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Abstract: We introduce a family of models, which we name matrix models associated with children’s
drawings—the so-called dessin d’enfant. Dessins d’enfant are graphs of a special kind drawn on a
closed connected orientable surface (in the sky). The vertices of such a graph are small disks that
we call stars. We attach random matrices to the edges of the graph and get multimatrix models.
Additionally, to the stars we attach source matrices. They play the role of free parameters or model
coupling constants. The answers for our integrals are expressed through quantities that we call the
“spectrum of stars”. The answers may also include some combinatorial numbers, such as Hurwitz
numbers or characters from group representation theory.

Keywords: random complex and random unitary matrices; matrix models; products of random matrices;
Schur polynomial; Hurwitz number; generalized hypergeometric functions; integrable systems

1. Introduction

Interest in matrix integrals arose in different contexts and at different times. These are problems
of statistics in biology (Wishart), and problems of quantum chaos (Wigner, Dyson, Gorkov, Eliashberg,
Efetov), and purely mathematical problems of representation theory (see the textbook [1]). At the end
of the previous century, applications were added in the theory of elementary particles (t’Hooft [2]),
statistical physics (Migdal, Itsikson and Zuber [3], and Kazakov and Kostov [4]) and string theory
(Kazakov and Brezin [5], and Migdal and Gross [6]). Now new applications have been added: in the
theory of information transfer and theory of quantum information ([7] or lectures [8] (Ch. 10 on
quantum Shannon theory)). We allow ourselves not to provide an ocean of links for each of these areas.

Moving closer to the point, we only refer to works on the use of random matrices in [9],
works about products of complex random matrices [10–12], a review [13–16] and works close to
ours from a mathematical point of view [17–22].

In the theory of information, the product of the matrices describes the cascade transformation
of signals, and averaging over the matrices means introducing interference and noise. The task is to
calculate various correlation functions in such models.

We offer a family of models that in a sense can be called exactly solvable (cf. [20]). They are built
according to the so-called children’s drawings, more precisely, clean children’s drawings, which in
combinatorics are also called maps. This is a graph drawn on a closed orientable surface, which has the
following property: if we cut it along the edges, the surface decomposes into regions homeomorphic
to disks (that is, they can be turned into disks by continuous transformation). In addition to this
picture, we turn the vertices of the graph into small disks; we call these disks stars.

Entropy 2020, 22, 972; doi:10.3390/e22090972 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0003-1785-5788
https://orcid.org/0000-0003-3467-8410
http://dx.doi.org/10.3390/e22090972
http://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/22/9/972?type=check_update&version=3


Entropy 2020, 22, 972 2 of 36

The edges of the graph are assigned matrices over which the integration is performed. Depending
on the graph we draw, we will get one model or another.

Surprisingly, it turns out that studying the products of random matrices with sources is an easier
and more natural task. Writing answers for such integrals turns out to be a faster task if we have
these matrices. The absence of these matrices is equivalent to some additional averaging that needs to
be specifically monitored.

Writing out some answers requires knowledge of certain combinatorial numbers for which
tables exist. In one case, these are the so-called Hurwitz numbers; in the other, these are the characters
of representations of a symmetric group. However, sometimes the answers are simplified and written
in a fairly simple form-in the form of determinants or in the form of products.

Adding source matrices leads to a variety of interesting relationships with differential operators.
We briefly mention this in the Appendix E.

2. Technical Tools

2.1. Partitions; Power Sums and Schur Functions; Hurwitz Numbers

Here we follow [23]. Further technical details are in Appendices A and B
Partitions. The partition λ = (λ1, . . . , λk) is a set of nonnegative integers λi which are called parts

of λ and which are ordered as λi ≥ λi+1. The number of non-vanishing parts of λ is called the length
of the partition λ, and will be denoted by `(λ). The number |λ| = ∑i λi is called the weight of λ.
The set of all partitions will be denoted by Υ and the set of partitions of weight d by Υd. Example:
the partition (4, 4, 1) belongs to Υ9. The length of (4, 4, 1) is 3.

We shall use Greek letters for partitions.
Sometimes, it is convenient to use a different notation

λ = (1m12m23m3 · · · ) ,

where mk is the number of times an integer k occurs as a part of λ. For instance, (4, 4, 1) may be written
as
(
1142). The number

zλ = ∏
k>0

kmk mk! (1)

plays an important role hereinafter.
Example: z(4,4,1) = z(1142) = 111!422! = 32.
Partitions can be perceived visually using Young diagrams (YDs): a partition λ with parts

λ1, . . . , λ` matches the rows of the corresponding YD of the length λ1, . . . , λ`, respectively; see [23] for
details. The weight of λ is the area of the YD of λ.

Power sums. For a matrix X ∈ GLN(C), we put

pk(X) := trXk = xk
1 + · · ·+ xk

N , k = 1, 2, . . . , (2)

which are the Newton sums of its eigenvalues.
Then, for a partition ∆ = (∆1, . . . , ∆k), we introduce

p∆(X) = tr(X∆1) . . . tr(X∆`). (3)

We put p(0)(X) = 1.

Remark 1. Let us note that p∆(X) is a polynomial in the eigenvalues of X and also a polynomial in entries of
X. We consider p∆(X) to be a map GLN(C)→ C.

The polynomial p∆ is a symmetric function of the eigenvalues x1, . . . , xN and called the power sum
labeled with a multi-index ∆.



Entropy 2020, 22, 972 3 of 36

If one assigns a degree 1 to each xi, then the degree of p∆(X) is |∆|.
In many problems, the set p1, p2, . . . is considered as an independent set of complex parameters,

which are in no way associated with any matrix. In this case, instead of p(X) we write simply
p = (p1, p2, . . . ). The degree of pm is equal to m.

Schur functions. Next, let us recall the definition of the Schur polynomial, parametrised by
a partition. Consider the equality

e∑m>0
1
m zm pm = 1 + zp1 + z2 p2

1 + p2

2
+ · · · = ∑

m≥0
zms(m)(p).

The polynomials s(m) are called elementary Schur functions. As we can see, s(0)(p) = 1.
Let λ = [λ1, λ2, . . . ] be a partition, and define the polynomial sλ by

sλ(p) = det
(

s(λi−i+j)(p)
)

i,j≥1
. (4)

(On the right-hand side, it is assumed that s(m) = 0 for negative m.) Here we define the Schur
function as a function of the set of free parameters p = (p1, p2, . . . ).

Let us remember that we chose the variables p = (p1, p2, . . . ) to be related to a matrix
X ∈ GLN(C). Then sλ is a map GLN(C)→ C; we will write

sλ(X) := sλ(p(X)).

Remark 2. Let us note that sλ(X) is a polynomial in entries of X and a symmetric polynomial in the eigenvalues
x1, . . . , xN of degree d = |λ|.

Remark 3 ([23]). The Schur functions sλ(x1, . . . , xN), where `(λ) ≥ N, form a Z-basis of the space of
symmetric polynomials in x1, . . . , xN of degree d.

In terms of the eigenvalues x1, . . . , xN , the Schur function reads as

sλ(X) =
det

[
xλi−i+N

j

]
i,j≤N

det
[

x−i+N
j

]
i,j≤N

(5)

for `(λ) ≤ N, and vanishes for `(λ) > N. One can see that sλ(x) is a symmetric homogeneous
polynomial of degree |λ| in the variables x1, . . . , xN .

Remark 4. The polynomial sλ is the character of the irreducible representation of the GLN(C) group labeled
by λ.

Character map relation. Relation (4) relates polynomials sλ and p∆ of the same degree
d = |λ| = |∆|. Explicitly, one can write

p∆ = ∑
λ∈Υd

dimλ

d!
z∆ ϕλ(∆)sλ(p) (6)

and
sλ(p) =

dimλ

d! ∑
∆∈Υd

ϕλ(∆)p∆. (7)
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The last relation is called the character map relation. Here

dimλ

d!
:=

∏i<j≤N(λi − λj − i + j)

∏N
i=1(λi − i + N)!

= sλ(p∞) (8)

(see Example 1 in Section 1 and Example 5 in Section 3 of Chapter I in [23]), where

p∞ = (1, 0, 0, . . . ). (9)

and where N ≥ `(λ). As one can check, the right-hand side does not depend on N. (We recall that
λi = 0 in case i > `(λ)). The number dimλ is an integer.

The factors ϕλ(∆) satisfy the following orthogonality relations.

∑
λ∈Υd

(
dimλ

d!

)2
ϕλ(µ)ϕλ(∆) =

δ∆,µ

z∆
(10)

and (
dimλ

d!

)2

∑
∆∈Υd

z∆ ϕλ(∆)ϕµ(∆) = δλ,µ. (11)

Remark 5. Equality (7) expresses the GLN character sλ in terms of characters χλ of the symmetric group
Sd labeled by the same partition λ and evaluated on cycle classes ∆ ∈ Υd. This explains the name of (7).
The numbers ϕλ(∆) are called the normalized characters:

χλ(∆) =
dimλ

d!
z∆ ϕλ(∆).

The integer dimλ is the dimension of the representation λ; that is, dimλ = χλ

(
(1d)

)
.

Equations (10) and (11) are the orthogonality relation for the characters.

Hypergeometric tau functions and determinantal formulas.
Here we follow [24,25]. Let r be a function on the lattice Z. Consider the following series

1 + r(n + 1)x + r(n + 1)r(n + 2)x2 + r(n + 1)r(n + 2)r(n + 3)x3 + · · · =: τr(n, x) (12)

Here n is an arbitrary integer. This is just a Taylor series for a function τr with a given n written in
a form that is as close as possible to typical hypergeometric series. Here n is just a parameter that will
be of use later. If as r we take a rational (or trigonometric) function, we get a generalized (or basic)
hypergeometric series. Indeed, take

r(n) =
∏

p
i=1(ai + n)

n ∏
q
i=1(bi + n)

(13)

We obtain

τr(n, x) = ∑
m≥0

∏
p
i=1(ai + n)m

m! ∏
q
i=1(bi + n)m

xm = pFq

(
a1 + n, . . . , ap + n
b1 + n, . . . , bq + n

| x
)

where

(a)n = a(a + 1) · · · (a + n− 1) =
Γ(a + n)

Γ(a)
(14)

is the Pochhammer symbol.
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One can prove the following formula which express a certain series over partitions in terms of (12)
(see, for instance, [24]):

τr(n, X, Y) := ∑
λ

rλ(n)sλ(X)sλ(Y) =
cn

cn−N

det
[
τr(n− N + 1, xiyj)

]
i,j≤N

det
[

xN−k
i

]
i,k≤N

det
[
yN−k

i

]
i.k≤N

(15)

where ck = ∏k−1
i=0 (r(i))i−k and where

rλ(n) := ∏
(i,j)∈λ

r(n + j− i), r(0)(n) = 1 (16)

where the product ranging over all nodes of the Young diagram λ is the so-called content product
(which has the meaning of the generalized Pochhammer symbol related to λ). Let us test the formula
for the simplest case r ≡ 1:

det [1− X⊗Y] = ∑
λ

sλ(X)sλ(Y) =
det

[
(1− xiyj)

−1]
i,j≤N

det
[

xN−k
i

]
i,k≤N

det
[
yN−k

i

]
i.k≤N

(17)

Sometimes we also use infinite sets of power sums pi = (p(i)1 , p(i)1 , . . . ) and instead of matrices X
and Y set:

τr(n, p1, p2) := ∑
λ

rλ(n)sλ(p1)sλ(p2) (18)

An example r ≡ 1:

τ1(n, p1, p2) := e∑m>0
1
m p(1)m p(2)m = ∑

λ

sλ(p1)sλ(p2) (19)

In case the function r has zeroes, there exists a determinantal representation. Suppose r(0);
then rλ(n) = 0 if `(λ) > n. Then

τr(n, p1, p2) = ∑
λ

`(λ)≤n

rλ(n)sλ(p1)sλ(p2) = cndet
[

∂a
p(1)1

∂b
p(2)1

τr(1, p1, p2)

]

a,b=0,...,n−1
, (20)

where ck = ∏k−1
i=1 (r(i))i−k, and where

τr(1, p1, p2) = 1 + ∑
m>0

r(1) · · · r(m)s(m)(p
1)s(m)(p

2);

see [26].
In addition, there is the following formula:

τr(n, X, p) = ∑
λ

rλ(n)sλ(X)sλ(p) =
det

[
xN−k

i τr (n− k + 1, xi, p)
]

i,k≤N

det
[

xN−k
i

] (21)

where
τr (n, xi, p) = 1 + ∑

m>0
r(n) · · · r(n + m)xm

i s(m)(p) (22)
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Let us test it for r ≡ 1, p = p∞ := (1, 0, 0, . . . ):

etrX = ∑
λ

sλ(X)sλ(p∞) =
det

[
xN−k

i exi
]

i,k≤N

det
[

xN−k
i

] (23)

There are similar series

∑
λ

rλ(n)sλ(X)

which can be written as a Pfaffian [27]; however, we will not use them in the present text.
Some properties of the Schur functions. Let us consider

Lemma 1. For X ∈ GLN , where detX 6= 0, and for λ = (λ1, . . . , λN), `(λ) ≤ N, we have

sλ(X)det(Xα) = sλ+α(X) (24)

where α is a nonnegative integer and where λ+ α denotes the partition with parts (λ1 + α, λ2 + α, . . . , λN + α),
in particular

sλ(IN) = sλ+α(IN). (25)

Additionally
sλ(p∞)

sλ+α(p∞)
=

N

∏
i=1

Γ(hi + 1 + α)

Γ(hi + 1)
=

(N + α)λ

(N)λ
(26)

Hurwitz number. Let E ≤ 2 be an integer and ∆1 =
(
∆1

1, ∆1
2, . . .

