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Abstract: To perform statistical inference for time series, one should be able to assess if they present
deterministic or stochastic trends. For univariate analysis, one way to detect stochastic trends is to
test if the series has unit roots, and for multivariate studies it is often relevant to search for stationary
linear relationships between the series, or if they cointegrate. The main goal of this article is to briefly
review the shortcomings of unit root and cointegration tests proposed by the Bayesian approach of
statistical inference and to show how they can be overcome by the Full Bayesian Significance Test
(FBST), a procedure designed to test sharp or precise hypothesis. We will compare its performance
with the most used frequentist alternatives, namely, the Augmented Dickey–Fuller for unit roots and
the maximum eigenvalue test for cointegration.
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Several times series present deterministic or stochastic trends, which imply that the effects of
these trends on the level of the series are permanent. Consequently, the mean and variance of the
series will not be constant and will not revert to a long-term value. This feature reflects the fact that the
stochastic processes generating these series are not (weakly) stationary, imposing problems to perform
inductive inference using the most traditional estimators or predictors. This is so because the usual
properties of these procedures will not be valid under such conditions.

Therefore, when modeling non-stationary time series, one should be able to properly detrend
the used series, either by directly modeling the trend by deterministic functions, or by transforming
the series to remove stochastic trends. To determine which strategy is the suitable solution, several
statistical tests were developed since the 1970s by the frequentist school of statistical inference.

The Augmented Dickey–Fuller (ADF) test is one of the most popular tests used to assess if a
time series has a stochastic trend or, for series described by auto-regressive models, if they have a
unit root. When one is searching for long term relationships between multiple series under analysis,
it is crucial to know if there are stationary linear combinations of these series, i.e., if the series are
cointegrated. Cointegration tests were developed, also by the frequentist school, in the late 1980s [1]
and early 1990s [2]. Only in the late 1980s did the Bayesian approach to test the presence of unit roots
start to be developed.

Both unit root and cointegration tests may be considered tests on precise or sharp hypotheses, i.e.,
those in which the dimension of the parameter space under the tested hypothesis is smaller than the
dimension of the unrestricted parameter space. Testing sharp hypotheses poses major difficulties for
either the frequentist or Bayesian paradigms, such as the need to eliminate nuisance parameters.

The main goal of this article is to briefly review the shortcomings of the tests proposed by the
Bayesian school and how they can be overcome by the Full Bayesian Significance Test (FBST). More
specifically, we will compare its performance with the most used frequentist alternatives, the ADF
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for unit roots, and the maximum eigenvalue test for cointegration. Since this is a review article, it is
important to remark that the results presented here were published elsewhere by the same authors,
see [3,4].

To accomplish this objective, we will define the FBST in the next section, also showing how it
can be implemented in a general context. The following section discusses the problems of testing the
existence of unit roots in univariate time series and how the Bayesian tests approach the problem.
Section 4 then shows how the FBST is applied to test if a time series has unit roots and illustrates this
with applications on a real data set. In the sequel, we discuss the Bayesian alternatives to cointegration
tests and then apply the FBST to test for cointegration using real data sets. We conclude with some
remarks and possible extensions for future work.

1. FBST

The Full Bayesian Significance Test was proposed in [5] mainly to deal with sharp hypotheses.
The procedure has several properties, see [6,7], most interestingly the fact that it is only based on
posterior densities, thus avoiding the necessity of complications such as the elimination of nuisance
parameters or the adoption of priors with positive probabilities attached to sets of zero Lebesgue
measure.

We shall consider general statistical models in which the parameter space is denoted by Θ ⊆ Rm,
m ∈ N. A sharp hypothesis H assumes that θ, the parameter vector of the chosen statistical model,
belongs to a sub-manifold ΘH of smaller dimensions than Θ. This implies, for continuous parameter
spaces, that the subset ΘH has null Lebesgue measure whenever H is sharp. The sample space, the set
of all possible values of the observable random variables (or vectors), is here denoted by X .

Following the Bayesian paradigm, let h(·) be a probability prior density over Θ, x ∈ X , the
observed sample (scalar or vector), and L(· | x) the likelihood derived from data x. To evaluate the
Bayesian evidence based on the FBST, the sole relevant entity is the posterior probability density for θ

given x,
g(θ | x) ∝ h(θ) · L(θ | x).

It is important to highlight that the procedure may be used when the parameter space is discrete.
However, when the posterior probability distribution over Θ is absolutely continuous, the FBST
appears as a more suitable alternative to significance hypothesis testing. For notational simplicity, we
will denote ΘH by H in the sequel.

