibility of HS to be modified to improve computational efficiency.

Research in credit scoring studies have been continuously attempted with various AI techniques.
Several recent studies have marked a paradigm shift towards the usage of non-linear advanced
techniques [29] and ensemble models [30–32] to be the potential techniques to achieve good
performance in handling various types of data patterns. Due to the property of decision tree models
being the de-facto community standard in classification task [33], tree-based ensembles have received
attention in [31,32] with competitive performances reported on credit scoring datasets. In line with
the recommendation from the large scale benchmark studies [1,2] and the paradigm shift observed
in recent literatures, the proposed models in this study which are based on SVM and RF are aligned
with the current trend of utilizing non-linear AI techniques and tree-based models. Most of the recent
studies with the new advanced AI techniques have been a direct application of the models to assess
their performance on credit scoring datasets to investigate their potential, with only [31] included
synthetic features to address model explainability. Instead of a direct application for investigative
purpose, the proposed hybrid models provide new idea to improve performance via simultaneous
hyperparameters tuning and features selection. Besides, usage of RF has the benefit compared to
the other tree-based ensembles because the computed features ranking is an appropriate tool for
model explanation.

This paper is organized as follows. Section 2 provides an overview of the HS algorithm and the
numerical experiments to demonstrate the potential of HS hybrid models, leading to the intuition to
develop MHS hybrid models. Section 3 details on the hybrid models’ formulation. Section 4 elaborates
on the experimental setup. Then, Section 5 reports the computational results with detailed discussions.
Finally, Section 6 concludes the study and provides possible future directions.

2. Harmony Search to Modified Harmony Search

2.1. Harmony Search

The HS metaheuristic is a random search technique guided by fitness function evaluations. The HS
search process is controlled by explorative and exploitative operators to seek solutions from the search
range. A standard HS algorithm [28] consists of five procedures as follows:

1. Definition of objective function and the required parameters. The parameters are Harmony
Memory Size (HMS), Harmony Memory Considering Rate (HMCR), Pitch-Adjustment Rate
(PAR), bandwidth (bw), and maximum iterations (max_iter).

2. Initialization of Harmony Memory (HM). HM consists of the HMS number of possible candidate
solutions with n dimensions which depends on the number of decision variables. All the
candidate solutions in HM are generated from a uniform distribution that is based on the decision
variables’ range.

3. Improvisation to generate new harmony. There are two main operators, i.e., HMCR to control the
exploration and PAR to control the exploitation of the search process. HMCR is the probability
of selecting a new harmony from HM, while its counterpart (1− HMCR) is the probability to
randomly generates a new harmony. A low HMCR indicates high explorative power of the search
process, because the search process will continuously generate a new harmony out of HM by
exploring different search spaces. PAR is the probability to improvise the selected harmony from
HM by moving to the neighbouring values with a step size of bw (for continuous variables) or one
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step to the left or right (for discrete variables). A low PAR indicates low exploitation power to
conduct local exploitation of the harmony around its neighbourhood.

4. Update HM. The new harmony from (3) is evaluated against the fitness function. Replace the
worst solution in HM with the new harmony if it has a better fitness value.

5. Termination. Repeat (3) and (4) until max_iter has reached.

2.2. Numerical Experiment Part I: Potential of HS Compared to GS

A numerical experiment is conducted to compare the performance of HS hybrids with the GS
approach for hyperparameter tuning. For demonstration purposes, the numerical experiment is
implemented on the German credit dataset and evaluated with the Area Under Receiver Operating
Characteristics (AUC) from the average of 10-fold cross validation. Details of HS-SVM and HS-RF are
enclosed in Sections 3.1 and 3.2, while the details of the German dataset can be found in Section 4.1.

SVM hyperparameters search range follows the recommended settings by [8],
i.e., log2 C = [−5, 12] and log2 γ = [−12, 5]. Both hyperparameters are continuous variables
that can take any values within the range. For GS, it is important to determine the granularity of
the grid. Thus, GS for SVM will first search at a coarse grid of log2 C = [−5,−4,−3, ..., 11, 12] and
log2 γ = [−12,−11,−10, ..., 4, 5] then follow with a finer grid of a granularity of 0.05 around the best
returned solution from the coarse grid. For HS-SVM, the search process will examine the whole search
range by picking the values via a uniform distribution, without the need to set the granularity.

RF hyperparameters are discrete variables with the search range of ntree = {100, 200, ..., 500} and
mtry = {1, 2, ..., a}, where a is the total number of attributes available. For both GS and HS, the search
will be conducted across the search range but the granularity will not have to be determined as both
are discrete variables.

In order to show that HS is a competent tool, the main parameters in HS, i.e., HMCR and PAR
have to be robust across small perturbations. To set up for the experiment, a recommended range
from [34] is applied (HMCR = [0.70, 0.95], PAR = [0.10, 0.35]) for both parameters. Both parameters
are perturbed at a small change of 0.05 to examine their robustness. The AUC performances and
computational time are reported in Table 1.

In terms of the model performance, both HS-SVM and HS-RF have reported a high mean AUC
with only 0.2% and 0.1% standard deviation, respectively, across all the different combinations of
HMCR and PAR. Despite the small perturbations of HMCR and PAR, HS-SVM and HS-RF still
result in a stable performance, indicating HS is a robust tool to be hybridized with SVM and RF for
hyperparameter tuning. Besides this, the results from Table 1 also imply that the HMCR and PAR
range recommended by [34] is reliable as all the models have reported a competitive AUC across the
whole range of the two operators.

However, the computational time deviation for HS-SVM and HS-RF are slightly higher. This is
due to the effect of different hyperparameters that require different computational power. During the
search process, HS may explore different areas of the hyperparameters search space followed with
exploitation in the neighbourhood areas. Hence, depending on the search areas led by the operators,
the different combinations of the operators will lead to different search areas where some consume
more computing power than the others.

GS-tuned SVM and RF are compared with HS-SVM and HS-RF, respectively (see Table 2).
HS hybrid models have achieved a slightly better model performance (higher AUC). HS-SVM is
effective in the computational time and show competitive AUC performance. The extra computational
effort for GS approach is due to the continuous search space of SVM hyperparameters that require
the GS process to first search on a coarse grid followed by a finer grid. This is the main advantage
of HS which is able to save computational effort by not needing to determine the granularity of the
continuous search space. Due to the discrete hyperparameters search space for RF, there is no huge
difference in the computation time between the GS-tuned RF and HS-RF.
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The HS has demonstrated its potential as a competent tool to tune SVM and RF, with max_iter as
the only stopping criteria. The competent AUC performance reported in Table 1 implies max_iter = 100
is sufficient for the search. The bw assistant exploitation tool controls how far the new solution
should be adjusted. HS-SVM has bw = 0.1, which is an appropriate width to move around the
SVM hyperparameters search range. Since HS-RF has discrete decision variables, settings of bw is
not required.

Since the HS is more computationally efficient than the GS (depending on the max_iter),
this inspired the idea to further enhance the computational efficiency by having the whole search
process end with lesser number of iterations. However, it will be doubtful to set a low max_iter as
there may still be more space to be searched upon. Therefore, the convergence pattern of the hybrid
HS models have to be observed at different levels of exploration and exploitation.

Table 1. Performance of Harmony Search (HS)-Support Vector Machines (SVM) and HS-Random
Forest (RF) across small perturbations of the operators.