)
, . . . , ∆k =

(
∆k

1, ∆k
2, . . .

)
∈ Υd.

One can show that

HE

(
∆1, . . . , ∆k

)
= ∑

λ∈Υd

(
dimλ

d!

)E

ϕλ(∆1) · · · ϕλ(∆k) (27)

is a rational number. This number is called the Hurwitz number, which is a popular combinatorial
object in many fields of mathematics (see, for instance, [28,29]) and also in physics [30].
The explanations of the geometrical and combinatorial meanings of Hurwitz numbers may be found
in Appendices C and D. We also need a weighted Hurwitz number

HE

(
∆1, . . . , ∆k|m

)
= ∑

λ∈Υd

(
dimλ

d!

)E

ϕλ(∆1) · · · ϕλ(∆k)

(
1

(N)λ

)m
(28)

2.2. Mixed Ensembles of Random Matrices

A complex number En1,n2{ f } is the notation of the expectation values of a function f which
depends on the entries of matrices Z1, . . . , Zn1 ∈ GLN(C) and of matrices U1, . . . , Un2 ∈ UN :

En1,n2{ f } =
∫

f (Z1, . . . , Zn1 , U1, . . . , Un2)dΩn1,n2 , (29)

dΩn1,n2 =
n1

∏
i=1

dµ(Zi)
n2

∏
i=1

d∗Ui, (30)

where d∗Ui (i = 1, . . . , n2) is the Haar measure on UN and where

dµ(Zi) = c ∏
a,b

e−h̄−1|(Zi)a,b |2 d2(Zi)a,b

is the Gaussian measure. Here h̄ is a parameter; usually it is chosen to be N−1.



Entropy 2020, 22, 972 7 of 36

Each set of Zi and dµ(Zi) is called complex Ginibre ensemble and the whole set Z1, . . . , Zn1 and
dµ(Z1), . . . , dµ(Zn1) are called n1 independent complex Ginibre ensembles. The set U1, . . . , Un2 and the measure
d∗U1, . . . , d∗Un2 are called n2 independent circular ensembles. We assume each

∫
d∗Ui =

∫
dµ(Zi) = 1.

The ensemble of the matrices Z1, . . . , Zn1 , U1, . . . , Un2 together with the probability measure
dΩn1,n2 (that is, with expectation values defined by (29)) we call a (n1, n2) mixed ensemble. We will
consider mixed ensembles with n = n1 + n2 random matrices.

2.3. Integrals of Schur Functions and Integrals of Power Sums

In what follows we study expectation values of Schur functions and of power sums. We need
four key lemmas.

These lemmas should be known in parts corresponding to Schur functions, but at the moment I
have not found all the lemmas along with the proofs, so I will try to fill this gap.

In the Lemmas 2–5 below A and B are N × N complex matrices; this point is the key.
Everywhere in this section, d = 1, . . . , N.

Lemma 2. (I) For any λ ∈ Υd we have

E1,0

{
sλ(ZAZ†B)

}
= h̄d sλ(A)sλ(B)

sλ(p∞)
, (31)

where sλ(p∞) is given in (8).
(II) Equivalently, for any ∆ ∈ Υd we have

E1,0

{
p∆(ZAZ†B)

}
= z∆ h̄d ∑

∆a ,∆b∈Υd

H2(∆, ∆a, ∆b) p∆a(A) p∆b(B), (32)

where

H2(∆, ∆a, ∆b) = ∑
λ∈Υd

(
dimλ

d!

)2
ϕλ(∆)ϕλ(∆a)ϕλ(∆b) (33)

is the three-point Hurwitz number (27).

Note that Hurwitz numbers do not depend on the order of its arguments, in particular, for (33),
H2(∆, ∆a, ∆b) = H2(∆, ∆b, ∆a) = · · · = H2(∆b, ∆a, ∆).

Proof. (i) Relation (31) is known for Hermitian A, B; see [23], Chap. VII, Section 5, Example 5.
Taking into account Remark 2, we see that both sides of (31) can be analytically continued as functions
of matrix entries of A and B. Therefore, (31) is correct for A, B ∈ GLN(C).

(ii) Relation (32) follows from (31) and vice versa. To see this we use (10). For example, let us
get (32) from (31). We replace all Schur functions in (31) with power sums in accordance with (7).
Then we multiply the both sides of relation (31) by ϕλ(∆)dimλ, then we sum over λ. Then the first
orthogonality relation (10) and (27) results in (32).

(iii) The alternative way to prove the Lemma is to start with the left-hand side of (32),
where A, B ∈ GLN(C). Such integrals were considered in [31] in the context of generating of Hurwitz
numbers (see Appendix C). Using the results of [31] we state that it is equal to the right-hand side
of (32), where H2(∆, ∆a, ∆b) is the three-point Hurwitz number given by (27), namely, to right-hand side
of (33). Then with the help of orthogonality relation (10), we derive (31), where A, B ∈ GLN(C).

Remark 6. Regarding the last point (iii): The volume of the article does not allow describing the construction of
work [31,32]. In short: The derivation of the formula (33), and the derivation of more general formulas (68) below,
are based on the application of Wick’s theorem and the realization of the fact that each Wick pairing corresponds
to a certain gluing of surfaces from polygons: the surface obtained in the first order of the perturbation theory
(|∆| = d = 1) is basic. (For instance, the torus can be obtained from a rectangular by gluing the opposite sides;
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see (a) and (b) in Figure 3.) The surfaces obtained in the following orders (d > 1) are the surfaces which cover
the basic one. In this case, the Hurwitz numbers simply give a weighted number of possible covering surfaces,
where the Young diagrams correspond to the so-called branching profiles. The basic surface in case (33) is a
sphere, glued from the 2-gon; see Figure 2b below where X1 = Z, X−1 = Z†, C1 = A, C−1 = B.

Examples of (33). Suppose ∆ = (2) on the left-hand side of (33). It is known that H2((2), ∆a, ∆b) = 1/2
in two cases—where ∆a = (2), ∆b = (1, 1) and where ∆a = (1, 1), ∆b = (2)—and it is zero otherwise.
Additionally z(2) = 2, see (1). Thus,

E1,0

{
tr
(
(ZAZ†B)2

) }
= h̄2 tr

(
A2
)
(trB)2 + h̄2 (trA)2 tr

(
B2
)

.

Next, suppose ∆ = (1, 1). As we know, H2((1, 1), (2), (2)) = 1/2 and vanishes for different
choices of ∆a, ∆b, and z(1,1) = 2; see (1); therefore,

E1,0

{(
trZAZ†B

)2
}

= h̄2 tr
(

A2
)

tr
(

B2
)

.

Corollary 1. Suppose detA 6= 0, detB 6= 0, and λ = (λ1, . . . , λN), `(λ) ≤ N. We get

E1,0

{
sλ(ZAZ†B)det

(
(Z†Z)p0

)}
= h̄d+p0 N sλ(A)sλ(B)

sλ(p∞)

(N + p0)λ

(N)λ
(34)

In particular,

E1,0

{
sλ(ZAZ†)det

(
(Z†Z)p0

)}
= h̄d+p0 Nsλ(A)(N + p0)λ (35)

Proof. In case p0 is a natural number the proof is as follows:

sλ(ZAZ†B)det
(
(ZAZ†B)p0

)
= sλ(ZAZ†B)det

(
(ZZ†)p0

)
det ((A)p0)det ((B)p0) = sλ+p0(ZAZ†B)

and from Lemma 1: where λ + p0 = (λ1 + p0, λ2 + p0, . . . , λN + p0), `(λ′) = N. We have

sλ(p∞)

sλ′(p∞)
=

N

∏
i=1

Γ(hi + 1 + p0)

Γ(hi + 1)
=

(N + p0)λ

(N)λ
(36)

As we see he right-hand side can by analytically continued as the function of p0.

Lemma 3. (I) Suppose λ ∈ Υd, and let ν be any partition. We have

E1,0

{
sλ(ZA)sν(Z†B)

}
= h̄dδλν

sλ(AB)
sλ(p∞)

. (37)

where sλ(p∞) is given in (8).
(II) Equivalently, let ∆a ∈ Υd and ∆b ∈ Υd′ . Then

E1,0

{
p∆a(ZA) p∆b(Z†B)

}
= z∆a z∆b δd,d′ h̄

d ∑
∆∈Υd

H2(∆a, ∆b, ∆) p∆(AB), (38)

where HCP1(∆, ∆a, ∆b) is given by (33).

The identity (37) is well-known; for instance, see [23]. Relation (38) was proven independently
in [31]. To obtain (37) from (38) we replace power sums under the integral with the left-hand side of (6)
and use (27) and the orthogonality relations (10) and (11).
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Denote N×N identity matrix IN. The following equality is known (see [23]: combine Examples 4 and 5
of Section 3 and Example 1 from Section I of Chapter I):

sλ(IN) = (N)λsλ(p∞). (39)

Here
(N)λ := (N)λ1(N − 1)λ2 · · · (N − `+ 1)λ`

, (40)

where λ = (λ1, . . . , λ`), λ` 6= 0 and where (a)k := a(a + 1) · · · (a + k − 1) = Γ(a+k)
Γ(a) is the

Pochhammer symbol.

Lemma 4. For any λ ∈ Υd, we have

E0,1

{
sλ(UAU−1B)

}
=

sλ(A)sλ(B)
sλ(IN)

. (41)

The proof is contained in [23] Chap VII, Section 5, Example 3.

Lemma 5. Suppose λ ∈ Υd. For any µ, we get

E0,1

{
sµ(UA)sλ(U−1B)

}
=

sλ(AB)
sλ(IN)

δµ,λ . (42)

The proof follows from relations (1) and (3) Chap VII, Section 5, Example 1 in [23].

Remark 7. Formula (41) gives the fastest derivation of the famous formula HCIZ:

∫
eαtrUAU†Bd∗U = c

det
[
eaibj

]
i,j

∏i>j(ai − aj)(bi − bj)

Indeed, we use (19) where p1 = (1, 0, 0, . . . ) =: p∞ and p2 = (p(2)1 , p(2)2 , . . . ) with

p(2)m = tr
(
(UAU†B)m); thus,

eαtrUAU†B = ∑
λ

α|λ|sλ(p∞)sλ(UAU†B)

which gives
∫

eαtrUAU†Bd∗U = ∑
λ

α|λ|
sλ(p∞)sλ(A)sλ(B)

sλ(IN)
= ∑

λ

α|λ|

(N)λ
sλ(A)sλ(B)

which has the form (15). In a similar waym one evaluates
∫ (

1− αUAU†B
)−a d∗U and a number of integrals;

see, for instance [26].

The expectation values E0,1
{

p∆(AUBU−1)
}

and E0,1 {p∆a(AU)p∆b(BU†)} can also be expressed
in terms of Hurwitz numbers, but this requires a lot of space, and we will not do this; see the last
section [31] for details.

3. Our Models. Products of Random Matrices We Choose

3.1. Preliminary. On the Products of Random Matrices

In a number of articles the spectral correlation functions of certain products of were were studied.
These are products

Z1Z†
1 · · · ZnZ†

n, (43)
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Z1 · · · Zn(Z1 · · · Zn)
†, (44)

or, a pair of products
Z1 · · · Zn, (Z1 · · · Zn)

†; (45)

see [10–12].
Similar products in which complex matrices are replaced by unitary and certain generalizations

have also been considered [16,21,22,33–35].
Below we suggest a generalization of these models (see Examples 18 and 16 respectively

for (43)–(45)). We call it matrix models related to dessin d’enfants, more precisely, to the so-called clean
dessin d’enfants (see [36]).

This is a child’s drawing of a “constellation”, like the Greek constellation, which is painted in the
sky with stars, and the sky is a surface with a chosen Euler characteristic.

See below for a more accurate description.
As a part of dessin d’enfants we will need the following modification:
(1) We shall consider mixed ensembles, and in what follows, X±i denotes either Z±i, where

Z−i = Z†
i , or U±i, where U−i = U†

i .
(2) We need additional data, which we call source matrices C±1, . . . , C±n ∈ GLN(C). Each random

matrix Xi enters only in combination XiCi:

Xi → XiCi (46)

Such combinations are very helpful (in particular, this makes it possible to consider rectangular
random matrices). We shall use the notion of the dressed source matrices Ci, i = ±1, . . . ,±n with the
notation LX [∗]:

LX [ f (C1, C−1 . . . , Cn, C−n)] := f (X1C1, X−1C−1 . . . , XnCn, X−nC−n) (47)

where f is any function. (The letter L is used to remember that it is the dressing from the left side.)
The matrices {Ci} we call the source matrices which play the role of coupling constants in the

matrix models below.