Let r(θ) be a reference density on Θ such that the function s(θ) = g(θ | x)/r(θ) is a relative surprise,
(see [8], pp. 145–146) function. The reference density is important because it guarantees that the FBST
is invariant to reparametrizations, even when r(θ) is improper, see [6,9]. Thus, when considering r(θ)
proportional to a constant, the surprise function will be, in practical terms, equivalent to the posterior
distribution. For the applications considered in this article, we will use the improper uniform density
as reference density on Θ. The authors of [10] remark that it is possible to generalize the procedure
using other reference densities such as neutral, invariant, maximum-entropy or non-informative priors,
if they are available and desirable.

Definition 1 (Tangent set). Considering a sharp hypothesis H : θ ∈ ΘH , the tangential set of the hypothesis
given the sample is given by

Tx = {θ ∈ Θ : s(θ) > s∗}. (1)

where s∗ = supθ∈H s(θ).

Notice that the tangent set Tx is the highest relative surprise set, that is, the set of points of the
parameter space with higher relative surprise than any point in H, being tangential to H in this sense.
This approach takes into consideration the statistical model in which the hypothesis is defined, using
several components of the model to define an evidential measure favoring the hypothesis.
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Definition 2 (Evidence). The Bayesian evidence value against H, ev, is defined as

ev = P (θ ∈ Tx | x) =
∫
Tx

dGx(θ), (2)

where Gx(θ) denotes the posterior distribution function of θ and the above integral is of the Riemann–Stieltjes type.

Definition 2 sets ev as the posterior probability of the tangent set that is interpreted as an evidence
value against H. Hence, the evidence value supporting H is the complement of ev, namely, ev = 1− ev.
Notwithstanding, ev is not evidence against A : θ /∈ ΘH , the alternative hypothesis (which is not sharp
anyway). Equivalently, ev is not evidence in favor of A, although it is against H.

Definition 3 (Test). The FBST is the procedure that rejects H whenever ev = 1− ev is smaller than a critical
level, evc.

Thus, we are left with the problem of deciding the critical level evc for each particular application.
We briefly discuss this and other practical issues in the following subsection.

1.1. Practical Implementation: Critical Values and Numerical Computation

Since ev (also called e-value) is a statistic, it has a sampling distribution derived from the adopted
statistical model and in principle this distribution could be used to find a threshold value. If the
likelihood and the posterior distribution satisfy certain regularity conditions. See [11], p. 436. [12]
proved that, asymptotically, there is a relationship between ev and the p-values obtained from the
frequentist likelihood ratio procedure used to test the same hypotheses. This fact provides a way to
find, at least asymptotically, a critical value to ev to reject the hypothesis being tested.

In a recent review [7], the authors discuss different ways to provide a threshold for ev. Among
these alternatives, we highlight the standardized e-value, which follows, asymptotically, the uniform
distribution on (0, 1). See also [13] for more on the standardized version of ev.

One could also try to define the FBST as a Bayes test derived from a particular loss function and
the respective minimization of the posterior expected loss. Following this strategy, [10] showed that
there are loss functions which result in ev as a Bayes estimator of φ = IH(θ), where IA(x) denotes the
indicator function, being equal to one if x ∈ A and zero otherwise, x /∈ A. Hence, the FBST is in fact a
Bayes procedure in the formal sense as defined by Wald in [14].

Table 1. Pseudocode to implement the FBST.

General algorithm: compute ev supporting hypothesis H : θ ∈ ΘH

1. Specify the statistical model (likelihood) and prior distribution on Θ.
2. Specify the reference density, r(θ), and derive the relative surprise function, s(θ).

3. Find s∗, the maximum value of s(θ) under the constraint θ ∈ H.
4. Integrate the posterior distribution on the tangent set—Equation (2)—to find ev.

5. Find ev = 1− ev.

To compute the evidence value supporting H defined in the last section, we need to follow the
steps showed in Table 1. Appendix A provides detailed information about the computational resources
and codes used to implement the FBST in the examples presented in this work. After defining the
statistical model and prior, it is simple to find the surprise function, s(θ). In step 3, one should find
the point of the parameter space in H that maximizes s(θ), that is, to solve a problem of constrained
numerical maximization. In several applications, this step does not present a closed form solution,
requiring the use of numerical optimizers.

Step 4 involves the integration of the posterior distribution on a subset of Θ, the tangent set Tx

that can be highly complex. Once more, since in many cases it is fairly difficult to find an explicit
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expression for Tx, one may use various numerical techniques to compute the integral. If it is possible
to generate random samples from the posterior distribution, Monte Carlo integration provides an
estimate of ev, as we will show in this work. Another alternative is to use approximation techniques,
such as those proposed in [15], based on a Laplace approximation. We discuss how to implement such
approximations for unit root and cointegration tests in [3,4].