HS-SVM HS-RF

HMCR PAR AUC Time (min) AUC Time (min)

0.70 0.10 0.8177 4.4481 0.8256 10.2604
0.70 0.15 0.8175 4.6211 0.8271 10.0100
0.70 0.20 0.8200 4.4203 0.8272 10.8761
0.70 0.25 0.8186 4.5008 0.8305 10.9019
0.70 0.30 0.8181 4.5614 0.8252 10.4817
0.70 0.35 0.8196 4.5122 0.8254 11.0123
0.75 0.10 0.8170 4.3773 0.8255 11.1008
0.75 0.15 0.8173 4.3323 0.8251 10.4266
0.75 0.20 0.8204 4.6357 0.8281 10.8729
0.75 0.25 0.8191 4.3702 0.8279 9.7096
0.75 0.30 0.8190 4.4640 0.8259 10.6458
0.75 0.35 0.8193 4.4810 0.8267 10.7759
0.80 0.10 0.8164 4.5614 0.8252 11.3625
0.80 0.15 0.8173 4.5198 0.8258 11.2265
0.80 0.20 0.8196 4.5138 0.8271 9.9028
0.80 0.25 0.8193 4.4698 0.8300 9.9752
0.80 0.30 0.8186 4.5357 0.8263 10.6068
0.80 0.35 0.8189 4.5541 0.8298 9.9372
0.85 0.10 0.8163 4.3997 0.8252 11.7332
0.85 0.15 0.8179 4.4258 0.8256 11.2218
0.85 0.20 0.8190 4.3716 0.8241 10.6202
0.85 0.25 0.8163 4.5028 0.8273 10.5372
0.85 0.30 0.8158 4.6122 0.8265 10.9275
0.85 0.35 0.8152 4.6928 0.8252 10.9275
0.90 0.10 0.8170 4.3648 0.8276 11.2554
0.90 0.15 0.8184 4.3502 0.8262 11.5087
0.90 0.20 0.8193 4.3950 0.8244 10.9275
0.90 0.25 0.8130 4.6232 0.8275 10.6972
0.90 0.30 0.8138 4.4245 0.8279 10.8565
0.90 0.35 0.8139 4.4260 0.8258 11.2159
0.95 0.10 0.8154 4.6132 0.8256 10.8480
0.95 0.15 0.8145 4.2717 0.8217 11.1239
0.95 0.20 0.8147 4.5164 0.8244 11.6584
0.95 0.25 0.8133 4.6013 0.8282 11.3777
0.95 0.30 0.8152 4.4070 0.8277 11.1307
0.95 0.35 0.8152 4.4630 0.8275 12.3353

mean 0.8172 4.4817 0.8265 10.8754
sd 0.0021 0.1000 0.0018 0.5785



Entropy 2020, 22, 989 6 of 25

Table 2. Comparison of Grid Search (GS) approach with HS hybrid models.

AUC Time (min)

GS-SVM 0.8078 23.9922
HS-SVM * 0.8172 4.4817

GS-RF 0.8214 9.0614
HS-RF * 0.8265 10.8754

* mean results from Table 1.

2.3. Numerical Experiment Part II: Intuition to Develop MHS Hybrid Models

2.3.1. Search Patterns of HS-SVM and HS-RF

Figures 1 and 2 illustrate the search patterns for HS-SVM and HS-RF at four different combinations
of HMCR and PAR operators for the first fold of the cross validation. HMCR = 0.70 and HMCR =

0.95 indicate higher and lower exploration, respectively, while PAR = 0.10 and PAR = 0.35 indicate
for lower and higher exploitation, respectively. Generally, these combinations lead to only a slight
difference in the final AUC performance. However, the search patterns of the different combinations
show how exploration and exploitation control the search process. The search process is said to reach
a convergence when ‘a plateau’ pattern is observed.

For both HS-SVM and HS-RF, the lower HMCR value has demonstrated higher explorative power
compared to the higher HMCR value, given that PAR settings are constant (HMCR = 0.70, PAR =

0.10/HMCR = 0.95, PAR = 0.10 and HMCR = 0.70, PAR = 0.35/HMCR = 0.95, PAR = 0.35).
At a lower HMCR value, the curves show sharp increment patterns, indicating active movement to
different search areas. On the other hand, at a higher HMCR value, the increment patterns have lower
gradient during the transition to higher AUC. The sharper transitions show that global search takes
more dominant role than local search in the process.

As for the PAR operator, the lower PAR value has demonstrated lower exploitative power
compared to the higher PAR value, given that HMCR settings are constant (PAR = 0.10, HMCR =

0.70/PAR = 0.35, HMCR = 0.70 and PAR = 0.10, HMCR = 0.95/PAR = 0.35, HMCR = 0.95). At a
higher PAR value, the curves assist in the global search with more transition points before moving to
another search space with a higher AUC. This indicates a more active local search at a higher PAR to
improve the AUC by shifting to the neighbourhood search area.

Figure 1. Search pattern of HS-SVM.
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Figure 2. Search pattern of HS-RF.

Towards the end of the search process, ‘a plateau’ pattern is observed, indicating the process has
reached convergence. Overall, all the different combinations have reached convergence, with certain
combinations showing earlier convergence and the others. Thus, the main intuition for the
development of a modified HS (MHS) is to achieve a comparable performance as the HS but at
an earlier convergence to save up extra computational effort. The main modifications on HS to develop
a MHS are as follows:

1. Elitism selection during memory consideration
The selection of new harmony is no longer a random selection from HM, but with an objective
to select a better quality harmony. Elitism selection leads the search process to focus on better
quality candidates, thus enabling a faster convergence. Harmony vectors in HM are divided into
two groups, i.e., elite (g1) and non-elite (g2), where g1 consists of harmony vectors with better
performance than g2.

Each harmony vector in HM takes an index number from the sequence of {1, HMS}. Since HM
is sorted in the order of best to worst performance, harmony vectors with lower index number
indicate their potential as the candidates in the elite group. The first quartile, q1 of the index
sequence is computed as in Equation (1), with decimal places being rounded up because index
values are discrete. The computed q1 is the cutoff to divide HM into the elite and non-elite groups
where g1 ∈ {1, q1} and g2 ∈ {(q1 + 1), HMS}.

q1 = round(0.25× (HMS + 1))thterm. (1)

An extra parameter elit is included to allocate a proper weightage on the elite group.
So, the selected new harmony has a higher probability to originate from the elite group. With a
probability elit, a new harmony is selected from the elite group. If the selection is from the
non-elite group, two harmonies will be picked. Then, the better one of the two will be the
new harmony.

By doing this, a better harmony is always selected. Note that a low quality harmony, when joining
with other harmony or being adjusted, may also produce good harmony. Thus, elit cannot be too
high to ensure a balance to seek from elite and non-elite group. The detailed selection process is
illustrated in Algorithm 1.
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Algorithm 1

selection( )
g1 ∈ {1, q1} /*refer Equation (1)*/
g2 ∈ {(q1 + 1), HMS} /*refer Equation (1)*/

if(U(0, 1) ≤ elit)
ind1 = round(g1min + U(0, 1)× (g1max − g1min))
ind = ind1

else
ind2 = round(g2min + U(0, 1)× (g2max − g2min))
ind3 = round(g2min + U(0, 1)× (g2max − g2min))
if(ind2 ≤ ind3)

ind = ind2
else

ind = ind3
return ind

2. Dynamic HMCR and PAR with step function
The numerical experiment demonstrates repeated trials with different combinations of HMCR and
PAR for the hybrid HS models. The competitive results reported from the different combinations
indicated that the recommended range by [34] (HMCR = [0.70, 0.95] and PAR = [0.10, 0.35])
is an appropriate range for both operators. Along with the elitism selection, it is important to
ensure sufficient exploration and exploitation of the search process before reaching convergence.
Thus, the HMCR and PAR is designated to be dynamic following an increasing and decreasing
step function, respectively.