3.2. Models Obtained from Graphs (Geometrical View)

Consider a connected graph Γ on an orientable connected surface Σ without boundary with Euler
characteristic E. We require such properties of the graph:

(1) its edges do not intersect. For example, the edges of the graph in Figure 1a do not intersect:
the fact is that the graph is drawn on a torus, and not on a piece of paper.

(2) if we cut the surface Σ along the edges of the graph, then the surface will decompose into
disks (more precisely: into pieces homeomorphic to disks) (see Figure 3a,b as an example).

As an example, see Figure 1, which contains all such graphs with two edges.

(a) 2 edges, 1
vertex, e = 0
(torus) Ex 2,
Ex 9

(b) 2 edges, 3
vertices, e = 2
(sphere) Ex 6,
Ex 8 both

(c) 2 edges, 1
vertex, e = 2
(sphere) Ex 6,
Ex 8 both

(d) 2 edges, 2
vertices, e = 2
(sphere) Ex 7

(e) 2 edges, 2
vertices, e = 2
(sphere) Ex 4

Figure 1: All possible graphs with 2 edges (two matrix models). Graph (b) is dual to (c). Ex means an
Example below.

X1
X-1

C1
C-1

(a) 1 edges (1-
matrix model), 1
vertex (1 star), e = 0
(sphere)Ex 1 and
Lemmas 3 ,5

X-1

X1 C1C-1

(b) 1 edges, 2 ver-
tices, e = 2 (sphere)
Ex 1 and Lemmas
2,4

|k| |j|

|i|

(c) A fragment of a
graph with numbers
on the edges

C-j

Ck

Xk X-k
Xj

X-j

C-k

C-i Cj

X-i Xi

(d) The same frag-
ment of a graph with
random matrices on
the edges and source
matrices on stars

Figure 2: Decorated graphs

10

Figure 1. All possible graphs with 2 edges (two matrix models). Graph (b) is dual to (c). Ex means an
example below.
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Such a graph is sometimes called a (clean) dessin d’enfants (the term dessin d’enfants without
the additional “clean” serves for such a graph with a bipartite structure), sometimes—a map [28].

Let our graph have F faces, n edges and V vertices; then E = V− n + F.
We number all stars (i.e., all vertices of the graph Γ) with numbers from 1 to V and all faces of Γ

with numbers from 1 to F and all edges of Γ with numbers from 1 to n in any way.
We will slightly expand the vertices of the graph and turn them into the small disk,

which sometimes for the sake of visual clarity we will call stars.
In this case, the edges coming out of the vertex will divide the border of a small disk into segments.

We orient the boundary of each such segment clockwise, and the segment can be represented by
an arrow that goes from one edge to another; see the Figures 2a,b,d and 3a,c as examples. Our graph
will have a total of 2n arrow segments.

It is more correct to assume that the edges of the graph are very thin ribbons; that is, they have
finite thickness. That is, the edge number |i| has two sides, one of which we number with the number i,
and the other with the number −i (this choice is arbitrary but fixed). It would be more correct to depict
each edge of Γ numbered by |i| in the form of a ribbon, the sides of which are two oppositely directed
arrows; one arrow has a number i, and the second −i. However, with the exception of Figure 3, we did
not do that so as not to clutter up the drawings.

(a) 2 edges, 1
vertex, e = 0
(torus) Ex 2,
Ex 9

(b) 2 edges, 3
vertices, e = 2
(sphere) Ex 6,
Ex 8 both

(c) 2 edges, 1
vertex, e = 2
(sphere) Ex 6,
Ex 8 both

(d) 2 edges, 2
vertices, e = 2
(sphere) Ex 7

(e) 2 edges, 2
vertices, e = 2
(sphere) Ex 4

Figure 1: All possible graphs with 2 edges (two matrix models). Graph (b) is dual to (c). Ex means an
Example below.
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that goes from one edge to another, see the Figures 2 (a), (b), (d) and 3 (a), (c) as examples. Our graph
will have a total of 2n arrow segments.

It is more correct to assume that the edges of the graph are very thin ribbons, that is, they have
finite thickness. That is, the edge number |i| has two sides, one of which we number with the number i,
and the other with the number −i (this choice is arbitrary but fixed). It would be more correct to depict
each edge of Γ numbered by |i| in the form of a ribbon, the sides of which are two oppositely directed
arrows, one arrow has a number i, and the second −i. But with the exception of Figure 3, we will not
do this so as not to clutter up the drawings.
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(torus) Ex 9
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(b) 2 edges, 1 vertex, e = 0
(torus cut along cycles)
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(c) 2 edges, 1 vertex, e = 2
(sphere) Ex 6, Ex 8 both

Figure 3: Graphs with 2 edges (two matrix models) where (a) is the zoom of (a) in Figure 1 and (c) is
the zoom of (c) in Figure 1

Now, each arrow of the side of the edge rests with its end against the arrow-segment - it is as if
continued by the arrow-segment. We assign the same number i (i = ±1, . . . ,±n) to the side of the edge
Γ and to the segment of the small disk, which continues this side while traversing the face in the positive
direction.

And to the number i (i = ±1, . . . ,±n) we attribute the product of the N ×N matrices

i → XiCi

where Ci is assigned to the i segment of a small disk and will be called source matrix, and Xi is assigned
to the arrow i, which is the side of the edge |i| of the graph Γ, see Figure 2 for an illustration.

Let’s use the following numbering. If one side of the edge of the tape |i| is labeled i then the other
side of the same edges is labeled −i. (This doesn’t matter which side of the edge |i| we assign the number
i to, and which - the number −i, but we should fix the numbering we have chosen). The two sides of
an edge of the graph Γ are actually arrows pointing in opposite directions. (In order not to complicate
the drawing, we do not depict these arrows in our figures, except for (a) and (b) in Fig 3). We draw
the arrows so that they point in the positive direction when bypassing the boundary of the face (that is,
when bypassing the face in the counterclockwise direction). Each arrow, say i (which either a positive or
a negative number), ends at the boundary of the small disk (star) and with further bypassing of the face
we pass along the segment of the boundary of the star. We assign the same number i to this segment.
Acting in this way, we give numbers to all segments of all small disks. It is easy to understand that all
the arrows on the segments of the boundary of any small disc are directed clockwise (i.e. in the negative
direction) when passing along the boundary of each small disk.

We attribute a sequential set of numbers to each star as follows. (this set is defined up to a cyclic
permutation, and we will call it a cycle associated with the star). Examples: These are numbers (1,−1)
assigned to the star (yellow small disk) in 2 (a). These are the numbers (k,−j) that we attribute to the
star on the top in the Figure 2 (c) and the numbers (−k, j,−i) that we attribute to the lower star in the
same figure. And to each cycle we ascribe the related cyclic products:

(1,−1) ↔ C1C−1,

to the star (yellow small disk) in Figure 2 (a). As for the stars in Figure 2 (c) we obtain

(k,−j) ↔ CkC−j (−k, j,−i) ↔ C−kCjC−i

11

Figure 3. Graphs with 2 edges (two matrix models) where (a) is the zoom of (a) in Figure 1 and (c) is
the zoom of (c) in Figure 1.

Now, each arrow of the side of the edge rests with its end against the arrow-segment—as if
continued by the arrow-segment. We assign the same number i (i = ±1, . . . ,±n) to the side of the
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edge Γ and to the segment of the small disk, which continues this side while traversing the face in the
positive direction.

Additionally, to the number i (i = ±1, . . . ,±n) we attribute the product of the N × N matrices

i → XiCi

where Ci is assigned to the i segment of a small disk and will be called source matrix, and Xi is assigned
to the arrow i, which is the side of the edge |i| of the graph Γ; see Figure 2 for an illustration.

Let us use the following numbering. If one side of the edge of the tape |i| is labeled i, then the
other side of the same edges is labeled −i. (It does not matter which side of the edge |i| we assign
the number i to, and which we assign the number −i to, but we should fix the numbering we have
chosen). The two sides of an edge of the graph Γ are actually arrows pointing in opposite directions.
(In order not to complicate the drawing, we do not depict these arrows in our figures, except for
Figure 3a,b). We draw the arrows so that they point in the positive direction when bypassing the
boundary of the face (that is, when bypassing the face in the counterclockwise direction). Each arrow,
say i (which either a positive or a negative number), ends at the boundary of the small disk (star) and
with further bypassing of the face we pass along the segment of the boundary of the star. We assign
the same number i to this segment. Acting in this way, we give numbers to all segments of all small
disks. It is easy to understand that all the arrows on the segments of the boundary of any small disc are
directed clockwise (i.e., in the negative direction) when passing along the boundary of each small disk.

We attribute a sequential set of numbers to each star as follows. (this set is defined up to a cyclic
permutation, and we will call it a cycle associated with the star). Examples: These are numbers (1,−1)
assigned to the star (yellow small disk) in Figure 2a. These are the numbers (k,−j) that we attribute to
the star on the top in the Figure 2c and the numbers (−k, j,−i) that we attribute to the lower star in
the same figure. Additionally, to each cycle we ascribe the related cyclic products:

(1,−1) ↔ C1C−1,

to the star (yellow small disk) in Figure 2a. As for the stars in Figure 2c we obtain

(k,−j) ↔ CkC−j (−k, j,−i) ↔ C−kCjC−i

Each cycle product we will call the star’s monodromy. As a result, a star’s monodromy is a product
of matrices that are attributed to arrow segments, taken in the same sequence in which arrows follow
each other when moving around a small disk clockwise. We number the stars in any way by numbers
from 1 to V. The monodromy of a star i will be denoted by the letter W∗i .

In addition to the edges and in addition to the vertices, we number the faces of the graph Γ
and the corresponding face monodromies with numbers from 1 to F. The cycles corresponding to
the face i will be denoted by fi and defined as follows. When going around the face border in the
positive direction, namely, counterclockwise for an ordinary face (or counterclockwise if the face
contains infinity), we collect segment numbers of small disks; for a face with a number i, this ordered
collection of ordered numbers is fi. As in the case of stars, we build cyclic products fi ↔Wi. Examples:

f1 = (1) ↔ C1 = W1 and f2 = (−1) ↔ C−1 = W2

for two faces in Figure 2a.
We also introduce dressed monodromies:

LX(W1) = X1C1, LX(W−1) = X−1C−1
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Additionally, for the face in Figure 2c:

f1 = (−j,−k) ↔ C−jC−k = W1 ↔ LX(W1) = X−jC−jX−kC−k

Thus, we have two sets of cycles and two sets of monodromies: vertex cycles and
vertex monodromies

σ−1
i ↔ W∗i , i = 1, . . . , V (48)

and face cycles and face monodromies: The cycles corresponding to the face i will be denoted by fi;
we have

fi ↔ Wi ↔ LX [Wi], i = 1, . . . , F (49)

Let us note that both cycles and monodromies are defined up to the cyclic permutation.

Remark 8. Important remark. Please note that each of the matrices Ci, i = ±1, . . . ,±n enters the set of
monodromies W1, . . . , W f once and only once. Accordingly, each random matrix Xi, i = ±1, . . . ,±n is
included once and only once in the set of dressed monodromies LX [W1], . . . ,LX [W f ]. This determines the class
of matrix models that we will consider and which we will call matrix models of dessin d’enfants.

Remark 9. In the description of maps (the same, of clean dessin d’enfants) the following combinatorial relation
is well-known; see the wonderful texbook [28], Remark 1.3.19:

(
n

∏
i=1

αi

)(
F

∏
i=1

fi

)
=

(
V

∏
i=1

σ−1
i

)
(50)

where each of αi, fi and σi belongs to the permutation group S2n. Here fi are face cycles, σi are vertex cycles
and (∏n

i=1 αi) is an involution without fixed points; each αi transposes i and −i. Since α2
i = 1 we can also write

(
n

∏
i=1

αi

)(
V

∏
i=1

σ−1
i

)
=

(
F

∏
i=1

fi

)
(51)

The reader can check this relation for the pair of the simplest examples where n = 1.
For any given set of the face cycles f1, . . . , fF, the relation (50) allows you to uniquely reconstruct the set of

the vertex cycles σ−1
1 , . . . , σ−1

V (the power −1 is related to the negative (clockwise) counting of numbers).

We get

Proposition 1.

h̄−n1En1,n2

{
F

∏
i=1
LX [trWi]

}
= N−n2

V

∏
i=1

trW∗i (52)

and

h̄−n1En1,n2

{
V

∏
i=1
LX [trW∗i ]

}
= N−n2

F

∏
i=1

trWi , (53)

where we use the notation (47) and where the parameters n1, n2, h̄ were defined in Section 2.2.

We note that each trace is a sum of monomials. Let us note that each of Xi, i = ±1, . . . ,±n enters
only once in each monomials term insider of the integral in the left and side of (52) and of (53).