2. Bayesian Unit Root Tests

Before presenting the Bayesian procedures used to test the presence of unit roots, let us fix notation.
We will denote by yt the t-th value of a univariate time series observed in t = 1, . . . , T + p dates, where T
and p are positive integers. The usual approach is to assume that the series under analysis is described by
an auto-regressive process with p lags, AR(p), meaning that the data generating process is fully described
by a stochastic difference equation of order p, possibly with an intercept or drift and a deterministic
linear trend, i.e.,

yt = µ + δ · t + φ1yt−1 + . . . + φpyt−p + εt (3)

with εt i.i.d. N(0, σ2) for t = 1, . . . , T + p. Using the lag or backshift operator B, we denote yt−k by
Bkyt, allowing us to rewrite (3) as

(1− φ1B− . . . φpBp)yt = µ + δ · t + εt (4)

where φ(B) = (1− φ1B− . . . φpBp) is the autoregressive polynomial. The difference Equation (3) will

be stable, implying that the process generating {yt}T+p
t=1 is (weakly) stationary, whenever the roots

of the characteristic polynomial φ(z), z ∈ C, lie outside the unit circle, since there may be complex
roots. The set of polynomial operators, such as lag polynomials like φ(B), induces an algebra that is
isomorphic to the algebra of polynomials in real or complex variables, see [16].

If some of the roots lie exactly on the unit circle, it is said that the process has unit roots. In order
to test such a hypothesis statistically, (3) is rewritten as

∆yt = µ + δ · t + Γ0 yt−1 + Γ1∆yt−1 + . . . + Γp−1∆yt−p+1 + εt (5)

where ∆yt = yt − yt−1, Γ0 = φ1 + . . . + φp − 1 and Γi = −∑
p
j=i+1 φj, for i = 1, . . . , p − 1. If the

generating process has only one unit root, one root of the complex polynomial φ(z),

1− φ1z− φ2z2 . . . φpzp,

is equal to one, meaning that
1− φ1 − φ2 − . . .− φp = 0

i.e., φ(1) = 0, and all the other roots are on or outside the unit circle. In this case, Γ0 = 0, the hypothesis
that will be tested when modeling (5). Even though tests based on these assumptions verify if the
process has a single unit root, there are generalizations based on the same principles that test the
existence of multiple unit roots, see [17].

The search for Bayesian unit root tests began in the late 1980s. As far as we know, [18,19] were the
first works to propose a Bayesian approach for unit root tests. The frequentist critics of these articles
received a proper answer in [20,21], generating a fruitful debate that produced a long list of papers in
the literature of Bayesian time series. A good summary of the debate and the Bayesian papers that
resulted from it is presented in [22]. We will present here only the most relevant strategies proposed
by the Bayesian school to test for unit roots.

Let θ = (ρ, ψ) be the parameters vector, in which ρ = ∑
p
i=1 φi and ψ = (µ, δ, Γ1, . . . , Γp−1).

Assuming σ2 fixed, the prior density for θ can be factorized as

h(θ) = h0(ρ) · h1(ψ | ρ).
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The marginal likelihood for ρ, denoted by Lm, is:

Lm(ρ | y) ∝
∫
Ψ

L(θ | y) · h1(ψ | ρ) dψ.

where y = {yt}T+p
t=1 is the observations vector, L(θ|y) the full likelihood, and Ψ the support of the

random vector ψ. This marginal likelihood, associated with a prior for ρ, is the main ingredient used
by standard Bayesian procedures to test the existence of unit roots. Even though the procedure varies
among authors according to some specific aspects, mentioned below, basically all of them use Bayes
factors and posterior probabilities.

One important issue is the specification of the null hypothesis: some authors, starting from [23],
consider H0 : ρ = 1 against H1 : ρ < 1. Starting from [24], this is the way the frequentist school
addresses the problem, but following this approach no explosive value for ρ is considered. The decision
theoretic Bayesian approach solved the problem using the posterior probabilities ratio or Bayes factor:

B01 =
Lm(ρ = 1 | y)

1∫
0

Lm(ρ | y) · h0(ρ) dρ

.

Advocates of this solution argue that one of the advantages of this approach is that the null and
the alternative hypotheses are given equal weight. However, the expression above is not defined if
h0(ρ) is not a proper density since the denominator of the Bayes factor is equal to the predictive density,
defined just if h0(ρ) is a proper density. There are also problems if Lm(ρ = 1|y) is zero or infinite.

The problem is approached by [20,25] by testing H0 : ρ ≥ 1 against H1 : ρ < 1, considering
explicitly explosive values for ρ. The main advantage of this strategy is the possibility to compute
posterior probabilities like

P(ρ > 1 | y) =
∫ ∞

1
gm(ρ | y) dρ

defined even for improper priors on ρ, where gm is the marginal posterior for ρ.
In [26], the authors do not choose ρ as the parameter of interest, examining instead the largest

absolute value of the roots of the characteristic polynomial and then verifying if it is smaller or larger
than one. Usually, this value is slightly smaller than ρ, but the authors argue that this small difference
may be important. When this approach is used, unit roots are found less frequently. For an AR(3)
model with a constant and deterministic trend, [26] derives the posterior density for the dominant root
for the 14 series used in [27] and concluded the following: for eleven of the series, the dominant root
was smaller than one, that is to say, the series were trend-stationary. These results were based on flat
priors for the autoregressive parameters and the deterministic trend coefficient.

