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Abstract: In this paper, a versatile Markovian queueing system is considered. Given a fixed threshold
level c, the server serves customers one a time when the queue length is less than c, and in batches
of fixed size c when the queue length is greater than or equal to c. The server is subject to failure
when serving either a single or a batch of customers. Service rates, failure rates, and repair rates,
depend on whether the server is serving a single customer or a batch of customers. While the
analytical method provides the initial probability vector, we use the entropy principle to obtain both
the initial probability vector (for comparison) and the tail probability vector. The comparison shows
the results obtained analytically and approximately are in good agreement, especially when the first
two moments are used in the entropy approach.

Keywords: Markovian queue; flexible server; unreliable server; steady-state distribution; maximum
entropy principle

1. Introduction

The concept of entropy was introduced by Shannon in his seminal papers, Shannon [1].
In information theory, entropy refers to a basic quantity associated to a random variable. Among a
number of different probability distributions that express the current state of knowledge, the maximum
entropy principle allows to choose the best one, that is the one with maximum entropy.

Originally, the entropy was created by Shannon as part of his theory of communication. However,
since then, the principle of maximum entropy has found applications in a multitude of other areas such
as statistical mechanics, statistical thermodynamics, business, marketing and elections, economics,
finance, insurance, spectral analysis of time series, image reconstruction, pattern recognition,
operations research, reliability theory, biology, medicine, and so forth, see Kapur [2].

In operations research, and particularly in queueing theory, a large number of papers has used
the maximum entropy principle to determine the steady-state probability distribution of some process.
The earliest document using entropy maximization in the context of queues that came to our attention
is that of Bechtold et al. [3]. Among the latest theoretical papers applying the maximum entropy
principle we cite Yen et al. [4], Shah [5], and Singh et al. [6], while She et al. [7], Giri and Roy [8],
and Lin et al. [9] present recent applications.

The intention of this paper is to resume work on a paper started by Bounkhel et al. [10],
who studied a flexible queueing system and used an analytical method to obtain the initial steady
state probability vector. For other possible approaches to calculate the probabilities see the references
in Reference [10]. The objective of this paper is threefold. First, the maximum entropy principle is
used to derive the initial steady state probability vector and make sure it is in agreement with the one
obtained by Bounkhel et al. [10]. Second, we use the maximum entropy principle to obtain the tail

Entropy 2020, 22, 979; doi:10.3390/e22090979 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0003-1692-9271
http://www.mdpi.com/1099-4300/22/9/979?type=check_update&version=1
http://dx.doi.org/10.3390/e22090979
http://www.mdpi.com/journal/entropy


Entropy 2020, 22, 979 2 of 13

steady state probability vector. Third, improve both initial and tail probability vectors by providing
more information to the maximum entropy technique.

The rest of this paper is structured as follows. In Section 2, we describe the flexible queueing
system and recall the results obtained by Bounkhel et al. [10]. Our main results are presented
in Section 3 where we use the maximum entropy principle to obtain the different probabilities.
The theoretical results are verified with numerical illustrations. The paper is concluded in Section 4.

2. Model Formulation and Previous Results

Bounkhel et al. [10] studied a versatile single-server queueing system where service is regulated
by an integer threshold level c ≥ 2, and can be either single or batch as follows—if the queue length is
less than c, then service is single and exponential with parameter µ1. If the queue length is equal to c,
then service is batch of size c and follows the exponential distribution with parameter µ2 − µ1 > 0.
Finally, if the queue size is greater than c, then service is again batch of fixed size c and follows
the exponential distribution with parameter µ2. The server is subject to breakdowns which happen
according to a Poisson process with rate α1 when service is single and α2 when service is batch.
Repairs that follow breakdowns are exponentially distributed with rate β1 when service is single and
β2 when service is batch. Assume that costumers arrive according to a Poisson process with positive
rate λ.

We let X(t) represent the number of customers in the system at time t and introduce wn,
n = 0, 1, 2, · · · the probability of n customers in the system in the steady-state when the server
is in a working state, and pn the probability of n customers in the system in the steady-state regardless
of the server state. Also, for |z| ≤ 1, we introduce the probability generating functions:

W(z) =
∞

∑
n=0

wnzn and P(z) =
∞

∑
n=0

pnzn.