There are two ways to prove these relations: algebraic and geometrical ones. In short, the sketches
of the proof are are as follows. We should notice that p(1)(∗) = s(1)(∗) and apply Lemmas 2–5 while
having in mind that this is actually the cut-or-join procedure (57) stated below in Section 3.3. In this
case the difference between Lemmas 2, 3 and Lemmas 4, 5 is only in the power of the factor N,
since (N)λ = N in case λ = (1).
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Geometric way: We use the relation

h̄−1En1,0

{
(Zi)a,b(Z†

j )b′ ,a′
}
= δi,jδa,a′δb,b′

and calculate monodromies along faces of the graph Γ as described in the beginning of this section.

Remark 10. From geometrical point of view in this way we create a surface by gluing the polygons related to
the dressed face monodromies; see [31].

Remark 11. You may notice some similarities between formulas (52), (53) and formulas (50), (51). Additionally,
there is. One can say that the role of involution αi is played by the integration over the matrix Xi (by the Wick
coupling of Xi and X−i).

We draw attention to two facts.

• The answer (i.e., the left-hand side of (52)) depends only on the spectrum of star monodromies

Spect(W∗1 ), . . . , Spect(W∗V).

• The answer does not depend on how exactly in our model we distribute the matrices {Z} and
{U} to dress the source matrices—only two numbers n1 and n2 are important. For example,
it does not matter, in the right-hand side of (52), whether we dress LX [Ci, C−i] = UiCi, U−iC−i
and LX [Cj, C−j] = ZjCj, Z−jC−j or LX [Ci, C−i] = ZiCi, Z−iC−i and LX [Cj, C−j] = UjCj, U−jC−j.

3.3. Our Models. Algebraic View

You can forget about graphs and dessin d’enfants and set them out differently.
We have a set of random matrices

X±1, . . . , X±n, X−i = X†
i

and there are as many source matrices
C±1, . . . , C±n, (54)

and we want to consider expectation value of the products of these matrices. We want each matrix Xi
to come in combination with the source matrix labeled with the same i; see (46) and (47).

The set (54) we will call the alphabet of pairs and the matrices {Ci} can be considered letters of
the alphabet.

The products of these matrices can be considered as words constructed from letters of the alphabet
of pairs. Consider a group of words

W1, . . . , WF

with the following condition: each of matrices Ci, i = ±1, . . . ,±n is included once and only once in one
of the words of this group.

In addition, we ask the following property: In this group of words there is no such subset of
words that could be constructed from the alphabet of pairs with a smaller set of pairs of letters (in other
words, we will consider only connected groups of words. The connected group of words will be
related to the connected graphs Γ).

Each word Wi can be associated with an ordered set of numbers fi consisting of the numbers of
the matrices included in the word: fi ↔Wi. Recall that each word Wi (and respectively fi) is defined
up to a cyclic permutation.

There is a one-to-one correspondence between dessin d’enfants with n edges and F faces and word
sets constructed in this way. Based on the set W1, . . . , WF, the surface Σ is built uniquely. To do this,
the procedure is as follows. First, for each word, say Wi, we associate the polygon with the edges,
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numbered by the numbers of the matrices in the product, namely, by the set fi. By going around the
boundary of the polygon counterclockwise, we assign the numbers of the matrices to the edges if we
write the word from left to right. We get a set of F polygons. After that, we glue these polygons so that
the side with the number i sticks together with the side with the number −i. We assign an orientation
to each polygon, considering its edges arrows, showing the direction of counterclockwise. We glue
the edges so that the beginning of the arrow i sticks together with the end of the arrow −i. We get
the surface Σ and on it is the graph Γ, whose edges are glued from two oppositely directed arrows
(ribbon edge).

To determine the Euler characteristic of Σ we need to know the number of vertices of the graph Γ.
Cut-or-join procedure. Purely algebraically, one should act like this.
Consider W1 ⊗W2 ⊗ · · · ⊗WF (the order in this tensor product is not important) and the set of

involutions Ti, i = 1, . . . , n, which act on this tensor product as follows. Each involution of Ti does
not affect those Wa that contain neither Ci nor C−i. Two situations are possible. (I) The matrices Ci
and C−i are in the same word, say, the word Wa. How then can we to rearrange the matrices with the
word cyclically, to bring it to the form CiXC−iY, where X and Y are some matrices. (II) The matrices Ci
and C−i are included in different words; in this case we will write these two words as CiX and C−iY.
As you can see, the action of involutions Ti corresponds to taking the integral in Lemmas 2–5. Then

Ti [· · · ⊗ CiXC−iY⊗ · · · ] = · · · ⊗ CiX⊗ CiY⊗ · · · (55)

Ti [· · · ⊗ CiX⊗ CiY⊗ · · · ] = · · · ⊗ CiXC−iY⊗ · · · (56)

It is easy to see that involutions commute: Ti[Tj[∗]] = Tj[Ti[∗]].
The transformation

W1, . . . , WF ↔ W∗1 , . . . , W∗V (57)

can be obtained purely algebraically in n steps. We call these two sets of matrices dual sets.
Proposition:

n

∏
i=1

Ti [W1 ⊗W2 ⊗ · · · ⊗WF] = W∗1 ⊗ · · · ⊗W∗V (58)

n

∏
i=1

Ti [W∗1 ⊗ · · · ⊗W∗V ] = W1 ⊗W2 ⊗ · · · ⊗WF (59)

Remark 12. Actually this is a manifestation of the Equation (50) where αi is related to Ti. An involution
without fixed points ∏n

i=1 Ti takes the graph Γ to the graph dual to it.

Here are some examples (57) with explanations about the geometric representation in Figures 1–5
and in some other graphs:

Example 1. Suppose W1 = C1, W2 = C−1. In 1 step we get:

W1 ⊗W2 = C1 ⊗ C−1 ↔ C1C−1 = W∗1

Therefore V = 1 and as we have F = 2, n = 1; then the Euler characteristic is E = F − n + V = 2.
The right hand side can be obtained from Figure 2a as the face monodromies while the left-hand side can be
obtained as star monodromies there. The left-hand side contains also the face monodromies in Figure 2b; and the
right-hand side can be obtained as star monodromies there. (This is because graphs (a) and (b) are dual ones.)

Example 2. In 2 steps:
W1 = C1C2C−1C−2 ↔ C1C−2C−1C2 = W∗1
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Therefore V = 1, and as we have F = 1, n = 2, then the Euler characteristic is E = F− n + V = 0 (torus).
The right-hand side can be obtained from Figure 1a as the face monodromies while the left-hand side can be
obtained as star monodromies there; see the more detailed Figure 3a. The dual graph looks like the same as the
graph on the torus: there is 1 vertex and 1 face; the left-hand side plays the role of the face monodromy for the
dual graph. This a particular case of Ex 9.

Example 3. In two steps:

W1 ⊗W2 ⊗W3 = C−1C−2 ⊗ C1 ⊗ C2 ↔ C1C−1C2C−2 = W∗1

Therefore V = 1 and as we have F = 3, n = 2, the Euler characteristic is E = F − n + V = 2.
The right-hand side can be obtained from Figure 1b as the face monodromies while the left-hand side can
be obtained as star monodromies there. The left-hand side contains also the face monodromies in Figure 1c
(see Figure 3c for more details); the right-hand side can be obtained as star monodromies there. (This is because
Figure 1b and Figure 1c are dual ones).

Example 4. In 2 steps:
C1C2C−1 ⊗ C−2 ↔ C1C−2C2 ⊗ C−1

Therefore V = 2 and as we have F = 2, n = 2, the Euler characteristic is E = F − n + V = 2.
The right-hand side can be obtained from Figure 1e as the face monodromies while the left-hand side can be
obtained as star monodromies there. The left-hand side contains also the face monodromies of the dual graph
which is the graph of the same type (the loop from which the segment sticks out).

Example 5. In 5 steps:

W1 ⊗W2 ⊗W3 = C1C2C3C4 ⊗ C−3C−2C5 ⊗ C−5C−1C−4 ↔ C2C−2C−5 ⊗ C2C−3 ⊗ C5C3C−4 ⊗ C4C−1 = W∗1 ⊗W∗2 ⊗W∗3 ⊗W∗4

Therefore V = 4 and as we have F = 3, n = 5, the Euler characteristic is E = F− n + V = 2 (the same is
obtained from Figure 5d).

Example 6. In n steps:

C1C2 · · ·CnC−n · · ·C−1 ↔ C1C−2 ⊗ C2C−3 ⊗ · · · ⊗ Cn−1C−n ⊗ Cn ⊗ C−1

Therefore V = n + 1 and as we have F = 1, the Euler characteristic is E = F− n + V = 2 The left-hand
side is related to Γ in form of a chain with n + 1 vertices, n edges drawn on the sphere (see Figure 1b for the
n = 2 chain and see Figure 4a for the n = 3 chain). In case each source matrix is the identity ones, this is related
to (44) which is a rather popular product. The right side is represented by such a graph: there are n circles; each
subsequent one decreases and is inside the previous one. They all touch at one point (the vertex); see Figure 4b.

Example 7. In n steps:

C1C2 · · ·Cn ⊗ C−nC1−n · · ·C−1 ↔ C1C−2 ⊗ C2C−3 ⊗ · · · ⊗ Cn−1C−n ⊗ CnC−1

Therefore V = n, and as we have F = 2, then the Euler characteristic is E = F− n+ V = 2. (the case n = 2
is obtained from Figure 1d). The left-hand side is related to Γ in form of the chain from the previous case where we
replace n by n− 1 and connect its ends by n-th edge. Namely, it is n-gon drawn on the sphere. The right-hand
side is related to the graph where two vertices are connected by n edges. In case n = 4, the right-hand side can be
obtained from Figure 4d as the face monodromies while the left-hand side can be obtained as star monodromies
there. The left-hand side contains also the face monodromies in Figure 4c; the right-hand side can be obtained as
star monodromies there. (Indeed, graphs in Figure 4d and in Figure 4c are dual ones.)
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Example 8. In n steps:

C1C−1C2C−2 · · ·CnC−n ↔ C−1C−2 · · ·C−n ⊗ C1 ⊗ C2 ⊗ · · · ⊗ Cn

Therefore V = n + 1, and as we have F = 1, then the Euler characteristic is E = F − n + V = 2.
The left-hand side is related to a star-graph Γ; the right-hand side—to a petal graph (as an example take n = 3
and look at Figure 5a and dual Figure 5b.

After the dressing procedure, in case all source matrices are chosen to be identical ones we get a popular
product (43).

We note that each trace is a sum of monomials. Let us note that each of Xi, i = ±1, . . . ,±n enters
only once in each monomials term insider of the integral in the left and side of (52) and of (53).

There are two ways to prove these relations: algebraic and geometrical ones. In short the sketches
of the proof is are as follows. We notice that p(1)(∗) = s(1)(∗) and apply Lemmas 2, 3 and Lemmas 4,
5 having in mind that this is actually the cut-or-join procedure (57) stated below in Section 3.3. In this
case the difference between Lemmas 2, 3 and Lemmas 4, 5 is only in the power of the factor N , since
(N)λ = N in case λ = (1).

Geometric way: We use the relation

~−1En1,0

{
(Zi)a,b(Z

†
j )b′,a′

}
= δi,jδa,a′δb,b′

and calculate monodromies along faces of the graph Γ as described in the beginning of this section.

Remark 10. From geometrical point of view in this way we create a surface by gluing the polygons related to
the dressed face monodromies, see [61].

Remark 11. You may notice some similarities between formulas (52),(53) and formulas (50),(51). And there
is. One can say that the role of involution αi is played by the integration over the matrix Xi (by the Wick
coupling of Xi and X−i).

We draw attention to two facts.

• the answer (i.e. the left hand side of 52) depends only on the spectrum of star monodromies

Spect(W ∗1 ), . . . ,Spect(W ∗v )

• the answer does not depend on how exactly in our model we distribute the matrices {Z} and
{U} to dress the source matrices - only two numbers n1 and n2 are important. For example, it
doesn’t matter, in the right hand side of (52), whether we dress LX [Ci, C−i] = UiCi, U−iC−i and
LX [Cj , C−j ] = ZjCj , Z−jC−j or LX [Ci, C−i] = ZiCi, Z−iC−i and LX [Cj , C−j ] = UjCj , U−jC−j .

(a) 3 matrix model,
e = 2 (sphere), Ex 6

(b) 3 matrix model,
e = 2 (sphere) Ex 6

(c) 4 matrix model,
e = 2 (sphere) Ex 7

(d) 4 matrix model,
e = 2 (sphere) Ex 7

Figure 4: Graphs drawn without decoration. Graph (a) is dual to (b). Graph (c) is dual to (d)
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Example 9. Suppose W1 = Ca1 Cb1 C−a1 C−b1 · · ·Cag Cbg C−ag C−bg , where we number source matrices
according ai, bi-cycles structure of a Riemann surface of genus g. In n = 2g steps we obtain

Ca1 Cb1 C−a1 C−b1 · · ·Cag Cbg C−ag C−bg ↔ C−a1 Cb1 Ca1 C−b1 · · ·C−ag Cbg Cag C−bg

Therefore V = 1, and as we have F = 1, n = 2g, then the Euler characteristic is E = F− n + V = 2− 2g.
The case n = 2 yields a torus and was considered in Example 2. The case n = 4 can be related to a graph

drawn on a pretzel; see Figure 5e. The left-hand side and the right-hand sides are related to dual graphs each of
which has one face and one vertex and is drawn on a surface with genus g whose edges are ai, bi cycles.