Another controversy is about the prior over ρ: [20] argues that the difference between the results
given by the frequentist and Bayesian inferences is due to the fact that the flat prior proposed in [18]
overweights the stationary region of ρ. Hence, he derived a Jeffreys prior for the AR(1) model: this
prior quickly diverges as ρ increases and becomes larger than one. The obtained posterior led to
the same results of [27], which will be discussed in detail in the following section. The critics of the
approach adopted by Phillips in [20] judged the Jeffreys prior as unrealistic, from a subjective point of
view. See the comments on Phillips’s paper on the Journal of Applied Econometrics, volume 6, number 4,
1991. The subsequent papers of the same number support the Bayesian approach. This is a nonsensical
objection if one considers that the Jeffreys prior is crucial to ensure an invariant inferential procedure,
and invariance is a highly desirable property, for either objective or subjective reasons. See [28] for
more on invariance in physics and statistical models.

A final controversial point concerns the modeling of initial observations. If the likelihood explicitly
models the initial observed values (it is an exact likelihood), the process is implicitly considered
stationary. In fact, when it is known that the process is stationary, and it is believed that the data
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generating process is working for a long period, it is reasonable to assume that the parameters of the
model determine the marginal distribution of the initial observations. In the simplest AR(1) model,
this would imply that y1 ∼ N(0, σ2/(1− ρ2)). In this scenario, to perform the inference conditional
on the first observation would discard relevant information. On the other hand, there is no marginal
distribution defined for y1 if the generating process is not stationary. Then, it is valid to use a likelihood
conditional on initial observations. For the models presented here, we always work with the conditional
likelihood. As argued in [18], inferences for stationary models are little affected by using conditional
likelihoods, especially for large samples. He compares these inferences with the ones based on exact
likelihoods under explicit modeling for initial observations.

3. Implementing the FBST for Unit Root Testing

We will now describe how to use the FBST to test for the presence of unit roots referring to the
general model (5). It is also possible to include q ∈ N moving average terms in (3) to model the process,
a case that will not be covered in this article but that, in principle, shall not imply major problems for
the FBST.

∆yt = µ + δ · t + Γ0 yt−1 + Γ1∆yt−1 + . . . + Γp−1∆yt−p+1 + εt, (5)

where εt
i.i.d.∼ N(0, σ2) for t = 1, . . . , T + p, recalling also that the hypothesis being tested is Γ0 = 0. We

slightly change the notation of the last section now using ψ to denote the vector (µ, δ, Γ0, . . . , Γp−1)

and setting θ = (ψ, σ).
Recalling the steps to implement the FBST displayed in Table 1, we have just specified the statistical

model. The likelihood, conditional on the first p observations, derived from the Gaussian model is

L(θ | y) = (2π)−T/2σ−Texp

{
− 1

2σ2 ·
T+p

∑
t=p+1

ε2
t

}
, (6)

in which εt = ∆yt − µ− δ · t− Γ0yt−1 − Γ1∆yt−1 − . . .− Γp−1∆yt−p+1. To complete step 1 of Table 1,
we need a prior distribution for θ. For all the series modeled in this article, we will use the following
non informative prior:

h(θ) = h(ψ, σ) ∝ 1/σ. (7)

We are aware of the problems caused by improper priors applied to this problem when one uses
alternative approaches, like those mentioned by [22]. However, one of our goals is to show how the
FBST can be implemented even for a potentially problematic prior like this one. To write the posterior,
we use the following notation:

∆Y =


∆yp+1

∆yp+2
...

∆yT+p

 , X =


1 p + 1 yp ∆yp . . . ∆y2

1 p + 2 yp+1 ∆yp+1 . . . ∆y3
...

...
...

...
...

...
1 T + p yT+p−1 ∆yT+p−1 . . . ∆yT+1

 , ψ =


µ

δ

Γ0
...

Γp−1

 ,

being ∆Y of dimension T× 1, X of dimension T× (p + 2) and ψ, (p + 2)× 1. Thanks to this notation,
we can write, using primes to denote transposed matrices:

T+p

∑
t=p+1

ε2
t = (∆Y− Xψ)′(∆Y− Xψ) = (∆Y− ∆̂Y)′(∆Y− ∆̂Y) + (ψ− ψ̂)′X′X(ψ− ψ̂),
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where ψ̂ = (X′X)−1X′ · ∆Y is the ordinary least squares (OLS) estimator of ψ and ∆̂Y = Xψ̂ its
prediction for ∆Y. Thus, the full posterior is

g(θ | y) ∝ σ−(T+1)exp
{
− 1

2σ2 [(∆Y− ∆̂Y)′(∆Y− ∆̂Y) + (ψ− ψ̂)′X′X(ψ− ψ̂)]

}
, (8)

a Normal-Inverse Gamma density.
Step 2 demands a reference density in order to define the relative surprise function. Since we will

use the improper density r(θ) ∝ 1, the surprise function will be equivalent to the posterior distribution
in our applications. Given this, to find s∗ (Step 3), we need to find the maximum value of the posterior
under the hypothesis being tested, in our case, Γ0 = 0.