The increasing and decreasing step function of HMCR and PAR cooperates with each other for
a balance of exploration and exploitation. Initially, a lower HMCR provides an active global
search to explore the search area and it works along with a higher PAR that provides an active
local search to exploit the neighbourhood of the search area. Thus, HM consists of candidates
scattering around the search area with its corresponding neighbourhood being well-exploited in
the early stage of the search procedure. Following the step function, the global search exploration
decreases and focuses in the search area stored in the HM, leading to the local exploitation to be
focused in this specific search area. The dynamic settings of HMCR and PAR enable effective
determination of the appropriate search area that lead to a more efficient convergence towards
the final solutions.

In utilizing the step function, several components, i.e., HMCR range, PAR range,
HMCR increment, PAR decrement, and step size (step) have to be determined. Based on the
numerical experiment conducted earlier, the range of the operators are set as the recommended
range. The interval for increment and decrement of HMCR and PAR, respectively, is set at 0.05
as this small interval is sufficient to cover the whole range for these two operators. The step
determines the number of iterations for HMCR and PAR to maintain before shifting to another
value in the range until both operators reach a plateau. The setting of step depends on the search
range size with a smaller step preferable as the main aim is to have faster convergence with
active exploration and exploitation in the early stage of the search. Thus, step is set to enable both
HMCR and PAR to reach a plateau within the first half of the total iterations. For the numerical
experiment, MHS-SVM has step = 10 while MHS-RF has step = 5. The smaller step for MHS-RF
is due to its smaller discrete search space than MHS-SVM with continuous search space.

3. Self-adjusted bw
bw is an assistant tool for pitch adjustment and poses an effect on local exploitation. We suggest
to replace the bw using a coefficient of variation (coe f ) (Equation 2) of the decision variable for
every iteration, which will now be an auto-updated value in each iteration, thus enabling possible
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early convergence. This modification is only applicable for continuous decision variables as bw is
not required for the adjustment of discrete decision variables.

si =
∑HMS

j=1 (xj
i − x̄i)

HMS− 1

x̄i =
∑HMS

j=1 xj
i

HMS
coe fi = si/x̄i

∀i = 1, 2, ..., n.

(2)

This intuition comes from several past researches [35–37] that have proposed the improved HS
with the bw modified. From these modifications, it is suggested that the dynamic bw should
converge to smaller values as the iterations of the search process increases. Reference [35]
recommended standard deviation (sd) as the appropriate replacement of bw. Reference [37] also
utilized sd to replace bw, with an additional constant attached to control the local exploitation.
Hence, using coe f to substitute bw is an appropriate strategy because the division of sd with the
mean is perceived as equivalent to the attached constant as in [37], yet has the benefit of being
automatically updated in every iteration. Besides, coe f can effectively scale the sd to ensure the
search processes are maintained in an appropriate range. When the iterations increase, solutions in
HM will converged, causing the coe f to converge to smaller values.

4. Additional termination criteria
The termination criteria used in this study are the maximum number of iterations (max_iter),
convergence of HM, and non-improvement on the best solution for a fixed number of consecutive
iterations (cons_no_imp). Since the previous three modifications open up the possibility for faster
convergence, both criteria are included to avoid redundant iterations to save computational effort.
MHS procedure will stop when any one of the criteria is met.

2.3.2. Potential of MHS-SVM and MHS-RF

The numerical experiment in Section 2.3.1 is repeated with the MHS hybrid models. The search
patterns of the MHS hybrid models are compared with the HS hybrid models in Figures 3 and 4 to
illustrate the effect of the modifications.

For both MHS-SVM and MHS-RF, the modifications lead to earlier convergence, with the
‘a plateau’ pattern achieved much earlier compared to the HS hybrid models. The vertical lines
in the figures mark the number of iterations required for the search process to end, while the AUC after
the vertical lines is the result if the search process is allowed to run for the full number of iterations.
With the MHS, the increment of AUC has shown a faster transition towards ‘a plateau’ with fewer
numbers of iterations as compared to the HS hybrids, yet maintaining a comparable AUC performance
(even with the other different settings of HS hybrid models). This indicates the MHS hybrid models
have active exploration and exploitation in the earlier stages of the search, fulfilling the objectives of
the MHS hybrid models to reach convergence with lesser iterations. This is the benefit of MHS hybrid
models which can help by not needing to perform additional efforts for different HMCR and PAR
combinations to check the model performance.

Table 3 compares the three different approaches, i.e., GS, HS, and MHS for the hyperparameter
tuning task; in terms of measuring the AUC and the resulting computational time from the required
number of iterations to end the search process. Overall, the HS hybrid models have potential in
reducing computational effort especially when the hyperparameters are of continuous variables.
The MHS hybrid models save up more computational efforts by reducing the number of iterations and
the AUC reported are comparable to that of the GS approach and the standard HS.
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Figure 3. Search pattern comparison between HS-SVM with Modified HS (MHS-SVM).

Figure 4. Search pattern comparison between HS-RF with MHS-RF).

Table 3. Comparison of MHS hybrid models with HS Hybrids and GS Approach.

AUC Time (min) Iterations

GS-SVM 0.8078 23.9922 614
HS-SVM * 0.8172 4.4817 100
MHS-SVM 0.8197 3.1502 71

GS-RF 0.8214 9.0614 100
HS-RF * 0.8265 10.8754 100
MHS-RF 0.8261 5.2008 49

* mean results from Table 1.
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3. Hybrid Models

HS and MHS act as the assistant tool to solve both hyperparameter tuning and model
explainability tasks of SVM and RF models. All the proposed hybrid models are supported by
machine learning theory as the underlying technique to carry out the final classification which consist
of the supervised learning algorithms of SVM and RF, with HS and MHS hybridized together to
improve model performances.

3.1. HS-SVM and MHS-SVM

SVM seeks for an optimal hyperplane with a maximum margin as the decision boundary to
separate the two different classes. Given a training set with labelled instance pairs (xi, yi), where i is
the number of instance i = 1, 2, 3, ..., m, xi ∈ Rn and yi ∈ {−1,+1}. The decision boundary to separate
two different classes in SVM is generally expressed as w · xi + b = 0, which is the dot product between
the weight vector w and data instances with the bias b.

The optimal hyperplane is found by solving the convex optimization problem as in Equation (3).
The εi is the slack variable introduced to account for misclassification, with C as the accompanied
penalty cost. To handle non-linearity, this study utilizes SVM with the Radial Basis Function (RBF)

kernel, exp{−γ
∥∥∥xi − xj

∥∥∥2
}. Hence, the hyperparameters to be tuned for RBF-SVM are C and gamma.

min φ(w, b) =
1
2
‖w‖2 +C

m

∑
i=1

εi

s.t. yi(w · xi + b) ≥ 1.