Example 10. In n = 6 steps we obtain

C−1C−2C−3 ⊗ C−5C−4C1 ⊗ C−6C5C2 ⊗ C6C4C3 ↔ C1C4C−3 ⊗ C−5C−1C2 ⊗ C−6C−2C3 ⊗ C−4C5C6

Therefore V = 4, and as we have F = 4, n = 6, then the Euler characteristic is E = F − n + V = 2.
This can be represented as a tetrahedron inscribed in a sphere. The tetrahedron graph is self-dual.
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4. Expectation Values of Matrix Products

Lemmas 2–5 are generalized to the case of mixed ensembles; see Propositions 2 and 4 below.
Propositions 2–4 are extended versions of statements studied in [31,32,37].

Proposition 2. Consider ensemble (29). Consider dual sets W1, . . . , WF and W∗1 , . . . , W∗V of (57). For any
given set of partitions λ1, λ2, . . . , λF = λ ∈ Υd, we have

En1,n2 {LX [sλ1 (W1) · · · sλF (WF)]} = δλ1,λ2,...,λF h̄n1d (sλ(p∞))−n1 (sλ(IN))
−n2 sλ

(
W∗1
)
· · · sλ (W∗V) , (60)

where δλ1,λ2,...,λF is equal to 1 in case λ1 = λ2 = · · · = λF and to 0 otherwise.
Similarly, for any set of partitions λ1, λ2, . . . , λV = λ ∈ Υd, we get

En1,n2

{
LX
[
sλ1
(
W∗1
)
· · · sλF (W∗V)

]}
= δλ1,λ2,...,λV h̄n1d (sλ(p∞))−n1 (sλ(IN))

−n2 sλ (W1) · · · sλ (WF) , (61)

where δλ1,λ2,...,λF is equal to 1 in case λ1 = λ2 = · · · = λF and to 0 otherwise.

The sketch of proof. The proof is based on the cut-or-join procedure (57) of Section 3.3. which is
the result of the step-by-step application of Lemmas 2–5. The different (geometrical) proof is based
on the treating of the Wick rule as a way to glue surfaces from polygons and the use of (11) and
of (27), (28).

Corollary 2. Consider ensemble (29). Consider dual sets W1, . . . , WF and W∗1 , . . . , W∗V of (57),
such that detWi, detW∗j 6= 0 for i = 1, . . . , F, j = 1, . . . , V. Suppose that αm = max

(
α1, . . . , αF

)
=: α,

where α1, . . . , αF is a given set of nonnegative integers. Consider a given set of partitions λi, i = 1, . . . , F and
denote λ = λ(m). We have

En1,n2

{
LX

[
F

∏
i=1

sλi (Wi)det ((Wi)
αi )

]}
= (62)

δλ1+α1,λ2+α2,...,λF+α f

(
h̄−(|λ|+αN)sλ(p∞)

(N)λ

(N + α)λ

)−n1

(sλ(IN))
−n2

V

∏
i=1

sλ (W∗i )det ((W∗i )
α) (63)

where δλ1+α1,λ2+α2,...,λF+αF
is equal to 1 in case for each k = 1, . . . , N we have λ

(1)
k + α1 = λ

(2)
k + α2 = · · · =

λ
(F)
k + αF, and it is 0 otherwise.

Proposition 3 ([32]). let ∆i =
(
∆i

1, ∆i
2, . . .

)
, i = 1, . . . , k be a set of partitions of the weights d1, . . . , dk = d.

Let µk+1 = (µ
(k+1)
1 , µ

(k+1)
2 , . . . ), . . . , µ(F) = µ = (µ1, µ2, . . . ), where 1 < k < F, be a set of partitions.

We get

En1,n2

{
LX

[
k

∏
i=1

p∆i (Wi)
F

∏
i=k+1

sµi (Wi)

]}
= (64)

δ|µ|,dδd1,...,dk
δµk+1,...,µF−k h̄n1d ((N)µ

)−n2

(
dim µ

d!

)−n1−n2

χµ(∆1) · · · χµ(∆k)
V

∏
i=1

sλ(W∗i ) (65)

where (N)µ is given by (40) and χµ(∆) is the character of the symmetric group; see Remark (5). The symbol
δµk+1,...,µF is equal to 1 in case µk+1 = · · · = µF−k and is equal to 0 otherwise.

Similarly, let µk+1, . . . , µV = µ, where 1 < k < V, be a set of partitions. Then

En1,n2

{
LX

[
k

∏
i=1

p∆i (W∗i )
V

∏
i=k+1

sµi (W∗i )

]}
= (66)

δ|µ|,dδd1,...,dk
δµk+1,...,µV−k h̄n1d ((N)µ

)−n2

(
dim µ

d!

)−n1−n2

χµ(∆1) · · · χµ(∆k)
F

∏
i=1

sλ(Wi) (67)
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The Proposition is derived from the previous one using (5) and (11).

Proposition 4. Let ∆i =
(
∆i

1, ∆i
2, . . .

)
, i = 1, . . . , F be a set of partitions of weights d1, . . . , dF = d.

Then

En1,n2 {LX [p∆1 (W1) · · · p∆F (WF)]}∏F
i=1

1
z∆i

= (68)

δd1,...,dF
h̄n1d ∑

∆̃1,...,∆̃V∈Υd

p∆̃1(W∗1 ) · · · p∆̃V (W∗V)HE(∆̃1, . . . , ∆̃V, ∆1, . . . , ∆F|n2), (69)

where δd1,...,dF
= 1 in case d1 = · · · = dF and 0 otherwise, and Υd is the set of all partitions of weight d.

The prefactor HE(∆̃1, . . . , ∆̃V, ∆1, . . . , ∆F|n2) in (69) is the weighted Hurwitz number (28) with k = F + V and
E = F− n + V .

Similarly, for a given set of partitions ∆̃i =
(
∆̃i

1, ∆̃i
2, . . .

)
, i = 1, . . . , V with weights d1, . . . , dV = d

respectively, we get

En1,n2

{
LX
[
p∆̃1

(
W∗1
)
· · · p∆̃V (W∗V)

]}
= (70)

δd1,...,dV
h̄n1d ∑

∆̃1,...,∆̃F∈Υd

p∆1(W1) · · · p∆V (WV)HE(∆̃1, . . . , ∆̃V, ∆1, . . . , ∆F|n2), (71)

where HE(∆̃1, . . . , ∆̃V, ∆1, . . . , ∆F) is exactly the same as in (69).

Propositions 2–4 and are equivalent. This can be proven with the help of (10), (11) and (28).

Remark 13. Proposition 4 was proved in [31] using a geometrical construction of Hurwitz numbers as a
number of ways to glue polygons. Each matrix entry, say (Xi)a,b, may be drawn as an arrow with labels a and
b at the startpoint and the endpoint respectively. We draw solid arrow for an entry of a random matrix and a
dashed arrow for an entry of a source matrix. The product of matrices we draw as arrows sequentially assigned
to each other. The trace of a product is drawn as a polygon. Now each LX [trWc] is a polygon with alternating
solid and dashed-edge arrows; we orient the edges counterclockwise. In [31] we named such polygons countries.
Thus, we relate each dressed word to a country. It may be shown that the expectation

En,0 {LX [tr (W1) · · · tr (W1)]}

may be viewed as the result of gluing of the net of countries into a surface, say Σ, and E = F − n + V

being the Euler characteristic of this surface. This is a result of the Gaussian integration over matrices Zi.
Oppositely directed solid arrows (corresponding to Zi and Z†

i ) form sides of ribbon edges. These edges end at
a boundary of disks (inflated vertices) with dashed boundaries (source matrices are attached to the segments
of dashed boundaries). In [31] we named this disk watchtowers. There are n ribbon edges (the boarders of
countries) and 2n dashed edges (segments of boundaries of disks—of the boarders of the watchtowers); there are
V watchtowers; and there are F countries with alternating (solid-dashed) edges. There are 2n 3-valent vertices
(ends of ribbons): there are two dashed arrows (one is outgoing; another is incoming) and one ribbon (one side is
the solid outgoing arrow; the other side is a incoming solid arrow) attached to each vertex. This is a graph Γ
drawn on Σ. This graph is related to

En,0 {LX [tr (W1) · · · tr (W1)]} = h̄ntr (W∗1 ) · · · tr (W∗V) , (72)

which is (68) for d = 1 (in this case, all ∆i has weight 1, and p(1)(W) = tr(W)). In case d > 1, instead of each
tr (Wi) we have the product

tr
(
(Wi)

∆i
1
)
· · · tr

(
(Wi)

∆i
`i

)
→ tr (Wi) .
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One may interpret it as a projection of `i polygons to the country (the polygon) labeled by i.

Remark 14. Notice that the answers for the expectation values which were considered above depend only on
eigenvalues of W∗i or Wi i = 1, . . . , V.

5. Examples of Matrix Models

Recall that in Section 2.1 we introduced the function τr(n, p(1), p(2)). In what follows we use
the conventions:

τr(p(1), p(2)) := τr(0, p(1), p(2)) = ∑
λ

rλsλ(p(1))sλ(p(2)), rλ = rλ(0) (73)

It depends on two sets pi = (p(i)1 , p(i)2 , . . . ), i = 1, 2 , and on the choice of an arbitrary function of
the variable r. (This is an example of the so-called tau function, but we will not use this fact.) As one
of their sets, we will choose p2 = p(X) like in (21), and the second set will be the set of arbitrary
parameters. With r = 1 we get

τ1(p, X) = e∑m>0
1
m pmtr(Xm) (74)

For example, if we take

r(x) =
∏

p
i (ai + x)

∏
q
i (bi + x)

,

and in addition to p1 = (1, 0, 0, . . . ) we get the so-called hypergeometric function of the matrix
argument:

pFq

(
a1, . . . , ap

b1, . . . , bq
|X
)
= ∑

λ

dim λ

|λ|! sλ(X)
∏

p
i (ai + x)λ

∏
q
i (bi + x)λ

(75)

Special cases:

etrX = ∑
λ

sλ(X)
dim λ

|λ|! , (76)

det(1− zX)−a = ∑
λ

z|λ|(a)λsλ(X)
dim λ

|λ|! (77)

Integrals. Using Proposition 2 we obtain

Theorem 1. Suppose W1, . . . , WF and W∗1 , . . . , W∗V are dual sets (57). Let sets pi =
(

p(i)1 , p(i)2 , p(i)3 , . . .
)

,
i = 1, . . . , max(F, V) be independent complex parameters and r(i), i = 1, . . . , max(F, V) be a set of given
functions in one variable.

En1,n2

{
LX

[
τr(1)

(
p1, W1

)
· · · τr(F)

(
pF, WF

)]}
(78)

= ∑
λ

rλ h̄n1|λ|
(

dim λ

|λ|!

)−n V

∏
i=1

sλ (W∗i )
F

∏
i=1

sλ(pi), (79)

where each τr(i)
(
pi, Wi

)
is defined by (21)

rλ = ((N)λ)
−n2

F

∏
i=1

r(i)λ (n)

Similarly
En1,n2

{
LX

[
τr(1)

(
p1, W∗1

)
· · · τr(V)

(
pV, W∗V

)]}
(80)

= ∑
λ

rλ h̄n1|λ|
(

dim λ

|λ|!

)−n F

∏
i=1

sλ (Wi)
V

∏
i=1

sλ(pi), (81)
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Remark 15. We recall the convention (73) In (79) rλ is the content product (16)

rλ = rλ(0) = ∏
(i,j)∈λ

r(j− i)

where

r(x) = (N + x)−n2
F

∏
i=1

r(i)(x)

To get examples we choose

• Dual sets W1, . . . , WF ↔W∗1 , . . . , W∗V ;
• The fraction of unitary matrices given by n2;
• The set of functions r(i), i = 1, . . . , F;
• The sets p(i), i = 1, . . . , F.