This maximization step is fairly simple to implement given the modeling choices made here:
Gaussian likelihood, non informative prior and reference density proportional to a constant. The
restricted (assuming H) posterior distribution is

gr(θr | y) ∝ σ−(T+1)exp
{
− 1

2σ2 [(∆Y− ∆̂Yr)
′(∆Y− ∆̂Yr) + (ψr − ψ̂r)

′X′rXr(ψr − ψ̂r)]

}
, (9)

in which θr = (ψr, σ), ψr being vector ψ without Γ0,

Xr =


1 p + 1 ∆yp . . . ∆y2

1 p + 2 ∆yp+1 . . . ∆y3
...

...
...

...
...

1 T + p ∆yT+p−1 . . . ∆yT+1

 , ψ̂r = (X′rXr)
−1X′r · ∆Y, and ∆̂Yr = Xrψ̂r,

that is, Xr is simply matrix X above without its third column, since under H : Γ0 = 0 and the coefficient
of the third column of X is Γ0—see Equation (5)—ψ̂r is a least squares estimator of ψr and ∆̂Yr denotes
the predicted values for ∆Y given by the restricted model. From (9), it is easy to show that the maximum
a posteriori (MAP) estimator of θr is given by (ψ̂r, σ̂r), with

σ̂r =

√
(∆Y− ∆̂Yr)′(∆Y− ∆̂Yr)

T + 1
.

Plugging the values of ψ̂r and σ̂r into (9), we find s∗, as requested in Step 3. Step 4 will also be
easy to implement thanks to structure of the models assumed in this section. Since the full posterior,
(8), is a Normal-Inverse Gamma density, a simple Gibbs sampler allows us to obtain a random sample
from such distribution, suggesting a Monte Carlo approach to compute ev. From (8), the conditional
posteriors of ψ and σ are, respectively,

gψ(ψ | σ, y) ∝ N(ψ̂, σ2(X′X)−1) (10)

gσ2(σ2 | ψ, y) ∝ IG
(

T + 1
2

, H
)

(11)

in which H = 0.5[(∆Y − ∆̂Y)′(∆Y − ∆̂Y) + (ψ − ψ̂)′X′X(ψ − ψ̂)], IG denotes the Inverse-Gamma
distribution and ψ̂ is the OLS estimator of ψ, as above. Appendix B brings the parametrization and the
probability density function of the Inverse-Gamma distribution. With a sizable random sample from
the full posterior, we estimate ev as the proportion of sampled vectors that generate a value for the
posterior greater than s∗, found in Step 3. Hence, in Step 5, we only compute one minus the estimate
of ev found in Step 4. The whole procedure is summarized in Table 2. For the implementations in this
article we sampled 51,000 vectors from (8) and discarded the first 1,000 as a burn-in sample.
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Table 2. Pseudocode to implement the FBST to unit root tests.

General algorithm: compute ev supporting hypothesis H : Γ0 = 0 in model (5)

1. Statistical model: Gaussian; prior: h(θ) ∝ 1/σ.
2. Reference density: r(θ) ∝ 1; relative surprise function: g(θ | y).

3. Find s∗: (9) evaluated at ψ̂r and σ̂r.
4. Gibbs sampler (from Equations (10) and (11)) to obtain N random samples of parameter vectors from (8).

Evaluate the posterior at the sampled vectors and estimate ev as the proportion of N in which the
evaluated values are larger than s∗.

5. Find ev = 1− ev.

Results

We implemented the FBST as described above to test the presence of unit roots in 14 U.S. macroeconomic
time series, all with annual frequency, first mentioned in [27]. We used the extended series, analyzed
in [23]. Appendix A brings more information on the data set and the computational resources and
codes used to obtain the results displayed in Table 3 below.

Table 3 reports the names of the tested series, the number of available observations or sample size,
the adopted value for p—as denoted in Equation (8)—if a linear (deterministic) trend was included in
the model or not, the ADF test statistic and its respective p-value. We have used the computer package
described in [29] to find the ADF p-values, available in the R library urca. The last two columns bring
the posterior probability of non-stationarity, Γ0 ≥ 0, and the FBST e-values for the specified models. In
order to obtain comparable results, we have adopted the models chosen by [22] for all the series. All
the models considered the intercept or constant term, µ in (8).