(3)

HS-SVM and MHS-SVM are utilized to search for features subset and hyperparameters that can
maximize the AUC of SVM. The full procedure of HS-SVM and MHS-SVM, as well as their differences
are detailed as follows:

Step 1: Define objective function and parameters of HS and MHS.
The objective function is to maximize the AUC of the SVM classification function with three
decision variables. The first decision variable, x1 is a binary (0,1) string of length a (number of
features in dataset), second (x2) and third (x3) decision variables correspond to the SVM
hyperparameters search range log2 C = [−5, 12] and log2 γ = [−12, 5] [38], respectively.
The detailed parameters settings are enclosed in Section 4.3.

Step 2: Initialization of Harmony Memory
Each harmony vector in HM has three decision variables. Every harmony vector is evaluated
with the fitness function and sorted from the best to worst. Each decision variable is randomly
initialized as in Equation (4). Both HS-SVM and MHS-SVM have the same HM.

xj
1 = binary(0, 1),

xj
2 = min(x2) + U(0, 1)× (max(x2)−min(x2)),

xj
3 = min(x3) + U(0, 1)× (max(x3)−min(x3)).

(4)

Step 3: Improvisation
With probability HMCR, a new harmony is selected from the HM. The selected harmony is
adjusted to the neighbouring values with a probability PAR. The two continuous variables
(x2, x3), the hyperparameters of SVM are adjusted to neighbouring values of width bw.
With probability 1− HMCR, a new harmony vector is generated as in Equation (4).

However, for the first decision variable, x1 (which is the features), PAR operator acts as a flipping
agent. When it is activated, the selected harmony will be flipped from 1 to 0 or vice versa.
Note that not every feature is flipped as our aim is to adjust the harmony rather than randomize
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the harmony. The higher the fraction of features flipped, the more randomized is the harmony,
causing it to resembles exploration instead of exploitation of the features, and altogether
resulting in higher computational effort as the search process continuously explore other search
space. Features fraction of more than half is considered as high randomization. On the other
hand, the lower the fraction of features flipped, the lesser the harmony is being exploited.
To ensure the functionality of the PAR operator as the exploitation tool, the midpoint between
zero and half of the features to be flipped is selected. Thus, only a quarter of the features is
flipped. This is controlled by f lip, a random vector generating the feature numbers to be flipped.

MHS-SVM will have the three modifications, i.e., dynamic HMCR and PAR following the step
function in Equation (5), elitism selection, and replacement of bw with coe f .

(HMCRiter, PARiter) =



(0.70, 0.35) 1 ≤ iter < 20
(0.75, 0.30) 20 ≤ iter < 40
(0.80, 0.25) 40 ≤ iter < 60
(0.85, 0.20) 60 ≤ iter < 80
(0.90, 0.15) 80 ≤ iter < 100
(0.95, 0.10) iter ≥ 100.

(5)

The improvisation procedure for HS-SVM and MHS-SVM are summarized in Algorithms 2
and 3, respectively.

Step 4: Update HM by replacing the worst solution in HM with the new harmony if it has a better
fitness value. This procedure is the same for HS-SVM and MHS-SVM.

Step 5: Repeat Steps 3 and 4 until max_iter is reached for HS-SVM and for MHS-SVM when one of
the two additional criteria, i.e., HM converges or no_cons_imp is reached.

Algorithm 2

if(U(0, 1) ≤ HMCR)
ind = integer(U(0, 1)× HMS) + 1
x′1 = xind

1
if(U(0, 1) ≤ PAR)

f lip = rand(1 : a, 0.25× a)
x′1 = 1− xind

1 ( f lip)
else

x′1 = binary(0, 1)
if(U(0, 1) ≤ HMCR)

ind = integer(U(0, 1)× HMS) + 1
x′2 = xind

2
if(U(0, 1) ≤ PAR)

x′2 = xind
2 + U(−1, 1)× bw

else
x′2 = min(x2) + U(0, 1)× (max(x2)−min(x2))

if(U(0, 1) ≤ HMCR)
ind = integer(U(0, 1)× HMS) + 1
x′3 = xind

3
if(U(0, 1) ≤ PAR)

x′3 = xind
3 + U(−1, 1)× bw

else
x′3 = min(x3) + U(0, 1)× (max(x3)−min(x3))

Note: a,b: Refer Equation (5) c: Refer Algorithm 1 d: Refer Equation (2)
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Algorithm 3

HMCR = HMCRiter
a

PAR = PARiter
b

if(U(0, 1) ≤ HMCR)
ind =selection ( )c

x′1 = xind
1

if(U(0, 1) ≤ PAR)
f lip = rand(1 : a, 0.25× a)
x′1 = 1− xind

1 ( f lip)
else

x′1 = binary(0, 1)
if(U(0, 1) ≤ HMCR)

ind =selection ( )c

x′2 = xind
2

if(U(0, 1) ≤ PAR)
x′2 = xind

2 ± CV2
d

else
x′2 = min(x2) + U(0, 1)× (max(x2)−min(x2))

if(U(0, 1) ≤ HMCR)
ind =selection ( )c

x′3 = xind
3

if(U(0, 1) ≤ PAR)
x′2 = xind

2 ± CV2
d

else
x′3 = min(x3) + U(0, 1)× (max(x3)−min(x3))

Note: a,b: Refer Equation (5) c: Refer Algorithm 1 d: Refer Equation (2)

3.2. HS-RF and MHS-RF

Random Forest is an ensemble model with a collection of decision trees using the bootstrap
aggregation technique. Trees are grown using a binary splitting algorithm with Gini Impurity,
GI = 1−∑k

i=1 p2
i as the splitting criteria; where i is the number of classes and pi is the proportion of

instances belonging to the respective class. During the tree growing process, to avoid correlations
in between the trees, only a subset of the variables are required for splitting. The end result of the
classification is based on the majority of votes from all the collected trees in the forest. The two
hyperparameters to be tuned in RF are the number of trees (ntree) and number of variables available
for splitting (mtry). HS-RF and MHS-RF are utilized to search for hyperparameters that can maximize
the AUC of RF. The full procedure of HS-RF and MHS-RF, as well as their differences are detailed
as follows:

Step 1: Define objective function and parameters of HS and MHS.
The objective function is the RF classification function with two decision variables that
corresponds to the two hyperparameters, i.e., ntree and mtry. The search range for ntree is chosen
to be discrete values of x1 ∈ {1, 5}, where these values are then converted to the corresponding
hundred. This search range is selected as it is often attempted by researchers. The search range
of the second decision variable is discrete values of x2 ∈ {1, a}, where a is the total number of
attributes available. This search range is chosen because the hyperparameter mtry is the random
subset of variables from the total available attributes. The detailed parameters are enclosed in
Section 4.3.

Step 2: Initialization of Harmony Memory
Each harmony vector in HM has two decision variables. Every harmony vector is evaluated with
the fitness function and sorted from the best to worst. Since the decision variables to solve RF
are discrete, the harmony vectors are sampled directly from the search range as in Step 1. Both
HS-RF and MHS-RF have the same HM.
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Step 3: Improvisation
With probability HMCR, a new harmony is selected from HM. Then the selected harmony is
adjusted to the neighbouring values with probability PAR. As there are only discrete variables,
the new harmony is adjusted directly to the left or right; bw is not required to adjust the new
harmony. Hence only two modifications are involved in MHS-RF, i.e., dynamic HMCR and PAR
following Equation (6) and the elitism selection.