Then,

W(z) =
A1(z)S1(z) + A2(z)w0zc−1 + A3(z)zcw1

zc(λ + µ2)− λzc+1 − µ2
, (1)

P(z) =

(
1 +

α2

β2

)
W(z) +

(
α1

β1
− α2

β2

)
S1(z), (2)

where
A1(z) := (µ2 − µ1)zc + µ1zc−1 − µ2, A3(z) := µ2

1(z
c−1−1)

µ1−µ2
,

A2(z) := (λ + µ1)z− µ1 +
λz(µ1zc−1 − µ2)

µ2 − µ1
, S1(z) :=

c−1

∑
n=0

wnzn.

The c unknown probabilities wn, n = 0, 1, · · · , c− 1, are determined by solving the system of c
equations:

A1(z)S1(z) + A2(z)w0zc−1 + A3(z)zcw1

∣∣∣
z=zi

= 0, i = 1, 2, · · · , c− 1, (3)

c−1

∑
n=0

anwn = 1, (4)

where zi are the c− 1 roots inside the open unit ball of the equation

−λzc+1 + zc(λ + µ2)− µ2 = 0,
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and

an =



(α2 + β2)[A′1(1) + A′2(1)]
β2(cµ2 − λ)

+

(
α1

β1
− α2

β2

)
, n = 0,

(α2 + β2)[A′1(1) + A′3(1)]
β2(cµ2 − λ)

+

(
α1

β1
− α2

β2

)
, n = 1,

(α2 + β2)A′1(1)
β2(cµ2 − λ)

+

(
α1

β1
− α2

β2

)
:= a, n ≥ 2,

with

A′1(1) = cµ2 − µ1, A′2(1) = (λ + µ1) +
λ(cµ1 − µ2)

µ2 − µ1
, A′3(1) =

(c− 1)µ2
1

µ1 − µ2
.

Writing W(z) = N(z)
D(z) , the expected number of customers in the system in the steady-state is

E(X) =

(
1 +

α2

β2

)
W ′(1) +

(
α1

β1
− α2

β2

)
S′1(1), (5)

where

W ′(1) =
N′′(1)D′(1)− N′(1)D′′(1)

2D′(1)2 ,

with

D′(1) = cµ2 − λ,

D′′(1) = c [(c− 1)(µ2 + λ)− λ(c + 1)] ,

N′(1) = A′1(1)S1(1) + A′2(1)w0 + A′3(1)w1,

N′′(1) = A′′1 (1)S1(1) + 2A′1(1)S
′
1(1) +

[
A′′2 (1) + 2(c− 1)A′2(1)

]
w0

+
[
A′′3 (1) + 2cA′3(1)

]
w1,

and

A′′1 (1) = (c− 1)(cµ2 − 2µ1), A′′2 (1) =
λµ1c(c− 1)

µ2 − µ1
, A′′3 (1) = (c− 2)A′3(1). (6)

3. Entropy Approach

By solving the system of Equations (3)–(4), only the probabilities wn, n = 0, 1, ·, c− 1 are obtained.
The rest of the probabilities wn, n = c, c + 1, · · · can be obtained by successive differentiations of (1).
Note that using (2), we have

pi =


(

1 + α1
β1

)
wi, i < c,

(
1 + α2

β2

)
wi, i ≥ c.

(7)

Therefore, the initial probability vector Pi = (p0, p1, · · · , pc−1) is completely determined while
the tail probability vector Pt = (pc, pc+1, · · · ) is yet to be determined. However, since the first moment
E(X) of the process X(t) has been found in (5), we can use this information, along we the maximum
entropy principle, to obtain approximate values for the components of the tail probability vector Pt.
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3.1. Entropy Solution Using the First Moment

In a first step, we will calculate the initial probability vector using the maximum entropy principle
and compare it with the initial probability vector obtained in the previous section to make sure they
are in agreement. To this end, consider the following nonlinear maximization problem:

max Z = −
∞

∑
i=0

pi ln pi

s.t.
c−1

∑
n=0

an pn = 1 +
α1

β1
(8)

(EP)
∞

∑
i=0

ipi = E(X) (9)

pi ≥ 0, for all i

Constraint (8) is the summability-to-one condition while constraint (9) is the mean system size
equation. This maximization problem can be solved by the method of Lagrange multipliers, see for
example Luenberger and Ye [11]. The Lagrangian function associated with problem (EP) is given by:

L(Pi, λ) = −
∞

∑
i=0

pi ln pi + λ1

(
c−1

∑
n=0

an pn − 1− α1

β1

)

+λ2

(
∞

∑
i=0

ipi − E(X)

)
,

where the vector λ = (λ1, λ2) stands for the Lagrange multipliers. Setting the derivative of L(Pi, λ)

with respect to pk to zero yields

pk = e−1eakλ1 ekλ2 , k = 0, 1, 2, · · · . (10)

Substituting (10) in the constraints (8) and (9), we get:

ea0λ1 + ea1λ1 eλ2 + eaλ1 e2λ2
1− e(c−2)λ2

1− eλ2
+

ecλ2

1− eλ2
= e (11)

ea1λ1 eλ2 + eaλ1 e3λ2
1 + (c− 3)e(c−2)λ2 − (c− 2)e(c−3)λ2

(1− eλ2)2

+2e2λ2
1− e(c−2)λ2

1− eλ2
+

e(c+1)λ2

(1− eλ2)2 +
cecλ2

1− eλ2
= eE(X). (12)

All we need to do now is solve numerically the nonlinear system (11) and (12) to find eλ1 and then
eλ2 and then substitute in (10) to obtain the probabilities pk.

Example 1. Some numerical tests are conducted here to see how good is the solution procedure proposed in this
section. In this sequel, we will refer to the solution obtained analytically as the exact solution, and to the solution
obtained using the entropy approach with the first moment as the approximate solution 1. To compare these
solutions, we will use the percentage error (PE 1):

PE 1 =

(
| exact value − approximate value 1 |

exact value

)
. (13)
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Let us take a numerical example where c = 5 and calculate the initial probability vector Pi = (p0, · · · , p4).
Assume µ1 = 2, µ2 = 5.5, α1 = 0.05, α2 = 0.08, β1 = 0.07, and β2 = 0.06. Table 1 shows the exact solution,
the approximate solution 1, and the percentage error for two different values of the arrival rate λ.

Table 1. Initial probability vectors comparison.

c = 5

λ λ = 0.5 λ = 5.5

Exact Approx. 1 PE 1 Exact Approx. 1 PE 1

p0 0.7519 0.7265 0.0338 0.1077 0.2349 1.1815
p1 0.1876 0.1794 0.0441 0.1561 0.2147 0.3748
p2 0.0465 0.0653 0.4049 0.1776 0.1438 0.1906
p3 0.0112 0.0206 0.8346 0.1799 0.1023 0.4316
p4 0.0024 0.0065 1.6986 0.1572 0.0727 0.5373

Average 0.6032 0.5432

When λ = 0.5, the average PE 1 is 0.6032 and when λ = 5.5, the average PE 1 is 0.5432. The overall
average percentage error is 0.5732, which can be greatly improved.

3.2. Entropy Solution Using the Second Moment

In this subsection, we use (2) to calculate the second moment E(X2) and we will show that the use
of the second moment instead of the first moment as an extra constraint leads to an initial steady state
probability vector that is also closer to the initial steady state probability vector obtained analytically.
We find that the second moment is given by

E(X2) =

(
1 +

α2

β2

)
W
′′
(1) +

(
α1

β1
− α2

β2

)
S
′′
1(1) + E(X), (14)

where

W ′′(1) =
V′′(1)U′′′(1)−U′′(1)V′′′(1)

3V′′(1)2 ,

with

V′′(1) = 2(cµ2 − λ)2

U′′(1) = D′(1)N′′(1)− N′(1)D′′′(1)
V′′′(1) = 6c(cµ2 − λ) [(c− 1)µ2 − λ]

U′′′(1) = 2[D′(1)N′′′(1)− N′(1)D′′′(1)]
A′′′1 (1) = (c− 1)(c− 2) (cµ2 − 3µ1)

A′′′2 (1) =
λc(c− 1)(c− 2)

µ2 − µ1

A′′′3 (1) =
µ2

1(c− 1)(c− 2)(c− 3)
µ1 − µ2

D′′′(1) = c(c− 1) [(c− 2)µ2 − 3λ]

N′′′(1) = 3A′′1 (1)S
′
1(1) + 3A′1(1)S

′′
1 (1) + S1(1)A′′′1 (1)

+w0[A′′′2 (1) + 3(c− 1)A′′2 (1) + 3(c− 1)(c− 2)A′2(1)]
+w1[A′′′3 (1) + 3cA′′3 (1) + 3c(c− 1)A′3(1)]

S′′1 (1) =
c−1

∑
n=0

n(n− 1)wn.
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The nonlinear maximization problem to solve in this case is the following:

max Z = −
∞

∑
i=0

pi ln pi

s.t.
c−1

∑
n=0

an pn = 1 +
α1

β1
(15)

(EP2)
∞

∑
i=0

i2 pi = E(X2) (16)

pi ≥ 0, for all i.