The results show that the non-stationary posterior probabilities are quite distant from the ADF
p-values. These results were highlighted in [18,19]. Considering the simplest AR(1) model, they argued
that, once frequentist inference is based on the distribution of ρ̂|ρ = 1, the non-stationary posterior
probabilities provide counterintuitive conclusions since the referred distribution is skewed. Their main
argument is that Bayesian inference uses a distribution (marginal posterior of ρ) that is not skewed.

As mentioned before, ref. [20] claims that the difference in results between frequentist and Bayesian
approaches is due to the flat prior that puts much weight on the stationary region. He proposed the
use of Jeffreys priors, which restored the conclusions drawn by the frequentist test. Phillips argued
that the flat prior was, actually, informative when used in time series models like those for unit root
tests. Using simulations, he shows that “ [the use of a] flat prior has a tendency to bias the posterior towards
stationarity. ... even when [the estimate] is close to unity, there may still be a non negligible downward bias in the
[flat] posterior probabilities”. Notwithstanding, the e-values reported in the last column are quite close to
the ADF p-values even using the flat prior criticized by Phillips.

Table 3. Unit root tests for the extended Nelson and Plosser data set.

Series Sample Size p Trend ADF p-Value P(Γ0 ≥ 0|y) e-Value

Real GNP 80 2 yes −3.52 0.044 0.0005 0.040
Nominal GNP 80 2 yes −2.06 0.559 0.0238 0.523

Real GNP per capita 80 2 yes −3.59 0.037 0.0004 0.034
Industrial prod. 129 2 yes −3.62 0.032 0.0003 0.028

Employment 99 2 yes −3.47 0.048 0.0004 0.043
Unemployment rate 99 4 no −4.04 0.019 0.0001 0.020

GNP deflator 100 2 yes −1.62 0.778 0.0584 0.762
Consumer prices 129 4 yes −1.22 0.902 0.1154 0.983
Nominal wages 89 2 yes −2.40 0.377 0.0106 0.341

Real wages 89 2 yes −1.71 0.739 0.0475 0.715
Money stock 100 2 yes −2.91 0.164 0.0029 0.147

Velocity 119 2 yes −1.62 0.779 0.0620 0.777
Bond yield 89 4 no −1.35 0.602 0.0962 0.936
Stock prices 118 2 yes −2.44 0.357 0.0103 0.349
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4. Bayesian Cointegration Tests

Before starting our brief review of the most relevant Bayesian cointegration tests, we fix notation
and present the definitions to which we will refer in the sequel.

All the tests mentioned here are based on the following multivariate framework. Let Yt =

[y1t . . . ynt]′ be a vector with n ∈ N time series, all of them assumed to be integrated of order d ∈ N, i.e.,
have d unit roots. The series are said to be cointegrated if there is a nontrivial linear combination of
them that has b ∈ N unit roots, b < d. We will assume that, as in most applications, d = 1 and b = 0,
meaning that, if the time series in Yt is cointegrated, there is a linear combination a′Yt that is stationary,
where a ∈ Rn is the cointegrating vector. Since the linear combination a′Yt is often motivated by
problems found in economics, it is called a long-run equilibrium relationship. The explanation is that
non-stationary time series that are related by a long-run relationship cannot drift too far from the
equilibrium because economic forces will act to restore the relationship.

Notice also that: (i) the cointegrating vector is not uniquely determined since, for any scalar s,
(s · a) is a cointegrating vector; and (ii) if Yt has more than two series, it is possible that there is more
than one cointegrating vector generating a stationary linear combination.

It is assumed that the data generating process of Yt is described by the following vector
autoregression with p ∈ N lags, denoted VAR(p), and given by:

Yt = c + Φ0Dt + Φ1Yt−1 + . . . + ΦpYt−p + Et, (12)

in which c is a (n× 1) vector of constants, Dt a vector (n× 1) with some deterministic variable, such
as deterministic trends or seasonal dummies, Φi are (n× n) coefficients matrices and Et is a (n× 1)
stochastic vector with multivariate normal distribution with null expected value and covariance matrix
Ω, denoted Nn(0, Ω). This dynamic model is assumed valid for t = 1, . . . , T + p, the available span of
observations of Yt. As in the univariate case, one may include moving average terms in (12), i.e., lags
for Et, but this, in principle, would not cause major problems in the Bayesian framework. Model (12)
can be rewritten using the lag or backshift operator as

(In −Φ1B− . . .−ΦpBp)Yt = c + Φ0Dt + Et, (13)

where Φ(B) = In −Φ1B− . . .−ΦpBp is the (multivariate) autoregressive polynomial and In denotes
the n-dimensional identity matrix. The associate characteristic polynomial in this context will be the
determinant of Φ(z), z ∈ C. If all the roots of the characteristic polynomial lie outside the unit circle, it
is possible to show that Yt has a stationary representation—see [30]—such as Equation (12). In order
to determine if this is the case, model (12) is rewritten as an (vectorial) error correction model (VECM):