Remark 16. Answers in some cases are further simplified. Let us mark two cases
(i) Firstly, this is the case when the spectrum of the stars has the form

Spect W∗i = Spect IN,ki
= diag{1, 1, . . . , 1, 0, 0, . . . , 0}, i = 1, . . . , V (82)

where IN,ki
is the matrix with ki units of the main diagonal. Such star monodromies obtained in case source

matrices have a rank smaller than N. Insertion of such matrices in the left-hand sides of (79) and (81) corresponds
to the integration over rectangular random matrices. One should take into account that

sλ(IN,k) = (k)λsλ(p∞),

where we recall the notation
(a)λ := (a)λ1(a− 1)λ2 · · · (a− `+ 1)λ`

, (83)

(ii) The case is the specification of the sets pi, i = 1, . . . , F according to the following

Lemma 6. Denote
p∞ = (1, 0, 0, . . . ) (84)

p(a) = (a, a, a, . . . ) (85)

p(q, t) = (p1(q, t), p2(q, t), . . . ) , pm(q, t) =
1− qm

1− tm (86)

Then
sλ(p(a))
sλ(p∞)

= (a)λ , p(a) = (a, a, a, . . . ) (87)

where (a)λ := (a)λ1(a− 1)λ2 · · · (a− `+ 1)λ`
, (a)n := a(a + 1) · · · (a + n− 1), where λ = (λ1, . . . , λ`)

is a partition. More generally
sλ(p(q, t))
sλ(p(0, t))

= (q; t)λ , (88)

where (q; t)λ = (q; t)λ1(q t−1; t)λ2 · · · (q t1−`; t)λ`
where (q; t)k = (1− q)(1− q t) · · · (1− q tn−1)

is t-deformed Pochhammer symbol. (q; t)0 = 1 is implied.
For such specifications the right-hand side of (79) can ta
With such specifications, one can diminish the number of the Schur functions in the right-hand side of (79)

(or of (81)) and the right-hand side can take one of the forms:

∑
λ

rλsλ(A)sλ(B) (89)
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∑
λ

rλsλ(A) (90)

∑
λ

rλ (91)

For (89) there is a determinant representation; for (90) there is a Pfaffian representation and (91) can be
rewritten as a sum of products. Indeed if we introduce r(x) = eTx−1−Tx , and λ = (λ1, . . . , λN), then

rλ(m) = ∏
(i,j)∈λ

r(m + j− i) = eTm+···+Tm−N
N

∏
i=1

eTλi−i+m (92)

For instance, one can take r(x) = a + x and get

(a)λ =
Γ(a + λ1 − 1)Γ(a + λ2 − 2) · · · Γ(a + λN − N)

Γ(a)Γ(a− 1) · · · Γ(a− N + 1)
(93)

Then we introduce hi = λi − i + N and write

∑
λ

(a)λ

(b)λ
= ∑

h1>···>hN≥0

N

∏
i=1

Γ(b− i + 1)
Γ(a− i + 1)

Γ(hi + a− N)

Γ(hi + b− N)
(94)

where Γ is the gamma-function. (In case the argument of gamma-function turns out to be a nonpositive integer
one should keep in mind both the enumerator and denominator.) See examples below.

Example 11. See Example 1 and Figure 2a. Take X1 = Z and r given by (13). The example of (79) can be
chosen as follows

E1,0



pFq

(
a1, . . . , ap

b1, . . . , bq
|ZC1

)
p′Fq′


 a′1, . . . , a′p′

b′1, . . . , b′q′
|Z†C−1


det

(
ZZ†

)α



 = (95)

p′Fq′


 a1, . . . , ap, a′1, . . . , a′p′ , N + α

b1, . . . , bq, b′1, . . . , b′q′ , N
|C1C−1


 , (96)

corresponding determinantal representation see a (21).
See and Figure 2b which is dual to Figure 2a. An example of (81) can be chosen as

E1,0



p′Fq′


 a1, . . . , ap, a′1, . . . , a′p′ , N + α

b1, . . . , bq, b′1, . . . , b′q′ , N
|ZC1Z†C−1


det

(
ZZ†

)β



 =

∑
λ

sλ(C1)sλ(C−1)
(N + α)λ(N + β)λ)

((N)λ)
2

∏
p
i (ai)λ

∏
q
i (bi)λ

∏
p′
i (ai)λ

∏
q′
i (bi)λ

, (97)

The determinantal representation of the left-hand side is given by (15).

Example 12. See Example 2 and Figure 3a. Take X1 = U1, X2 = U2.

E0,2

{
e∑m>0

1
m pmtr(U1C1U2C2U†

1 C−1U†
2 C−2)

m}
(98)

= ∑
λ

1

((N)λ)
2

sλ(p)sλ(C1C−2C−1C2)

(sλ(p∞))2
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Let us take p = (az, az2, az3, . . . ) and W∗1 = IN,k; see (85) and (82). We obtain the left-hand side as

E0,2

{
det

(
1− zU1C1U2C2U†

1 C−1U†
2 C−2

)−a
}

= ∑
λ

z|λ|
(a)λ(k)λ

((N)λ)
2 =

z−
1
2 N(N−1) ∑

h1>···>hN≥0

N

∏
i=1

zhi
(Γ(N − i + 1))2

Γ(a− i + 1)Γ(k− i + 1)
Γ(hi + a− N)Γ(hi + k− N)

(Γ(hi))
2

where Spect C1C−2C−1C2 = Spect IN,k see (94).

Example 13. See Example 3 and Figure 3c.

E2,0

{
e∑m>0

1
m p(1)m tr(Z1C1)

m+∑m>0
1
m p(2)m tr(Z2C2)

m)det
(

1− zZ†
1 C−1Z†

2 C−2

)−a 3

∏
i=1

det
(

ZiZ†
i

)α
}

= ∑
λ

z|λ|sλ(p1)sλ(p2)(a)λ

(
(N + α)λ

(N)λ

)3

For a determinant representation see (20)

Example 14. For decoration of Figure 1e we put Xi = Zi.

E2,0

{
p∆(Z†

1 C−1)sλ(Z1C1Z2C2Z†
2 C−2)

}
= δ|λ|,|∆|

dim λ

|λ|! χλ(∆)sλ(C2)sλ(C1C−2C−1)

see (66).

Example 15. Figure 5d in particular yields

E2,0

{
sλ(Z1C1Z2C2Z3C3Z4C4)sλ(Z†

3 C−3Z†
2 C−2Z5C5)sλ(Z†

5 C−5Z†
1 C−1Z†

4 C−4)
}
=

(
dim λ

|λ|!

)−5
sλ(C1C−2C−5)sλ(C2C−3)sλ(C5C3C−4)sλ(C4C−1).

Example 16. In the case below we use an open chain with n edges as in Figures 1b, 2b and 4a.

En,0

{
e∑m>0

1
m p(1)m tr((Z1C1Z2C2···ZnCnZ†

nC−n ···Z†
1 C−1)

m)
}

= ∑λ sλ(Cn)sλ(C−1)
sλ(p)

sλ(p∞) ∏n−1
i=1

sλ(CiC−i−1)
sλ(p∞)

(99)

Graphs dual to the chain look like in Figure 4b.

En,0

{
e∑m>0

1
m pmtr((Z†

1 C−1)
m)+∑m>0

1
m p(n)m tr((ZnCn)m)

n−1

∏
i=1

e∑m>0
1
m p(i)m tr((ZiCiZ†

i+1C−i−1)
m)

}

= ∑
λ

sλ(p)sλ(C1C2 · · ·CnC−n · · ·C−1)
n

∏
i=1

sλ(pi)

sλ(p∞)

These relations generalize product (44) and (45).

Example 17. Our graph is a polygon with n edges and n vertices (stars); see Figures 1d, 2a and 4c for examples.

En,0

{
e∑m>0

1
m p(1)m tr(Z1C1Z2C2···ZnCn)

m+∑m>0
1
m p(2)m tr(Z†

nC−nZ†
n−1C1−n ···Z†

1 C−1)
m n

∏
i=1

det
(

ZiZ†
i

)α
}

(100)
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= ∑
λ

sλ(p1)sλ(p2)
n

∏
i=1

(N + α)λsλ(CiC−i−1)

(N)λsλ(p∞)

(where we put C−n−1 = C−1).
A graph dual to the polygon can be viewed as two-stars graph with n edges which connect stars;

see Figures 1d and 4d as examples.

En,0

{
n

∏
i=1

e∑m>0
1
m p(i)m tr(ZiCiZ†

i+1C−i−1)
m
}

= ∑
λ

sλ(C1C2 · · ·Cn)sλ(C−nC1−n · · ·C−1)
n

∏
i=1

sλ(pi)

sλ(p∞)
(101)

To apply determinantal formulas one should use Remark 16.

Example 18. Consider the star-graph with n-rays which end at other stars (see Figure 5a where n = 3).
This situation corresponds to (43).

En,0

{
e∑m>0

1
m pmtr(Z1C1Z†

1 C−1···ZnCnZ†
nC−n)

n

∏
i=1

det
(

ZiZ†
i

)α
}

= (102)

∑
λ

sλ(p)sλ(C−1C−2 · · ·C−n)
n

∏
i=1

(N + α)λsλ(Ci)

(N)λsλ(p∞)

A similar model was studied in [16,22]. It has the determinantal representation (21) in case all W∗i except
one are of form (82). There is the determinantal representation (15) in case we specialize the set p according to
Lemma 6 and choose each W∗i except two be in form (82).

Now, let us choose the dual graph (this is petel graph. (see Figure 5b where n = 3)) and consider

En,0

{
det

(
1− zZ†

1 C−1Z†
2 C−2 · · · Z†

nC−n

)−a n

∏
i=1

det
(

ZiZ†
i

)α
e∑m>0

1
m p(i)m tr((ZiCi)

m)

}
= (103)

∑
λ

z|λ|(a)λsλ(C1C−1C2C−2 · · ·CnC−n)
n

∏
i=1

(N + α)λsλ(pi)

(N)λsλ(p∞)

By Remark 16 we find all cases where the determinantal representations (20) or (21) exist.

Remark 17. Notice the following symmetry: the left-hand side produces the same right-hand side if we permute
the set of exponents α1, . . . , αn, a− N.

Example 19. Below g = 1, 2, . . . . (For the case g = 1 see Figure 1a and zoomed Figure 3a; for g = 2 see
Figure 5e).

E0,2g

{
e∑m>0

1
m pmtr

(
Ua1 Ca1 Ub1

Cb1
U†

a1
C−a1 U†

b1
C−b1

···Uag Cag Ubg Cbg U†
ag C−ag U†

bg
C−bg

)m}

= ∑
λ

(
dim λ

|λ|!

)−2g
sλ(W∗)sλ(p)

where
W∗ = C−a1 Cb1 Ca1 C−b1 · · ·C−ag Cbg Cag C−bg

In particular, if Spect W∗ = IN,k, then

E0,2g

{
det

(
IN − zUa1 Ca1Ub1 Cb1U†

a1
C−a1U†

b1
C−b1 · · ·Uag Cag Ubg Cbg U†

ag C−ag U†
bg

C−bg

)−a
}
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= ∑
λ

z|λ|
(

dim λ

|λ|!

)2−2g (a)λ(k)λ

((N)λ)
2g (104)

Taking into account that

dim λ =
∏i<j(hi − hj)

∏N
i=1 Γ(hi + 1)

we can interpret that (104) is a discrete beta-ensemble where β = 2− 2g.

Exotic models. An example. There are some more tricky problems which can be solved which can
be solved in steps. Let me consider the simplest example. Look at Lemma 3. Suppose A and B depend
in any way on an additional matrix Z1; in any case, however, their product has a familiar form:

A = A(Z1, Z†
1), B = B(Z1, Z†

1), AB = Z1C1Z†
1 C−1 (105)

Say, A = Za
1e−Z†

1 , B = eZ†
1 Z†

1 Z1−a
1 which looks horrible. However, applying sequentially the

series 0F0, then (37), where Z = Z1, and then (31), where Z = Z2 one obtains

E2,0



e

tr
(

Z1Za
2e−Z†

2

)
+tr

(
Z†

1 eZ†
2 Z†

2 Z1−a
2

)
 = ∑

d≥0
∑

λ∈Υd

sλ(IN)sλ(C) = det (IN − C)−1 (106)

It will be interesting to do the same with other ensembles of random matrices; Ginibre ensembles of
real and quaternionic matrices; and ensembles of Hermitian matrices: complex, real and quaternionic.

6. Discussion

In this article, we examined matrix integrals of a certain type. We called them matrix models
associated with children’s drawings—the so-called dessin d’enfants. They include some well-known
models that have found applications in the theory of information transfer and the theory of
quantum chaos. We hope that our matrix integrals will be in demand. We think that these models are
related to quantum integrable systems [38–40], but this topic is waiting for its development; we expect
connections with [41–49].
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Appendix A. Partitions and Schur Functions

Let us recall that the characters of the unitary group U(N) are labeled by partitionsand coincide
with the so-called Schur functions [23]. A partition λ = (λ1, . . . , λn) is a set of nonnegative integers λi
which are called parts of λ and which are ordered as λi ≥ λi+1. The number of non-vanishing parts of
λ is called the length of the partition λ, and will be denoted by `(λ). The number |λ| = ∑i λi is called
the weight of λ. The set of all partitions will be denoted by P.
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The Schur function labelled by λ may be defined as the following function in variables
x = (x1, . . . , xN):

sλ(x) =
det

[
xλi−i+N

j

]
i,j

det
[

x−i+N
j

]
i,j

(A1)

in case `(λ) ≤ N and vanishes otherwise. One can see that sλ(x) is a symmetric homogeneous
polynomial of degree |λ| in the variables x1, . . . , xN , and deg xi = 1, i = 1, . . . , N.

Remark A1. In case the set x is the set of eigenvalues of a matrix X, we also write sλ(X) instead of sλ(x).

There is a different definition of the Schur function as a quasi-homogeneous, non-symmetric
polynomial of degree |λ| in other variables, the so-called power sums, p = (p1, p2, . . . ),
where deg pm = m.