Similarly to the case where we only used the first moment, we use the classical method of
Lagrange. The following system of nonlinear equations, where the unknowns are the Lagrange
multipliers (λ1, λ2) is obtained:

ea0λ1 + ea1λ1+λ2 + eaλ1
c−1

∑
k=2

ek2λ2 +
∞

∑
k=c

ek2λ2 − e = 0

ea1λ1+λ2 + eaλ1
c−1

∑
k=2

k2ek2λ2 +
∞

∑
k=c

k2ek2λ2 − eE(X2) = 0

This system can be solved numerically. Once we have the values of (λ1, λ2), we replace these
values in the following formula to obtain the probabilities pk:

pk = e−1eakλ1 ek2λ2 , k = 0, 1, 2, · · · . (17)

Example 2. Some numerical tests are conducted here to see how good is the solution procedure proposed in
this subsection. Similarly to the previous subsection, we will refer to the percentage error obtained using the
entropy approach with the second moment as PE 2. Then we compare the two approximate solutions using the
percentage errors. Let us take a numerical example with the same data in Example 1, that is, c = 5, µ1 = 2,
µ2 = 5.5, α1 = 0.05, α2 = 0.08, β1 = 0.07, and β2 = 0.06. Table 2 shows the exact solution, the approximate
solution obtained in Section 3.1, the approximate solution obtained in this subsection, the percentage errors PE 1
and PE 2, for two different values of the arrival rate λ.

Table 2. Initial probability vectors comparison.

c = 5

λ λ = 0.5 λ = 5.5

Exact Appr. 1 PE 1 Appr. 2 PE 2 Exact Appr. 1 PE 1 Appr. 2 PE 2

p0 0.7519 0.7265 0.0338 0.6560 0.1275 0.1077 0.2349 1.1815 0.0391 0.6372
p1 0.1876 0.1794 0.0441 0.2892 0.5414 0.1561 0.2147 0.3748 0.0608 0.6108
p2 0.0465 0.0653 0.4049 0.0523 0.1237 0.1776 0.1438 0.1906 0.1387 0.2191
p3 0.0112 0.0206 0.8346 0.0025 0.7810 0.1799 0.1023 0.4316 0.1112 0.3821
p4 0.0024 0.0065 1.6986 0.0000 0.9858 0.1572 0.0727 0.5373 0.0815 0.4812

Average 0.6032 0.5119 0.5432 0.4661

When λ = 0.5, the average of PE 1 is 0.6032 and the average of PE 2 is 0.5119, and when λ = 5.5,
the average of PE 1 is 0.5432 and the average of PE 2 is 0.4661. The overall average percentage error of PE 1
and PE 2, respectively, are 0.5732 and 0.4890, which can be greatly improved in the next subsection.
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3.3. Entropy Solution Using Both First and Second Moments

Our objective here is to improve the probability vector obtained in the previous subsections.
This is realized by including both first and second moments to the previous formulation. We will show
that the use of the two moments as extra constraints leads to best approximation to the initial steady
state probability vector obtained analytically. The nonlinear maximization problem to solve in this
case is the following:

max Z = −
∞

∑
i=0

pi ln pi

s.t.
c−1

∑
n=0

an pn = 1 +
α1

β1
(18)

(EP3)
∞

∑
i=0

ipi = E(X) (19)

∞

∑
i=0

i2 pi = E(X2) (20)

pi ≥ 0, for all i.