∆Yt = c + Φ0Dt + Γ1∆Yt−1 + . . . + Γp−1∆Yt−p+1 + ΠYt−1 + Et, (14)

where ∆Yt = [∆y1t . . . ∆ynt]′, Γi = −(Φi+1 + . . . Φp) for i = 1, 2, . . . , p − 1 and Π = −Φ(1) =

−(In −Φ1 − . . .−Φp). It is possible to show that, when all the roots of det(Φ(z)) are outside the unit
circle, matrix Π in (14) has full rank, i.e., all the n eigenvalues of Π are n non null. If the rank of Π
is null, this matrix cannot be distinguished from a null matrix, implying that the series in Yt has at
least one unit root and a valid representation is a VAR of order p− 1, i.e., model (14) without the term
ΠYt−1. It is possible that the series in Yt has two unit roots each, implying that the correct VECM must
be written with ∆2Yt as a dependent variable.

Finally, if the (n× n) matrix Π has rank r, 0 < r < n, it has n− r non null eigenvalues, implying
that the series in Yt has at least one unit root and its valid representation is given by the VECM in
Equation (14). In this case, Π = αβ′, where α and β are matrices (n× r) of rank r. Matrix β denotes
the one with the cointegrating vectors and matrix α is called the loading matrix, since it contains the
weights of the equilibrium relationships. The tests developed in [2] focus on the rank of matrix Π.
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The pioneer Bayesian works to study VAR models and reduced rank regressions are [31–33].
However, the main concern of these papers is to estimate the model parameters and their (marginal)
posterior distributions. The usual approach is to assume a given rank for the long run matrix Π, and
proceed with all the computations conditional on the given rank. The Bayesian initiatives to test the
rank of the referred matrix are recent, the main reference for Bayesian inference on VECM’s being [34].

To justify inferential procedures based on prespecified ranks of matrix Π, [22] argued that an
empirical cointegration analysis should be based on economic theory, which proposes models obeying
equilibrium relationships. According to this view, cointegration research should be “confirmatory” rather
than “exploratory”. Even though the advocated conditional inference is of simple implementation and
very useful for small samples, [22] recognized that tests for the rank of matrix Π should be developed.
To our knowledge, few initiatives with this purpose were developed up to now.

One common approach to test sharp hypotheses in the Bayesian framework is by means of Bayes
factors. Testing the rank of matrix Π by Bayes factors implies several computational complications and
requires the use of proper priors, as shown in [35]. Following an informal approach, [33] obtained the
posterior distribution of the ordered eigenvalues of the “squared” long run matrix, Π′ ·Π, obtained
from a VAR model without assuming the existence of cointegration relations. As the long run matrix
has a reduced rank, it has some null eigenvalues, and this should be revealed by the fact that the
smallest eigenvalues should have a lot of probability mass accumulated on values close to zero. The
computations can be made straightforwardly, simulating values for the long run matrix from its
(marginal) posterior distribution, which is a matrix t-Student distribution under the non informative
prior (16), also considered in the sequel.

Another common procedure is to estimate the rank of Π as the value r that maximizes the (marginal)
posterior distribution of the rank. Conditioned on such an estimate, one proceeds to derive the full
posterior and eventually estimate the cointegration space, i.e., the linear space spanned by β.

A different approach was proposed by [36], who used the Posterior Information Criterion (PIC),
developed in [37], as a criterion to choose the mode of the posterior distribution of the rank of Π. However,
as highlighted in [34], one of the advantages of the Bayesian approach is the possibility to incorporate the
uncertainty about the parameters in the analysis, represented by the posterior distribution of the rank and,
whatever the tool the scientist uses to infer the value of r, it is derived from this posterior distribution.

The authors of [38] nested the reduced rank models in an unrestricted VAR and used Metropolis–
Hastings sampling with the Savage–Dickey density ratio—see [39]—to estimate the Bayes Factors
of all the models with incomplete rank up to the model with full rank. The Bayes Factor derivation
requires the estimation of an error correction factor for the incomplete rank. This factor, however, is
not defined for improper priors due to a problem known as Bartlett paradox, which arises whenever
one compares models of different dimensions. The difficulty is relevant in the present case because,
after deriving the rank posterior density, one may consider that models of different dimensions are
being compared. The paradox is stated informally as: improper priors should be avoided when one
computes Bayes Factors (except for parameters common to both models) as they depend on arbitrary
constants (that are integrals).

More recently, [40] developed an efficient procedure to obtain the posterior distribution of the rank
using a uniform proper prior over the cointegration space linearly normalized. The author derived
solutions for the posterior probabilities for the null rank and for the full rank of Π. The posterior
probabilities of each intermediate rank are derived from the posterior samples of the matrices that
compose the long run matrix (α and β), properly normalized, under each rank and using the method
proposed by [41].