(HMCRiter, PARiter) =



(0.70, 0.35) 1 ≤ iter < 5
(0.75, 0.30) 5 ≤ iter < 10
(0.80, 0.25) 10 ≤ iter < 15
(0.85, 0.20) 15 ≤ iter < 20
(0.90, 0.15) 20 ≤ iter < 25
(0.95, 0.10) iter ≥ 25.

(6)

The improvisation procedures for HS-RF and MHS-RF are summarized in Algorithms 4
and 5, respectively.

Algorithm 4

for i in (1:2)
if(U(0, 1) ≤ HMCR)

ind = int(U(0, 1)× HMS) + 1
x′i = xind

i
if(U(0, 1) ≤ PAR)

x′i = xind
i ± 1

else
x′i ∈ {min(xi), max(xi)}

Note: a,b: Refer Equation (6) c: Refer Algorithm 1

Algorithm 5

HMCR = HMCRiter
a

PAR = PARiter
b

for i in (1:2)
if(U(0, 1) ≤ HMCR)

ind =selection ( )c

x′i = xind
i

if(U(0, 1) ≤ PAR)
x′i = xind

i ± 1
else

x′i ∈ {min(xi), max(xi)}

Note: a,b: Refer Equation (6) c: Refer Algorithm 1

Step 4: Update HM by evaluating and comparing the fitness function of the new harmony with the
worst harmony in HM. Replace the worst harmony if the new harmony has better fitness value.
This procedure is the same for both HS-RF and MHS-RF.

Step 5: Repeat Steps 3 and 4 until max_iter is reached for HS-RF and for MHS-RF when one of the
two additional criteria, i.e., HM converges or no_cons_imp is reached.

3.3. Parallel Computing

Both MHS-SVM and MHS-RF aim for quality results but faster convergence. Parallel computing
with master-slave concept can be employed on the 10 independent tasks (from cross validation)
to enhance the computational efficiency. Initially, the master generates sub-tasks via data preparation
and splitting to be assigned to 10 slaves for independent and simultaneous execution. When done,
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each slave returns the required performance measures (refer Section 4.2 to compute the average.
Algorithm 6 summarizes the parallel computation. Since the main aim is to save computational
time, the same seeding is applied for both sequential and parallel execution to ensure identical
model performance.

Algorithm 6

Master: Data preparation and partitioning
do_parallel

for i in (1:10)
Slave: Step 1-5 of MHS-RF

return AUC, ACC, ACC*
Master: mean(AUC), mean (ACC), mean (ACC*)

4. Experimental Setup

4.1. Credit Datasets Preparation

The datasets used in the experiments are the German and Australian datasets which are publicly
available at the UCI repository (https://archive.ics.uci.edu/). Additionally, a peer-to-peer lending
dataset downloaded from the Lending Club (LC) website (https://www.lendingclub.com/info/
download-data.action) is also included.

For the experiment, only the sample of 60-month-term of the year 2012 is taken because less
attention was given on the 60-month-term loan in the past literature. To prepare the LC dataset,
this experiment focuses only on loan status that are fully paid and charged off. Variables having all
empty values or more than 5% missing values are removed, and variables with less than 1% of missing
value have the whole instance being removed as it is only a small loss of information. Missing data is
imputed with the mean for numerical and mode for categorical attributes, respectively. Table 4 gives
a summary of the datasets. Attributes descriptions for German and Australian are available online
while the brief descriptions of the LC attributes are shown in Table 5.

Table 4. Summary of benchmark datasets.

Instances Categorical Numerical Default Rate

German 1000 13 7 30%
Australian 690 8 6 44.45%
LC 9887 4 17 27.69%

Table 5. List of attributes in Lending Club (LC) dataset.

Attributes Type Attributes Type

loan_amnt Numerical last_credit_pull_d *** Numerical
emp_length * Numerical acc_now_delinq Numerical
annual_inc Numerical chargeoff_within_12mths Numerical
dti Numerical delinq_amnt Numerical
delinq_2_yrs Numerical pub_rec_bankruptcies Numerical
earliest_cr_line ** Numerical tax_liens Numerical
inq_last_6mths Numerical home_ownership Categorical
open_acc Numerical verification_status Categorical
pub_rec Numerical purpose Categorical
revol_util Numerical initial_list_status Categorical
total_acc Numerical

The full name of the attributes details can be found in the LCDataDictionary.xls file in the LC website.
* Transformed from categorical. ** Transformed to how many years since first credit line opened.
*** Transformed to how many months since LC pulled credit.

https://archive.ics.uci.edu/
https://www.lendingclub.com/info/download-data.action
https://www.lendingclub.com/info/download-data.action
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Numerical attributes are standardized by subtracting the column mean and dividing the standard
deviation. Categorical attributes are converted to numerical attributes with the weight-of-evidence
(WOE) transformation. 10-fold cross validation is applied on the datasets, and a validation set is
prepared for the hyperparameter tuning procedure to avoid the overfitting problem. In the experiment,
the German and Australian datasets are relatively small, thus the validation set is an inner 5-fold cross
validation, whereas the relatively larger LC dataset has a holdout set as the validation set.

4.2. Performance Measures

This study utilizes both threshold-variant and threshold-invariant performance measures to
evaluate the model performances. Accuracy (ACC) and the F1 score (F1) are reported at the default
threshold at the cutoff probability of 0.5. ACC is the proportion of correctly classified instances in the
data. For a more reliable estimate when there is class imbalance, F1 computes the harmonic mean
of precision and recall is reported together for model evaluation. The threshold-invariant measure,
AUC gives a better picture on the discriminating ability of a model across all possible thresholds.
The Friedman test is conducted to test the significance of AUC between the compared models across
the 10 test sets (from cross validation) for each dataset. The Wilcoxon signed rank test is applied if
there is a significant difference reported from Friedman test.

This study assigns a positive sign to non-defaulting customers and a negative sign to defaulting
customers. The Type I error represents acceptance of an actual defaulting customer whereas
Type II error represents the rejection of an actual non-defaulting customer. Both types of errors
result in a different extent of losses, depending on the financial environment of the institution.
Hence, a different cutoff probability is usually adjusted to achieve a balance in between both types
of errors. High sensitivity (SEN) and specificity (SPE) are equivalent to low Type II and Type I error,
respectively. SEN and SPE are reported at the cutoff probability of 0.5 for a further discussion on the
model performance in achieving a balance between both error types.

4.3. Models Setup

To assess the performance of the proposed models, Logistic Regression (LOGIT),
Backward Stepwise Logistic Regression (STEP) and Linear Discriminant Analysis (LDA) are included
for comparison as they are the standard statistical models in the credit scoring domain. The standard
SVM and RF are tuned with the conventional GS, using the same grid points described in Section 2.2.
Considering the extensive computational effort due to the cross validation setup explained in
Section 4.1, only a coarse GS is conducted for SVM. Thus, there are five comparison models to
be compared with the proposed models.

The detailed parameters settings of all hybrid models are shown in Table 6. HS and MHS hybrid
models have their parameters set in the same way as in the numerical experiment described in
Sections 2.2 and 2.3. Hence, across the three datasets, HS hybrid models have different parameters
settings whereas MHS hybrid models save up the effort of repeated trial-and-error due to the
modification of dynamic HMCR and PAR step function. The MHS hybrid models step function
for HMCR and PAR are setup as in Equations (5) and (6) for MHS-SVM and MHS-RF, respectively.