Similarly to the previous cases, we use the classical method of Lagrange. The following system of
nonlinear equations, where the unknowns are the Lagrange multipliers (λ1, λ2, λ3) is obtained:

ea0λ1 + ea1λ1+λ2+λ3 + eaλ1
c−1

∑
k=2

eaλ1+kλ2+k2λ3 +
∞

∑
k=c

ekλ2+k2λ3 − e = 0

ea1λ1+λ2+λ3 + eaλ1
c−1

∑
k=2

keaλ1+kλ2+k2λ3 +
∞

∑
k=c

kekλ2+k2λ3 − eE(X) = 0

ea1λ1+λ2+λ3 + eaλ1
c−1

∑
k=2

k2eaλ1+kλ2+k2λ3 +
∞

∑
k=c

k2ekλ2+k2λ3 − eE(X2) = 0
.

This system can be solved numerically. The values of (λ1, λ2, λ3) obtained numerically will be
replaced in the following formula to obtain the probabilities pk:

pk = e−1eakλ1 ekλ2 ek2λ3 , k = 0, 1, 2, · · · . (21)

Example 3. Let us take the same data as in Examples 1 and 2 and calculate the initial probability vector using
the analytical method (exact), entropy approach with first moment only (Entropy 1), entropy approach with
second moment only (Entropy 2), and entropy approach with both first and second moments (Entropy 1&2).
Tables 3 and 4 show the exact solution and the approximate solutions along with the corresponding percentage
errors for λ = 0.5 and λ = 5.5, respectively.

Table 3. Initial probability vectors comparison (λ = 0.5).

Exact Entropy 1 PE 1 Entropy 2 PE 2 Entropy 1&2 PE 1&2

p0 0.7519 0.7265 0.0338 0.6560 0.1275 0.7550 0.0040
p1 0.1876 0.1794 0.0441 0.2892 0.5414 0.1795 0.0431
p2 0.0465 0.0653 0.4049 0.0523 0.1237 0.0527 0.1324
p3 0.0112 0.0206 0.8346 0.0025 0.7810 0.0108 0.0346
p4 0.0024 0.0065 1.6986 0.0000 0.9858 0.0018 0.2421

Average 0.6032 0.5119 0.0912
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Table 4. Initial probability vectors comparison (λ = 5.5).

Exact Entropy 1 PE 1 Entropy 2 PE 2 Entropy 1&2 PE 1&2

p0 0.1077 0.2349 1.1815 0.0391 0.6372 0.0878 0.1843
p1 0.1561 0.2147 0.3748 0.0608 0.6108 0.2167 0.3881
p2 0.1776 0.1438 0.1906 0.1387 0.2191 0.1716 0.0341
p3 0.1799 0.1023 0.4316 0.1112 0.3821 0.1423 0.2090
p4 0.1572 0.0727 0.5373 0.0815 0.4812 0.1021 0.3503

Average 0.5432 0.4661 0.2332

We denote by PE 1 the percentage error when Entropy 1 is used, by PE 2 the percentage error when
Entropy 2 is used, and by PE 1&2 the percentage error when Entropy 1&2 is used. The overall average
percentage error using the entropy approach with the first moment is 0.5732, while the overall average percentage
error using the entropy approach with the second moment is 0.4890 which represents a slight improvement
of |0.5732−0.4890|

0.5732 = 14.68%. However, the overall average percentage using both moments is 0.1622, which
represents a substantial improvement of |0.5732−0.1622|

0.5732 = 71.70%. We show in Figure 1 the two distributions for
a better visualisation. We can see that the entropy approach with both moments always outperforms the entropy
approach with only the first moment or only second moment.
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P
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Figure 1. Initial probability vectors comparison (left λ = 0.5 and right λ = 5.5).

Since the results obtained by the entropy method with both two moments are satisfactory, we also calculated
the tail probability vector and present in Figure 2 both initial and tail probability vectors. For comparison, we
present the distribution obtained when only one moment (first or second moment) is used and when both first
and second moments are used.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

p
k

0

0.05

0.1

0.15

0.2

0.25

Exact

Entropy with both 1st and 2nd Moments

Entropy with only 2nd Moment

Entropy with only 1st Moment

Figure 2. Initial and tail probability vectors.
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One other remark we make when looking at Tables 2–4 is that the probability mass function is concentrated
at p0 for small values of λ and as λ increases, this distribution becomes more evenly distributed and the value
of p0 decreases. Intuitively, this makes sense since we expect the probability of no customers in the system to
decrease as the arrival rate increases. Therefore, to further compare the approximate entropy approaches, we
conduct next a sensitivity analysis to investigate the effect of λ on the percentage errors of p0. We also explore
the effect of other parameters, namely c, µ1 and µ2. The parameters αi and βi do not seem to have any effect on
the deviations. For the sensitivity analysis, we keep the base values of Example 1 and change one parameter at
a time.