For this purpose let us introduce

s{h}(p) = det[s(hi+j−N)(p)]i,j,

where {h} is any set of N integers, and where the Schur functions s(i) are defined by e∑m>0
1
m pmzm

=

∑m≥0 s(i)(p)zi. If we put hi = λi − i + N, where N is not less than the length of the partition λ; then

sλ(p) = s{h}(p). (A2)

The Schur functions defined by (5) and by (A2) are equal, sλ(p) = sλ(x), provided the variables
p and x are related by the power sums relation

pm = ∑
i

xm
i (A3)

In case the argument of sλ is written as a non-capital fat letter the definition (A2), and we imply
the definition (5) in case the argument is not fat and non-capital letter, and in case the argument is
capital letter which denotes a matrix, then it implies the definition (5) with x = (x1, . . . , xN) being the
eigenvalues.

It may be easily checked that

sλ(p) = (−1)|λ|sλtr(−p) (A4)

where λtr is the partition conjugated to λ (in [23] it is denoted by λ∗). The Young diagram of the
conjugated partition is obtained by the transposition of the Young diagram of λ with respect to its
main diagonal. One gets λ1 = `(λtr).

Appendix B. Integrals over the Unitary Group

Consider the following integral over the unitary group which depends on two semi-infinite sets
of parameters p = (p1, p2, . . . ) and p̄ = (p∗1 , p∗2 , . . . ):

IU(N)(p, p̄) :=
∫

U(N)
etrV(p,U)+trV(p∗ ,U−1)d∗U = (A5)

1
(2π)N

∫

0≤θ1≤···≤θN≤2π
∏

1≤j<k≤N
|eiθj − e−iθk |2

N

∏
j=1

e∑m>0
1
m

(
pmeimθj+p∗me−imθj

)
dθj (A6)

V(p, x) := ∑
n>0

1
n

pnxn (A7)
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Here d∗U is the Haar measure of the group U(N):

d∗U =
1

(2π)N ∏
1≤j<k≤N

|eiθj − e−iθk |2
N

∏
j=1

dθj , −π ≤ θ1 < . . . θN ≤ π (A8)

and eiθ1 , . . . , eiθN are the eigenvalues of U ∈ U(N). The exponential factors inside the integral may be
treated as a perturbation of the Haar measure and parameters p, p∗ are called coupling constants by
the analogy with quantum field theory problems.

Using the Cauchy-Littlewood identity

τ(p|p∗) := e∑∞
m=1

1
m p∗m pm = ∑

λ∈P
sλ(p∗)sλ(p) (A9)

and the orthogonality of the irreducible characters of the unitary group
∫

sλ(U)sµ(U−1)d∗U = δλ,µ (A10)

we obtain that
IU(n)(p, p̄) = ∑

λ∈P
`(λ)≤n

sλ(p)sλ(p̄) (A11)

which express the integral over unitary matrices as the “perturbation series in coupling constants”.
The formula (A11) first appeared in [50] in the context of the study of Brezin–Gross–Witten model.

It was shown there that the integral IU(n)(p, p̄) may be related to the Toda lattice tau function of [51,52]
under certain restriction. Then, the series in the Schur functions (A11) may be related to the double
Schur functions series found in [53–55].

Appendix C. Geometrical Definition of Hurwitz Numbers

In this presentation, we follow article [31].
The Hurwitz number is a characterisation of the branched covering of a surface with critical

values of a prescribed topological type. Hurwitz numbers of oriented surfaces without boundaries
were introduced by Hurwitz at the end of the 19th century. Later it turned out that they are closely
related to the study of moduli spaces of Riemann surfaces [56], to integrable systems [57], to modern
models of mathematical physics (matrix models) and to closed topological field theories [30]. In this
paper we consider only Hurwitz numbers of compact surfaces without boundary.

Consider a branched covering f : P → Σ of degree d of a compact surface without boundary.
In the neighborhood of each point z ∈ P, the map f is topologically equivalent to the complex map
u 7→ up, defined on a neighborhood u ∼ 0 in C. The number p = p(z) is called the degree of the
covering f at the point z. The point z ∈ P is said to be a branch point or critical point if p(z) 6= 1.
There are only a finite number of critical points. The image f (z) of a critical point z is called the critical
value of f at z.

Let us associate with a point s ∈ Σ all points z1, . . . , z` ∈ P for which f (zi) = s. Let p1, . . . , p` be
the degrees of the map f at these points. Their sum d = p1 + · · ·+ p` is equal to the degree d of f . Thus,
to each point s ∈ S there corresponds a partition d = p1 + · · ·+ p` of the number d. Having ordered
the degrees p1 ≥ · · · ≥ p` > 0 at each point s ∈ Σ, we introduce the Young diagram ∆s = [p1, . . . , p`]
of weight d with ` = `(∆s) rows of length p1 . . . , p`: ∆s is called the topological type of the value s, and s
is a critical value of f if and only if at least one of the row-lengths pi is greater than 1.)

Let us note that the Euler characteristics E(P) and E(Σ) of the surfaces P and Σ are related via the
Riemann–Hurwitz relation:

E(P) = E(Σ)d + ∑
z∈P

(p(z)− 1)



Entropy 2020, 22, 972 28 of 36

or, equivalently,

E(P) = E(Σ)d +
F

∑
i=1

(`(∆si )− d) . (A12)

where s1, . . . , sF are critical values.
We say that coverings f1 : P1 → Σ and f2 : P2 → Σ are equivalent if there exists a homeomorphism

F : P1 → P2 such that f1 = f2F; in case P1 = P2 and f1 = f2 the homeomorphism F is called an
automorphism of the covering. The set of all automorphisms of a covering f form the group Aut( f ) of
finite order |Aut( f )|. Equivalent coverings have isomorphic automorphism groups.

We present two illustrative examples.
Example 1. Let Σ = C = {z ∈ C}⋃∞, P = P1 = P2 = C = {u ∈ C}⋃∞ be Riemann spheres.

Consider the branched covering z(u) = f (u) = f1(u) = f2(u) = u3. This covering f : P → Σ has 2
critical values 0 and ∞ with Young diagrams from one row of length 3. Automorphisms of the covering
have the form F(u) = u

3√1. The group Aut( f ) is isomorphic to Z/3Z.
Example 2. Let Σ = C = {z ∈ C}⋃∞ and P = P1 = P2—this is a pair of Riemann spheres;

that is P = P′
⋃

P′′. where P′ = {u′ ∈ C}⋃∞ and P′′ = {u′′ ∈ C}⋃∞. Consider the branched
covering z(u′) = f (u′) = f1(u′) = f2(u′) = (u′)3, z(u′′) = f (u′′) = f1(u′′) = f2(u′′) = (u′′)3.
This covering f : P→ Σ has two critical values 0 and ∞ with Young diagrams of two rows of length 3.
Automorphisms of the covering are generated by the following mappings:

1. F(u′) = (u′)
3√1, F(u′′) = u′′.

2. F(u′′) = (u′′)
3√1, F(u′) = u′.

3. F(u′) = (u′′), F(u′′) = u′.
The group Aut( fi) is isomorphic to (Z/3Z)

⊗
(Z/3Z)

⊗
(Z/2Z).

From now on, unless indicated otherwise, we will assume that the surface Σ is connected. Let us
choose points s1, . . . , sF ∈ Σ and corresponding Young diagrams ∆1, . . . , ∆F of weight d. Let Φ be the set
of equivalence classes of the coverings for which s1, . . . , sF is the set of all critical values, and ∆1, . . . , ∆F

are the topological types of these critical values. The Hurwitz number is the number

Hd
Σ(∆

1, . . . , ∆F) = ∑
f∈Φ

1
|Aut( f )| . (A13)

It is easy to prove that the Hurwitz number is independent of the positions of the points s1, . . . , sF

on Σ. One can show that the right-hand side of (A13) depends only on the Young diagrams of
∆1, . . . , ∆F and the Euler characteristic E = E(Σ). Because of this sometimes we write Hd

E(Σ)(∆
1, . . . , ∆F)

instead of Hd
Σ(∆

1, . . . , ∆F).

If F = 0 we get an unbranched covering. We denote such Hurwitz number HE

(
(1d)

)
.

Example 3. Let f : Σ→ RP2 be a covering without critical points. Then, if Σ is connected, then
Σ = RP2, deg f = 1 or Σ = S2, deg f = 2. Therefore if d = 3, then Σ = RP2 äRP2 äRP2 or
Σ = RP2 ä S2. Thus H1

(
(13)

)
= 1

3! +
1
2! =

2
3 .

Appendix D. Combinatorial Definition of Hurwitz Numbers

Consider the symmetric group (equivalently, the permutation group) Sd and the equation

σ1 · · · σFρ2
1 · · · ρ2

Mα1β1α−1
1 β−1

1 · · · αH βHα−1
H β−1

H = 1, (A14)

where σ1, · · · , σF, ρ1, · · · , ρM, α1, β1, . . . , αH, βH ∈ Sd, and moreover σi ∈ C∆i , i = 1, . . . , F, where C∆i is
the conjugacy class labeled by a partition ∆i =

(
∆i

1, ∆i
2, . . .

)
. The Hurwitz number is the number of

solutions of Equation (A14) divided by d! (by the order of Sd).
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It can be proved that so introduced the (combinatorial) Hurwitz number coincides with the
(geometric) Hurwitz number HE(∆1, . . . , ∆F) introduced in Appendix C where E = 2 − 2H − M.
(One can look at the base surface Σ as a result of gluing H handles and M Möbius stripes to a sphere.

Consider the simplest example: H = 0 and M = 1; that is Σ = RP2 (real projective plane).
Suppose F = 0; that is we deal with an unbranched covering. Suppose d = 3; that is we consider
3-sheeted covering. Let us solve ρ2 = 1, where ρ ∈ S3. One gets 4 solutions: 3 transpositions of
the set 1, 2, 3 and one identity permutation. There are 3! permutations in S3. As a result we get
H1
(
(13)

)
= 4/3! = 2/3 as we got in the last example of the previous section.

In the same way one can consider Example 1 of the previous section. In this case H = M = 0; that
is E = 2; one gets the Riemann sphere with two branch points (F = 2) and 3-sheeted covering with
profiles ∆1 = ∆2 = (3). We solve the equation σ1σ2 = 1, where both σ1,2 consist of a single cycle of
length 3. There are two solutions σ1 = σ−1

2 : one sends 1, 2, 3 to 3, 1, 2, the other sends 1, 2, 3 to 2, 3, 1.
We get H2 ((3), (3)) = 2/3! = 1/3.

Example 2 corresponds to H2 ((3, 3), (3, 3)), d = 6. One can complete the exercise and get
an answer H2 ((3, 3)) = 1/z(3,3) = 1/18, where zλ is given by (1). Actually, for any d and for any pair
of profiles one gets H2

(
∆1, ∆

)
= δ∆1,∆1/z∆.

In [58,59] (and also in [60]) it was found that HE(∆1, . . . , ∆F) is given by formula (27).

Appendix E. Differential Operators

In [32] we develop (see also [32]) the work [61], which offers a beautiful generalization of the
cut-and-join formula (MMN formula):

W∆(p) · sµ(p) = ϕµ(∆)sµ(p), (A15)

which describes the merging of pairs of branch points in the covering problem. Here µ = (µ1, µ2, . . . )
and ∆ = (∆1, . . . , ∆`) are Young diagrams (∆ is the ramification profile of one of branch points;
for simplicity, we consider the case where |µ| = |∆|), sµ is the Schur function. Differential operators
W∆(p) generalize the operators of “additional symmetries” [62] in the theory of solitons and commute
with each other for different ∆. In the work ([63]), it was noted that if they are written in the so-called
Miwa variables, that is, in terms of the eigenvalues of the matrix X such that pm = tr (Xm); then the
generalized cut-and-join formula is written very compactly and beautifully:

W∆ · sµ(X) = ϕµ(∆)sµ(X) (A16)

where
W∆ =

1
z∆

tr
(

D∆1
)
· · · tr

(
D∆`

)
, (A17)

and the factor z∆ is given by (1), D is

Da,b =
N

∑
c=1

Xa,c
∂

∂Xb,c
(A18)

As G.I. Olshansky pointed out to us, this type of formula appeared in the works of Perelomov
and Popov [64–66] and describe the actions of the Casimir operators in the representaion λ;
see also [67], Section 9.

We propose a generalization of this relation, which in our case is constructed using a child’s
drawing of a constellation (dessin d’enfants, or a map in terminology [28]. In fact, we are considering a
modification in which the vertices are replaced by small disks—”stars”). This topic will be be studied
in more detail in the next article. Here we restrict ourselves only to a reference to important beautiful
works [41–45].
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(i) One can interpret the Gaussian integral as the integral of n -component two-dimensional
charged bosonic fields Zi and Z†

i :

∫
(Z†

i )a,b(Zj)b′ ,a′dΩ =< (Z†
i )a,b(Zj)b′ ,a′ >=

1
N

δa,a′δb,b′δi,j,

for i, j = 1, . . . , n, a, b = 1, . . . , N.
The Fock space of these fields is all possible polynomials from the matrix elements of the matrices

Z1, . . . , Zn.
The operators (Zi)ab can be considered creation operators, and the operators

(Z†
i ) →

1
N

∂i, (∂i)a,b =
1
N

∂

∂Zb,a
(A19)

ellimination operators that act in this space. The integrands in our integrals should be considered
anti-ordered, that is, all ellimination operators (all derivatives) considered to be moved to the left,
while the matrix structure is considered to be preserved. We will denote this is anti-ordering of some
A by the symbol :: A ::, where A is a polynomial of matrix elements of the matrices

From this point of view, on different sides of the ribbon of Γ̃ with the number i we place the
canonically conjugated coordinates Zi and momenta ∂Zi .