The proposed models are coded in R 3.5.1 and executed on a 2.70 GHz Intel(R) Core(TM) i7-7500
CPU with 4.00 GB RAM under Windows 10 operating system. For parallel computation, the parallel
environment is initiated with the ‘doParallel’ library in R 3.2.5 and executed on a Linux based operating
system using IBM system X360 M4 server with ten nodes of 2.0 GHz Intel Xeon 6C processors.
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Table 6. Parameters settings of HS and MHS hybrid models for the three credit datasets.

Parameters German Australian Lending Club

HS-SVM HMS 30 30 30
HMCR 0.70 0.80 0.80

PAR 0.30 0.10 0.30
bw 0.10 0.10 0.10

max_iter 1000 1000 1000

MHS-SVM HMS 30
elit 0.70

HMCR {0.70, 0.95}
PAR {0.10, 0.35}
step 20

max_iter 1000
no_cons_imp 500

HS-RF HMS 10 10 10
HMCR 0.70 0.70 0.80

PAR 0.30 0.30 0.10
max_iter 100 100 100

MHS-RF HMS 10
elit 0.70

HMCR {0.70, 0.95}
PAR {0.10, 0.35}
step 5

max_iter 100
no_cons_imp 25

5. Results and Discussions

This section reports the experimental results obtained from the different credit scoring
models across the three credit datasets based on model performances, model explainability and
computational time.

5.1. Model Performances

Table 7 reports the models’ performances across the three datasets. For the German and Australian
dataset, the AI models are competitive with the statistical models with only a slight performance
difference within 2%. On the other hand, for the LC dataset, the AI models consistently outperformed
the statistical models. This indicates the flexibility of the AI models to account for various data
patterns. Focusing in the SVM and RF families, the proposed hybrid models have slightly improved
AUC compared to the GS-tuned models. While the hybrid models do not show consistent improvement
of ACC and F1 compared to GS approach, the performance difference has been maintained in a less
than 1% margin. Hence, the reported performance measures have implied the hybrid models are very
competitive when compared to the GS tuning method.

Based on the three performance measures, the SVM family models have a wider gap of
performance difference than the RF family models. This is due to the functionality of the HS-SVM
and MHS-SVM to conduct simultaneous feature selection with hyperparameter tuning at a smaller
granularity than the GS approach. Therefore, HS-SVM and MHS-SVM will have a different input
features subset with the GS-tuned SVM that utilized the full features. In addition, the ability of HS-SVM
and MHS-SVM to directly search the continuous hyperparameters space also results in a slightly better
performance than the coarse GS for SVM tuning in this experiment. HS-RF and MHS-RF report only
very slight performance difference with GS tuned RF because no feature selection is conducted and the
hyperparameters are discrete which results in the same search space for the three models.
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Table 7. Model performances of the proposed hybrid models with GS-tuned AI models and
statistical models.

German Australian Lending Club

AUC ACC F1 AUC ACC F1 AUC ACC F1

LOGIT 0.7989 0.7590 0.8356 0.9308 0.8725 0.8462 0.6257 0.7239 0.8386
STEP 0.7999 0.7620 0.8378 0.9321 0.8739 0.8550 0.6245 0.7238 0.8387
LDA 0.8008 0.7470 0.8365 0.9286 0.8623 0.8473 0.6231 0.7238 0.8390
GS-SVM 0.8006 0.7440 0.8315 0.9292 0.8536 0.8486 0.7168 0.7236 0.8393
HS-SVM 0.8015 0.7620 0.8424 0.9313 0.8639 0.8579 0.8278 0.8251 0.8841
MHS-SVM 0.8051 0.7620 0.8403 0.9310 0.8565 0.8524 0.8267 0.8203 0.8800
GS-RF 0.7999 0.7640 0.8448 0.9354 0.8723 0.8598 0.8670 0.8580 0.9068
HS-RF 0.8044 0.7640 0.8453 0.9366 0.8738 0.8614 0.8674 0.8571 0.9063
MHS-RF 0.8053 0.7560 0.8410 0.9356 0.8695 0.8556 0.8679 0.8572 0.9064

χ2
friedman = 4.3685, (0.8224) χ2

friedman = 5.8568, (0.6633) χ2
friedman = 75.05, (4.826e-13)

ACC and F1 are threshold-variant performance measures that will change depending on
the threshold settings. Hence, the Friedman statistical test is only conducted based on the
threshold-invariant AUC, reported in the last row of Table 7, with the respective p-values enclosed
in the parentheses. For the German and Australian datasets, despite the numerical differences,
the Friedman tests do not show statistical significant differences between all the experimented models.
For the LC dataset, the Friedman test shows statistically significant differences between the models.
The corresponding post-hoc test with the p-values is tabulated in Table 8. The pairs that show significant
differences at α = 0.01 are marked in bold text.

The post-hoc Wilcoxon-signed ranked test shows statistically significant better AUC performance
of both SVM and RF families than the statistical models. There is significant difference among the
models in the SVM families, indicating the significant improvement of the proposed hybrid SVM
models compared to the GS-tuned SVM. While there is no significant difference among the models
from RF family, the slight difference in performance indicates that the proposed hybrid RF models are
competitive to the GS-tuned RF. There is significant difference is reported between models from SVM
and RF family, with RF family models having better performance.

Table 8. Post-hoc Wilcoxon-signed rank test for LC dataset of AUC performance.

LOGIT STEP LDA SVM HS-SVM MHS-SVM RF HS-RF MHS-RF

LOGIT -
STEP 1.31 × 10−1 -
LDA 8.40 × 10−2 3.23 × 10−1 -
GS-SVM 1.95 × 10−3 1.95 × 10−3 1.95 × 10−3 -
HS-SVM 1.95 × 10−3 1.95 × 10−3 1.95 × 10−3 1.95 × 10−3 -
MHS-SVM 1.95 × 10−3 1.95 × 10−3 1.95 × 10−3 1.95 × 10−3 3.23 × 10−1 -
GS-RF 1.95 × 10−3 1.95 × 10−3 1.95 × 10−3 1.95 × 10−3 1.95 × 10−3 1.95 × 10−3 -
HS-RF 1.95 × 10−3 1.95 × 10−3 1.95 × 10−3 1.95 × 10−3 1.95 × 10−3 1.95 × 10−3 6.25 × 10−1 -
MHS-RF 1.95 × 10−3 1.95 × 10−3 1.95 × 10−3 1.95 × 10−3 1.95 × 10−3 1.95 × 10−3 2.86 × 10−1 4.41 × 10−1 -

Among the three performance measures, only AUC indicates consistent best performance from
the RF family models and consistent improvements of proposed hybrid models compared to the GS
tuning approach. Considering the ACC and F1, the performance ranking of the models are different
across the three datasets. To consider all the performance measures together for a general overview
evaluation of the models, each model is assigned an overall rank (ORank). In each dataset, the models
are ranked based on their average rank computed across the three performance measures. The same
reported performance will have a tied rank. All the rankings are tabulated in Table 9, with a lower
value of ORank indicating better model performance.
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Table 9. Ranking of model performances across the three credit datasets.