Effect of λ on the Percentage Error of p0.

Table 5 shows the values of p0 calculated using the three methods, while Figure 3 shows the variations of
the percentage errors as λ changes.

Table 5. Effect of λ on p0.

λ Exact Entropy 1 Entropy 2 Entropy 1&2

0.2 0.5341 0.5393 0.4366 0.5352
0.4 0.2894 0.3826 0.2739 0.2673
0.6 0.1937 0.3189 0.1279 0.1618
0.8 0.1468 0.2794 0.1256 0.1169
1.0 0.1183 0.2486 0.0111 0.0949
1.2 0.0986 0.2219 0.1435 0.0821
1.4 0.0838 0.1974 0.1330 0.0733
1.6 0.0721 0.1744 0.0880 0.0660
1.8 0.0627 0.1523 0.0339 0.0597

We read from Table 5 two points: First, the approximation results obtained using Entropy 1 & 2 are clearly
better than the ones obtained by the two other methods. Second, the efficiency of the best method is inversely
proportional to the values of λ.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

 Arrival time 

0

0.05

0.1

0.15

0.2

0.25

0.3

P
e
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e
n

ta
g

e
 e

rr
o

r 
o

f 
p

0

Entropy with both 1st and 2nd Moments

Entropy with only 2nd Moment

Entropy with only 1st Moment

Figure 3. Effect of λ on the percentage errors of p0.

Figure 3 shows that Entropy 1&2 always has the lowest PE, however, there are values of λ for which
PE 1 < PE 2. In other words, if we are using a single moment, then better use the first moment for small values
of λ and the second moment for larger values of λ.

Effect of µ1 on the Percentage Error of p0.

The results are summarized in Table 6 and Figure 4.
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Table 6. Effect of µ1 on p0.

µ1 Exact Entropy 1 Entropy 2 Entropy 1&2

0.1 0.3312 0.4124 0.0136 0.3065
0.2 0.5429 0.5306 0.0126 0.5349
0.3 0.6756 0.6353 0.5493 0.6730
0.4 0.7526 0.7131 0.6338 0.7517
0.5 0.8009 0.7685 0.7000 0.8007
0.6 0.8337 0.8080 0.7520 0.8337
0.7 0.8573 0.8369 0.7925 0.8574
0.8 0.8751 0.8587 0.8237 0.8752
0.9 0.8889 0.8756 0.8478 0.8890
1 0.9000 0.8890 0.8665 0.9001

We read from Table 6 three points: First, the approximation results obtained using Entropy 1 & 2 are clearly
better than the ones obtained by the two other methods. Second, Entropy 1 is much better than Entropy 2, that is,
if we are using a single moment, then better use the first moment than the second moment. Third, the efficiency
of all three methods is directly proportional to the values of µ1.
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Figure 4. Effect of µ1 on the percentage errors of p0.

We can see from Figure 4 that we always have PE 1&2 < PE 1 < PE 2, which confirms our conclusions
from Table 6 stated above.

Effect of µ2 on the Percentage Error of p0.

The results are summarized in Table 7 and Figure 5.
We read from Table 7 three points: First, the approximation results obtained using Entropy 1 & 2 are much

better than the ones obtained by the two other methods. Second, if we are using a single moment, then better use
Entropy 1 than Entropy 2. Third, the efficiency of the best method is directly proportional to the values of µ2

and the efficiency of the other two methods is inversely proportional.
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Table 7. Effect of µ2 on p0.

µ2 Exact Entropy 1 Entropy 2 Entropy 1&2

4 0.7516 0.7422 0.6861 0.7586
5 0.7518 0.7299 0.6623 0.7558
6 0.7520 0.7241 0.6516 0.7544
7 0.7521 0.7210 0.6460 0.7536
8 0.7522 0.7190 0.6426 0.7531
9 0.7523 0.7177 0.6404 0.7528
10 0.7523 0.7168 0.6389 0.7525
11 0.7523 0.7161 0.6378 0.7524
12 0.7524 0.7155 0.6370 0.7523
13 0.7524 0.7151 0.6364 0.7522

4 5 6 7 8 9 10 11 12 13

 
2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

P
e
rc

e
n
ta

g
e
 e

rr
o
r 

o
f 
p

0

Entropy with both 1st and 2nd Moments

Entropy with only 2nd Moment

Entropy with only 1st Moment

Figure 5. Effect of µ2 on the percentage errors of p0.