We recall that all partions throught the paper have the same weight d.
(ii) Then, for example, the relation we get

:: τg(M1, . . . , MF) ::=
∞

∑
d=0

∑
∆1,...,∆V

|∆1 |=···=|∆V |=d

HΣ′(g|∆1, . . . , ∆V)C(∆1, . . . , ∆V), (A20)

We give another relation:

(
::

F

∏
i=1

sλi (Mi) ::

)
· 1 = δλ1,...,λF

(
dim λ

d!

)−n V

∏
i=1

sλ(W∗i ) (A21)

where λ1, . . . , λF = λ is a set of Young diagrams, and where δλ1,...,λF is equal 1, if λ1 = · · · = λF = λ

and is equal to 0 otherwise.
It looks like a simple rewrite, but can be helpfully used. Let us derive a beautiful formula

(Theorem 5.1 in [63]), namely (A16) (and see also articles [41–46]).
In order to do this we should use the freedom to choose the source matrices:
(iii) For a partition ∆ = (∆1, . . . , ∆`) and a face monodromy Mi and a star monodromy W∗i , let us

introduce notations
M∆i

i = tr
(
(Mi)

∆i
1

)
· · · tr

(
(Mi)

∆i
`

)
(A22)

C∆i

i = tr
(
(W∗i )

∆i
1

)
· · · tr

(
(W∗i )

∆i
`

)
(A23)

We can write

Nnd
∫ [ F

∏
i=1

M∆̃i

i
z∆̃i

]
dΩ (A24)

= ∑
∆1,...,∆V

HΣ(∆̃1, . . . , ∆̃F, ∆1, . . . , ∆V)

[
V

∏
i=1
C∆i

i

]
(A25)

Let us write the most general generating function for Hurwitz numbers which was obtained
in [31]:

Nnd
∫ [ F1

∏
i=1

M∆̃i

i
z∆̃i

](
F2

∏
i=F1+1

M(Mi)

)(
F

∏
i=F2+2,F2+4,...

H(Mi−1, Mi)

)
dΩ (A26)
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= ∑
∆1,...,∆V

|∆1 |=···=|∆V |=d

H ˜̃Σ(∆̃
1, . . . , ∆̃F1 , ∆1, . . . , ∆V)C(∆1, . . . , ∆V), (A27)

where

H ˜̃Σ(∆̃
1, . . . , ∆̃F1 , ∆1, . . . , ∆V) = ∑λ∈P

(
dim µ

d!

)F−n+V−2h−m
ϕµ(∆̃1) · · · ϕµ(∆̃F1)ϕµ(∆1) · · · ϕµ(∆V) (A28)

where h = 1
2 (F − F2) is the number of handles and m = F2 − F1 is the number of Moebius stripes

glued to Σ where the graph Γ̃ (modified dessin d’enfants) was drawn. The Euler characteristic of ˜̃Σ is
F− n + V − 2h−m = F1 − n + V. Hurwitz number (A28) counts the coverings of ˜̃Σ with branching
profiles ∆̃1, . . . , ∆̃F1 , ∆1, . . . , ∆V.

Let us multiply the both sides of (A26) by

F1

∏
i=k+1

dim µi

d!
ϕµi (∆̃i)z∆̃i

(where k ≤ F), and then sum the both sides (A26) and (A27) over ∆̃i, i = k + 1, . . . , F1, taking
into account

sµ(X) =
dim µ

d! ∑
∆

ϕµ(∆)X ∆, (A29)

when evaluating (A26), where

X ∆ = tr
(
(X)∆1

)
· · · tr

(
(X)∆`

)
(A30)

and the orthogonality relation (11) when evaluating (A27). We obtain

∫
Nnd

[
∏k

i=1
M∆̃i

i
z∆̃i

] (
∏k+M+m

i=k+M+1 M(Mi)
) (

∏F
i=k+M+m+2,k+M+m+4,... H(Mi−1, Mi)

)
∏k+M

i=k+1 sµi (Mi)dΩ (A31)

= δµk+1,...,µF−k

(
dim µ

d!

)k−n−2h−m
ϕµ(∆̃1) · · · ϕµ(∆̃k)

[
V

∏
i=1

sλ(W∗i )

]
(A32)

where 2h = F− F1 −m M

Remark A2. Suppose that the edges of the graph Γ can be painted like a chessboard in black and white faces
so that the face of one color borders only the faces of a different color. Then the matrices from the set {Z†}
(i.e., differential operators) can be assigned to the sides of the edges of white faces, that is, the matrices from the set
{Z} to the sides of black faces. In this case, the monodromies of the white faces will be those differential operators
which will act on the monodromy of black faces.

The most natural and simple case is the following “polarization”: Suppose that
Mi, i = k + 1, . . . , F1 are black faces and the rest part of the face monodromies Mi are while faces
(see Remark A2).

(I) Let m = h = 0. Take as a graph Γ̃ a child’s drawing - sunflower with n white petals drawn on
the background of black night sky. See (b) in the Figure 5 for Γ with 3 petals as an example. There is 1
vertex of Γ which inflated and we get a small disk as the center of sunflower. We have n + 1 faces of Γ:
n petals, and the big and a big face, embracing all the petals and containing infinity. Then we place all
“momentums” inside the petals:

Mi = C−iZ†
i , i = 1, . . . , n.
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Then all “coordinates” (the collections of {(Zi)a, b}) are placed on the other side of the ribbons,
they are places along the boundary of the big embracing black face:

Mn+1 = Z1C1 · · · ZnCn

See Figure 5b as an example.
Let remove the sign tilde above Young diagrams, then,

∫
Nnd

[
n

∏
i=1

M∆i

i
z∆i

]
sµ (Z1C1 · · · ZnCn) dΩ = ϕµ(∆1) · · · ϕµ(∆n)sµ(C−1C1 · · ·C−nCn) (A33)

It is equivalent to

W∆1

C−1
· · ·W∆n

C−n
· sµ(Z1C1 · · · ZnCn) = ϕµ(∆1) · · · ϕµ(∆n)sµ(C−1(Z1)C1 · · ·C−n(Zn)Cn), (A34)

where each N×N matrix C−i can now depend, for example, polynomially on Zi, i = 1, . . . , n and where

W∆i

C−i
=: tr

(
(C−i(Zi)∂i)

∆i
1

)
· · · tr

(
(C−i(Zi)∂i)

∆i
`

)
: , (A35)

where each C−i∂i is a matrix whose entries are differential operators, more precisely, are the following
vector fields:

(C−i∂i)a,b :=
N

∑
c=1

(C−i)a,c
∂

∂(Zi)b,c
(A36)

The normal ordering indicated by two dots is the same here as in [63]—that is, while maintaining
the matrix structure, the derivative operators do not act on C−i = C−i(Zi). Note that the normal
ordering procedure is necessary in order the Equation (A34) was equivalent to the equality (A33)!

The ordering is the same as in [63]: keeping the matrix structure the derivatives do not act on
C−i = C−i(Zi). Notice that the ordering is necessary to relate (A34) to (A33)!

If we now take the case n = 1 (one petal), and in addition, C−i = Zi, then we get the desired
formula (A16).

Take another example with the same graph Γ̃ with the same monodromies. However, let k = 0.
In this case the integral (A33) can be re-written as the relation

M̂1 · · · M̂mĤ1 · · · Ĥh · sµ(Z1C1 · · · ZnCn) =

(
dim µ

|µ|!

)−2h−m−n
sµ(C−1(Z1)C1 · · ·C−n(Zn)Cn), (A37)

where

M̂i =: e
1
2 ∑j>0

1
j

(
tr(C−i∂i)

j
)2

+∑j>0,odd
1
j tr
(
(C−i∂i)

j
)

: , i = 1, . . . , m, (A38)

Ĥi =: e∑j>0
1
j tr
(
(C1−m−2i∂m+2i−1)

j
)

tr
(
(C−m−2i∂m+2i)

j
)

: , i = 1, . . . , h. (A39)

Remark A3. When C−i = Zi, i = 1, . . . , n both equalities (A34) and (A37) describe eigenvalue problems
for the corresponding Hamiltonians in the two-dimensional bosonic theory. Perhaps a comparison with the
case analyzed by Dubrovin is appropriate. This is the case n = 1, F = 1, W (n). In this case, the operators
W (n) , n = 1, 2, . . . are the dispersionless Hamiltonians KdV equations [68].

Remark A4. The case C−i does not depend is also interesting in case the monodromies of the stars are degenerate
matrices, then the whole intergal is related to the integration over rectanguler matrices. As an example one can
choose C−1C1 · · ·C−nCn in (A33) as diag(1, 1, . . . , 1, 0, 0, . . . , 0). Then we get the Pochhhamer symbol in the
right-hand side which allows one to related the whole integral to the hypergeometric tau function [24]. It will be
discussed in a more detailed text where we plan to relate out topic to certain topics in [41–46].
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Another example. Γ has 2 vertices which are connected by 4 edges; see Figure 4d. We

: p∆1(∂1C−1∂2C−2)p∆2(∂3C−3∂4C−4) :
(
sλ(Z1C1Z4C4)sµ(Z2C2Z3C3)

)

= δλ,µ

(
dim µ

d!

)−2
ϕµ(∆1)ϕµ(∆2)sµ(C1C−4C3C−2)sµ(C4C−1C2C−3)

In particular, if one takes C3 = C4 = C and C−1 = C−1(Z2), C−2 = C−2(Z1),
C−3 = C−3(Z3), C−4 = C−4(Z4) he gets

: p∆1(C−2(Z1)∂1C−1(Z2)∂2)p∆2(∂3C−3(Z3)∂4c−4(Z4)) : sλ(Z1C1Z4C)sµ(Z2C2Z3C)

= δλ,µ

(
dim µ

d!

)−2
ϕµ(∆1)ϕµ(∆2)sµ(C−2(Z1)C1C−4(Z4)C)sµ(C−1(Z2)C2C−3(Z3)C)

In particular, if one takes C3 = C4 = C and C−1 = Z2, C−2 = Z1, C−3 = Z3, C−4 = Z4

(Euler fields) he gets an eigenvalue problem:

: p∆1(Z1∂1Z2∂2)p∆2(∂3Z3∂4Z4) :
(
sλ(Z1C1Z4C)sµ(Z2C2Z3C)

)

= δλ,µ

(
dim µ

d!

)−2
ϕµ(∆1)ϕµ(∆2)sµ(Z1C1Z4C)sµ(Z2C2Z3C)

In case C−1 = C−2 = C−3 = C−4 = IN we get

: p∆1(∂1∂2)p∆2(∂3∂4) :
(
sλ(Z1C1Z4C4)sµ(Z2C2Z3C3)

)

= δλ,µ ϕµ(∆1)ϕµ(∆2)sµ(C1C3)sµ(C2C4)

Now we consider another example n = 4 with the graph obtained from the graph (a) in the
Figures 1 and 3 drawn on the torus by doubling the edges: instead of each edge we draw two ones.
We have Γ with one vertex, four edges and three faces and obtain

: p∆1 (∂1C−1∂3C−3) p∆1 (∂2C−2∂4C−4) : sλ (Z1C1Z2C2Z3C3Z4C4)

= sλ (C1C−2C4C−1C3C−4C2C−3)

Take C−1 = C−1(Z3), C−2 = C−2(Z2), C−3 = C−3(Z1), C−4 = C−4(Z4) and C2 = C4 = C. As an
example we obtain

: p∆1 (Z1∂1Z3∂3) p∆1 (∂2Z2∂4Z4) : sλ (Z1C1Z2CZ3C3Z4C)

=

(
dim λ

d!

)−2
ϕλ(∆1)ϕλ(∆2)sλ (Z1C1Z2CZ3C3Z4C)

(iv) Let us notice that if we take a dual graph to the sunflower graph with n = 1 (dual to one
petal Γ, which is just a line segment; see Figure 2a,b), in this case we have one face and two vertices,
we get a version of the Capelli-type relation. Then it is a task to compare explicitly such relations with
beautiful results [43–46].

(v) There are several allusions to the existence of interesting structures related to
quantum integrability. First, as noted in [31] by this appearance 2D Yang-Mills theory [40]. See also
possible connection to [48]. Then the appearance of the Yangians in works [41,42] which, we hope,
can be related to our subject. And finally, the work [68].

(vi) There is a direct similarity between integrals over complex matrices and integrals over
unitary matrices. However, from our point of view direct anologues of the relations in the present
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paper are more involved in the case of unitary matrices. In particular, Hurwitz numbers are replaced
by a special combination of these numbers.
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