German Australian Lending Club

AUC ACC F1 Rank AUC ACC F1 Rank AUC ACC F1 Rank ORank

LOGIT 9 6 8 7.7 7 3 9 6.3 7 7 9 7.7 7.3
STEP 7.5 4 6 5.8 4 1 5 3.3 8 8.5 8 8.17 5.9
LDA 5 8 7 6.7 9 7 8 8 9 8.5 7 8.17 7.7
SVM 6 9 9 8 8 9 7 8 6 6 6 6 6.4
HS-SVM 4 4 3 3.7 5 6 3 4.7 4 4 4 4 4.2
MHS-SVM 2 4 5 3.7 6 8 6 6.7 5 5 5 5 5.2
RF 7.5 1.5 2 3.7 3 4 2 3 3 3 1 2.3 3.1
HS-RF 3 1.5 1 1.83 1 2 1 1.3 2 2 3 2.3 1.9
MHS-RF 1 7 4 4 2 5 4 3.7 1 1 2 1.3 3.1

According to the ORank, the RF family models take the best rank, followed by the SVM family
models and lastly the statistical models. This order indicates the robustness of AI models compared
to the statistical models. In addition, for both the RF and SVM family models, the proposed hybrid
models always have a better ORank than the GS approach. Thus, HS is suitable to be hybridized with
AI models for cautious hyperparameter tuning, and also feature selection; particularly SVM in this
study. The hybrid models do not require specific settings of the granularity as in GS for continuous
decision variables and at the same time is able to perform feature selection within the same time as a GS
approach which only conducts hyperparameter tuning. The competitive performance of the proposed
MHS hybrid models show that HS is very adaptable depending on user needs. MHS hybrid models
effectively reduce computational effort yet at the same time maintains the quality of the solution
(detailed discussions in Section 5.3).

Table 10 reports the model sensitivity and specificity across the three datasets. Instead of
evaluating both measures separately, this study discusses both measures together as one single
pair since a good model should not have dominance in only either one of it to achieve a balanced trade
off between the two types of losses.

For the German and Australian dataset, both statistical and AI models have reported relatively
similar sensitivity-specificity gaps, indicating a reasonable balance between Type II-Type I error.
Models from the RF and SVM families have slight inclined priority towards a reduction of Type II
error (due to higher sensitivity and lower specificity) in German and Australian datasets, respectively.
For the LC dataset, the AI models report significant smaller sensitivity-specificity gaps compared to
the statistical models. In contrast to statistical models that have extreme dominance in sensitivity,
AI models have reported a reasonable balance between sensitivity and specificity, indicating that AI
models have a better balance to reduce both Type I and Type II errors for the LC dataset. For the
models of the RF family, the proposed hybrid models do not show consistent improvement across the
three datasets compared to the GS-tuned RF but the reported performance have only a very slight
difference, indicating the proposed models are competent. On the other hand, for the models from the
SVM family, the proposed hybrid models have a slight improvement in the German and Australian
dataset but significant improvement in the LC dataset compared to the GS-tuned SVM. This shows
that HS and MHS have effectively improved the SVM performance by simultaneous feature selection
and hyperparameter tuning.
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Table 10. Sensitivity and specificity analysis of the proposed hybrid models with GS-tuned AI models
and statistical models.

German Australian Lending Club

SEN SPE SEN SPE SEN SPE

LOGIT 0.8757 0.4867 0.8678 0.8629 0.9919 0.0462
STEP 0.8786 0.4900 0.8848 0.8581 0.9930 0.0208
LDA 0.8743 0.4967 0.9165 0.8070 0.9952 0.0150
GS-SVM 0.9057 0.3667 0.9155 0.8043 0.9980 0.0069
HS-SVM 0.9086 0.4200 0.9185 0.8200 0.9229 0.5695
MHS-SVM 0.8957 0.4500 0.9252 0.8016 0.9130 0.5782
GS-RF 0.9187 0.4000 0.8699 0.8674 0.9555 0.6034
HS-RF 0.9229 0.3933 0.8634 0.8822 0.9564 0.5979
MHS-RF 0.9229 0.3667 0.8635 0.8746 0.9565 0.5979

Several recent literatures are outlined in Table 11 to highlight the main paradigm shift towards
the usage of advanced AI techniques in credit scoring and the recent approach in credit scoring
performance evaluation. Note that the abbreviations in Table 11 shall be referred to the original studies.
Recent studies have much attention paid on advanced non-linear classifiers [29] and ensemble models,
with tree-based ensembles [31,32] showing great potential because decision tree is perceived as the
conventional classifier technique [33]. Besides, performance measures that is able to reflect the ability
of the model in handling class imbalance is the recent trend where [33] have highlighted the usage of
expected cost together with class imbalance for model evaluation and [29–31] have employed SEN,
SPE and AUC for model evaluation. The summary from Table 11 implies the alignment of this study
to fit with the recent paradigm, i.e., improvement of non-linear SVM and tree-based ensemble RF via a
hybrid approach as well as model evaluation that takes into account for class imbalance via discussion
on SEN and SPE.

Based on the summary in Tables 11 and 12 compiled the studies that have experimented on the
same dataset and utilized the same performance measures for results comparison with this study.
Hence, only studies from [30,32] are included as comparison. Since [30] has proposed a novel approach
in ranking the assessed models, only the top three models with the best rank are compiled. Due to the
different assignment of positive sign for defaulting customers by [30], the true positive rate and true
negative rate reported would be analogous to the SPE and SEN, respectively, in this study. For the
study by [32], Australian dataset is the only data in common with our study with error rate as the
single performance measure, thus ACC is computed from the error rate and reported in Table 12.
Performance measures in bold texts indicate the best performance within that particular study.

The compiled results show that there is no obvious outperformance between the results reported
by external studies with the proposed models. Across the two datasets over the four performance
measures, the margin of difference have been maintained within 5% difference, which could not be
considered as significant performance difference. This indirect comparison with external studies
implies the competitiveness of the proposed models with the latest state-of-the-arts. It is worth to
emphasize that model performance comparison with external studies would be difficult due to different
experiment setup and varying proposed approaches to address different issues, the comparison in
Table 12 aims to indicate the competency of the proposed models with current techniques instead of
identifying a ‘winner’ among these experiments.

5.2. Model Explainability

For model explainability, the HS-SVM and MHS-SVM conduct feature selection and
hyperparameter tuning simultaneously. The end user can then focus on the investigation of the
reduced features subset. Table 13 reports the average number of reduced features across the 10-fold
test sets. HS-SVM and MHS-SVM are compared only with STEP because STEP is the only model that
conducted feature selection.
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Table 11. Recent literature studies in credit scoring domain.

Study Proposed Approach Classifier Database Performance
Measures

[33]
Comparison of undersampling
and oversampling to solve class
imbalance

C4.5 4 UCI datasets* (A) expected cost

[30]

3 MCDM methods to rank 9
techniques (Bayesian Network,
Naive Bayes, SVM, LOGIT,
k-nearest neighbour, C4.5,
RIPPER, RBF network,
ensemble)

Top three: LOGIT,
Bayesian network,
ensemble

2 UCI datasets* (G,A)
and credit datasets
representing 4 other
countries

ACC, AUC, SEN, SPE,
precision

[31]

Tree-based ensembles with
synthetic features for features
ranking and performance
improvement

Extreme Gradient
Boosting to learn
ensemble of decision
trees

EMIS database (Polish
company) AUC

[32] Performance assessment of 5
tree-based ensemble models

AdaBoost, LogitBoost,
RUSBoost, Subspace,
Bagging

3 UCI datasets* (A) error rate

[29] Performance assessment of 4
neural network models

BPNN, PNN, RBFNN,
GRNN with RT as
benchmark

1 UCI dataset ACC, SEN, SPE

* UCI dataset employed is the same as this study (G: German, A: Australian).