Again observe from Figure 5 that we always have PE 1&2 < PE 1 < PE 2, which confirms our
conclusions from Table 7 stated above.

Effect of c on The Initial Probability Vector Pi.

The results are summarized in Table 8 and Figure 6. Superiority of Entropy 1&2 is demonstrated for all
values of c.

We read from Table 8 and Figure 6 three points: First, obviously the approximation results obtained using
Entropy 1 & 2 are clearly better than the ones obtained by the two other methods. Second, if we are using a single
moment, then better use Entropy 2 than Entropy 1 for large values of c and for small values of c there is no big
difference between the two methods. Third, the efficiency of all three methods is inversely proportional to the
values of c.

From our previous sensitivity analysis, we conclude that if a single moment is used to estimate the
probabilities, then it makes a difference whether we use the first moment or the second moment. Also, the more
information we feed the maximum entropy technique, the more accurate the results are. Although we did not do
it, we conjecture that inclusion of the third moment would confirm our findings that including more information
would result in higher accuracy.
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Figure 6. Effect of c on the average percentage error.

Table 8. Effect of c on initial probability vector Pi.

c = 3 p0 p1 p2

Exact 0.7687 0.1863 0.0400
Entropy 1 0.7582 0.1707 0.0575
Entropy 2 0.7052 0.2625 0.0318
Entropy 1&2 0.7701 0.1824 0.0438

c = 4 p0 p1 p2 p3

Exact 0.7562 0.1876 0.0453 0.0097
Entropy 1 0.7348 0.1773 0.0633 0.0197
Entropy 2 0.6723 0.2810 0.0449 0.0017
Entropy 1&2 0.7582 0.1819 0.0500 0.0091

c = 5 p0 p1 p2 p3 p4

Exact 0.7519 0.1876 0.0465 0.0112 0.0024
Entropy 1 0.7265 0.1794 0.0653 0.0206 0.0065
Entropy 2 0.6560 0.2892 0.0523 0.0025 0.0000
Entropy 1&2 0.7550 0.1795 0.0527 0.0108 0.0018

c = 6 p0 p1 p2 p3 p4 p5

Exact 0.7506 0.1876 0.0468 0.0116 0.0028 0.0006
Entropy 1 0.7236 0.1801 0.0662 0.0209 0.0066 0.0021
Entropy 2 0.6488 0.2927 0.0557 0.0028 0.0000 0.0000
Entropy 1&2 0.7544 0.1777 0.0536 0.0117 0.0022 0.0003

c = 7 p0 p1 p2 p3 p4 p5 p6

Exact 0.7502 0.1875 0.0469 0.0117 0.0029 0.0007 0.0001
Entropy 1 0.7224 0.1804 0.0665 0.0211 0.0067 0.0021 0.0007
Entropy 2 0.6457 0.2941 0.0571 0.0030 0.0000 0.0000 0.0000
Entropy 1&2 0.7545 0.1766 0.0540 0.0121 0.0023 0.0004 0.0001

c = 8 p0 p1 p2 p3 p4 p5 p6 p7

Exact 0.7500 0.1875 0.0469 0.0117 0.0029 0.0007 0.0002 0.0000
Entropy 1 0.7219 0.1805 0.0668 0.0211 0.0067 0.0021 0.0007 0.0002
Entropy 2 0.6445 0.2947 0.0577 0.0031 0.0001 0.0000 0.0000 0.0000
Entropy 1& 0.7547 0.1761 0.0541 0.0122 0.0024 0.0004 0.0001 0.0000
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4. Conclusions

An analytical and the maximum entropy principle are used in this paper to calculate the
steady-state initial probabilities of the number of customers in a Markovian queueing system.
The entropy solution is further improved by including second moment information. When the
analytical and entropy solutions are in agreement, the entropy solution is used to obtain the
tail probabilities of the number of customers in the system. These probabilities cannot be
obtained analytically.

The number of customers in the system is a discrete random variable. This paper can be followed
by one where a continuous random variable such as the waiting time or the busy period is studied.
In this case, the probability density function, instead of the probability mass function, needs to
be calculated.
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