Table 12. Results comparison with external studies.

Data Study Model ACC AUC SEN SPE

Australian [30] LOGIT 0.8623 0.9313 0.8590 0.8664
Bayesian Network 0.8522 0.9143 0.8656 0.7980
Ensemble 0.8551 0.9900 0.8773 0.8274

[32] AdaBoost 0.8725 – – –
LogitBoost 0.8696 – – –
RUSBoost 0.8551 – – –
Subspace 0.7667 – – –
Bagging 0.8939 – – –

HS-SVM 0.8639 0.9313 0.9185 0.8200
MHS-SVM 0.8565 0.9310 0.9252 0.8016
HS-RF 0.8738 0.9366 0.8634 0.8822
MHS-RF 0.8695 0.9356 0.8635 0.8746

German [30] LOGIT 0.7710 0.7919 0.8900 0.4933
Bayesian Network 0.7250 0.7410 0.8814 0.3600
Ensemble 0.7620 0.7980 0.8943 0.4533

HS-SVM 0.7620 0.8015 0.9086 0.4200
MHS-SVM 0.7620 0.8051 0.8957 0.4500
HS-RF 0.7640 0.8044 0.9229 0.3933
MHS-RF 0.7560 0.8053 0.9229 0.3667

Table 13. Average number of reduced features.

German Australian Lending Club

STEP 14.6 7 16.2
HS-SVM 14.9 8.4 5.8
MHS-SVM 13.9 9 6.1

From Table 13, there is only a slight difference of the average number of reduced features between
the three models for German and Australian datasets. However, for LC datasets, hybrid SVM models
have more reduced features compared to STEP. For all the three datasets, the proposed hybrid SVM
models have effectively reduced the features while maintaining a good performance as compared to
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the standard SVM that used the full features. This indicates that the proposed hybrid SVM models
effectively reduced the original features but yet improved the standard SVM model.

For the RF models, this study recommends the use of the computed feature importance,
i.e., the mean decrease in accuracy (mDA) and the mean decrease in Gini Impurity (mGI) for model
explainability. Both mDA and mGI ranks the features from most to least important, thus providing the
initial insight for the end user.

5.3. Computational Time

Table 14 reports the computational time of all the models utilized in Section 5.1, including the two
parallel MHS hybrid models. Note that the performance measures for these two parallel hybrid models
are identical, with only a difference in computational time, because of the same seeding applied.

Across the three datasets, the statistical models are very efficient, with only the STEP
taking a longer time due to the feature selection process. The AI models are time-consuming
due to the hyperparameter tuning process which is unavoidable as they are sensitive to the
hyperparameters’ choice.

For both the SVM and RF families, similar computational effort can be perceived. In the
experiments using the three datasets, the HS-hybrid models take the longest time, as compared
to GS since it depends on the only termination criteria, max_iter in the HS procedure to ensure the
search space is sufficiently explored. In contrast, MHS-hybridized models are able to search for
comparable solutions as with the HS and GS, but in a much shorter time. This saves up to half of
the computational effort. Together with parallel computing, the MHS hybrid models have more
efficient computational power. Nonetheless, the development of the MHS hybrid models require
experimentation and additional computational efforts. Between both the SVM and RF families,
the SVM models are extremely time-consuming when the dataset contains more instances, i.e., the LC
dataset. This is due to the training time complexity of SVM O(n3).

Table 14. Computational time.

German Australian Lending Club

LOGIT 0.3698 s 0.3624 s 5.8037 s
STEP 15.8467 s 0.3822 s 6.2699 min
LDA 0.5280 s 0.5339 s 3.0937 s
GS-SVM 49.3829 min 20.1442 min 3.6870 days
HS-SVM 101.4499 min 42.3236 min 4.652 days
MHS-SVM 36.8149 min 17.7540 min 1.4710 days
MHS-SVM (P) 5.764 min 3.405 min 9.854 h
GS-RF 49.4010 min 15.8474 min 1.9173 h
HS-RF 57.0272 min 30.0728 min 2.3945 h
MHS-RF 32.4922 min 12.2331 min 1.2369 h
MHS-RF (P) 5.5027 min 3.5496 min 12.5525 min

Despite the benefit of being efficient without the need of hyperparameter tuning, the standard
statistical models face limitations in dealing with more complex data patterns. In cases where the
standard statistical models can no longer account for the data pattern, this results in poor performance.
Further data transformation or interaction terms have to be included for the statistical models building
procedure. This additional procedure may be another time-consuming process.

6. Conclusions and Future Directions

In this study, HS and MHS are hybridized with both SVM and RF, forming four new models.
The newly proposed MHS is to ensure an effective yet efficient searching process. HS-SVM and
MHS-SVM tune hyperparameters and reduces the features for model explanation while HS-RF and
MHS-RF tune hyperparameters and utilize the two types of feature importance for model explainability.
This allows flexibility in modeling while having high accuracy in the classification, comparative to
traditional statistical modeling. In addition to this, the computational time is also competitive.
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All the proposed models, HS-SVM, MHS-SVM, HS-RF, and MHS-RF, are competitive in the
German and Australian datasets, and have great improvement over the standard statistical models
in the LC dataset. All the HS and MHS hybrid models consistently reported higher AUC than the
standard SVM and RF, implying the effectiveness of the proposed hybrid models to improve model
discriminating ability. The proposed models only show slight improvement without significant
difference in the German and Australian datasets, but the RF family models have shown statistically
significant better results in LC dataset, with hybrid RF models reporting the best performance.

HS-SVM and MHS-SVM have effectively shrunk down the number of features, enabling end
users to focus on the reduced features. HS-RF and MHS-RF are well-tuned, thus the computed
feature importance are believed to be reliable in ranking the features. These strategies can be useful in
providing initial insight for the end users.

In terms of computational effort, the standard statistical models are efficient as there is no
hyperparameter tuning procedure required, but they fail to achieve good performance in the LC
dataset. HS hybrid models are time consuming while MHS hybrid models have shown significant
time saving. Along with parallel computing, the computational effort is further reduced. MHS hybrid
models are very competitive compared to HS hybrid models, with the benefit of the computational
efficiency being improved. In consideration of good discriminating ability, model explainability and
computational efficiency, MHS-RF is the recommended alternative credit scoring model.

There are some possible future directions that can be pointed out. Instead of the time consuming
standard SVM, other versions of SVM such as Least Squares SVM can be attempted to form a hybrid
model. The model explainability approach in this study does not solve the black-box property of the
AI models. Rules extraction can be incorporated to solve the black-box problem.
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Abbreviations

The following abbreviations are used in this manuscript:

ABC Artificial Bee Colony
ACC Accuracy
AF Average Frequency
AI Artificial Intelligence
AUC Area Under Receiver Operating Characteristics
GA Genetic Algorithm
GS Grid Search
HM Harmony Memory
HMCR Harmony Memory Considering Rate
HMS Harmony Memory Size
HS Harmony Search
LDA Linear Discriminant Analysis
LOGIT Logistic Regression
MA Metaheuristic Algorithm
mDA mean Decrease Accuracy
mGI mean decrease in Gini Impurity
MHS Modified Harmony Search
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PAR Pitch-Adjusting Rate
PSO Particle Swarm Optimization
RF Random Forest
SEN Sensitivity
SPE Specificity
STEP Backward Stepwise Logistic Regression
SVM Support Vector Machine
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