5. Implementing the FBST as a Cointegration Test

This section describes how to implement the FBST to test for cointegration. We will proceed in the
same spirit of Section 3, i.e., describing the steps given in Table 1 to implement the test for cointegration.
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Let us begin recalling the VECM given by Equation (14):

∆Yt = c + Φ0Dt + Γ1∆Yt−1 + . . . + Γp−1∆Yt−p+1 + ΠYt−1 + Et, (14)

t = 1, . . . , T + p, in which Et
i.i.d.∼ Nn(0, Σ) with 0 a null vector of dimension n× 1 and Ω a symmetric

positive definite real matrix. Notice that these assumptions already specify the statistical model
(Gaussian) and its implied likelihood. Before giving it explicitly, let us rewrite Equation (14) using
matrix notation:

∆Y = Z · η + E (15)

where ∆Y =


∆Y′p+1
∆Y′p+2

...
∆Y′T+p

, Z =


1 D′p+1 ∆Y′p . . . ∆Y′2 Y′p
1 D′p+2 ∆Y′p+1 . . . ∆Y′3 Y′p+1
...

...
...

...
...

1 D′T+p ∆Y′T−1 . . . ∆Y′T+p−1 Y′T+p−1

, η =



c′

Φ0

Γ1
...

Γp−1

Π


and the error vector is given by E ∼ MNT×n(0, IT , Ω), denoting the matrix normal distribution.
See Appendix B for more information on this distribution. Now the parameter vector is given by
Θ = (η, Ω).

Notice that ∆Y is formed by piling up T transposed vectors ∆Yt, thus resulting in a matrix with
T lines and n columns (n is the number of time series in vector Yt), those being also dimensions of
matrix E. Matriz Z is constructed likewise—always piling up the transposed vectors—resulting in a
matrix with T lines and pn + n + 1 columns. Finally, matrix η has the matrices of coefficients, all piled
up properly, resulting in a matrix with pn + n + 1 lines and n columns.

Given the assumptions above, ∆Y ∼ MNT×n(Z · η, IT , Ω), implying that the likelihood is

L(Θ | y) ∝ |Ω|−T/2exp
{
−1

2
· tr[Ω−1(∆Y− Z · η)′(∆Y− Z · η)]

}
where y denotes the set of observed values of vectors Yt for t = 1, . . . , T + p. As in Section 3, we will
consider an improper prior for Θ, given by

h(Θ) = h(η, Ω) ∝ |Ω|−(n+1)/2, (16)

and our reference density, r(Θ), will be proportional to a constant, leading to a surprise function
equivalent to the (full) posterior distribution. These choices correspond to steps 1 and 2 of Table 1.
These modeling choices imply the following posterior density:

g(Θ | y) ∝ |Ω|−(T+n+1)/2exp
{
− 1

2 · tr[Ω−1(∆Y− Z · η)′(∆Y− Z · η)]
}

= |Ω|−(T+n+1)/2exp
{
− 1

2 · tr{Ω−1[S + (η − η̂)′ · Z′Z · (η − η̂)]}
} (17)

where η̂ = (Z′Z)−1Z′∆Y and S = ∆Y′∆Y− ∆Y′Z(Z′Z)−1Z′∆Y.
To implement Step 3 of Table 1, we need to find the maximum a posteriori of (17) under the

constraint Θ ⊂ ΘH , i.e., we need to maximize the posterior in ΘH . Since we are testing the rank of
matrix Π, as discussed in the beginning of Section 4, it is necessary to maximize the posterior assuming
the rank of Π is r, 0 ≤ r ≤ n. Thanks to the modeling choices made here—Gaussian likelihood and
Equation (16) as prior—our posterior is almost identical to a Gaussian likelihood, allowing us to
find this maximum using a strategy similar to that proposed by [2], who derived the maximum of
the (Gaussian) likelihood function assuming a reduced rank for Π. We will summarize Johansen’s
algorithm, providing in Appendix C a heuristic argument of why it indeed provides the maximum
value of the posterior under the assumed hypotheses.
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We begin estimating a VAR(p− 1) model for ∆Yt with all the explanatory variables shown in (14)
except for Yt−1. Using the matrix notation established above, this corresponds to estimate

∆Y = Z1 · η1 + U,

where Z1 =


1 D′p+1 ∆Y′p . . . ∆Y′2
1 D′p+2 ∆Y′p+1 . . . ∆Y′3
...

...
...

...
1 D′T+p ∆Y′T−1 . . . ∆Y′T+p−1

 and η1 =


e′

τ0

υ1
...

υp−1

 showing that Z1 is obtained

from matrix Z extracting its last n columns, exactly those corresponding to Yt−1.
We also estimate a second set of auxiliary equations, regressing Yt−1 on a vector of constants and

Dt, ∆Yt−1, . . . , ∆Yt−p+1. By piling up all the (transposed) vectors Y′t−1 for t = p + 1, . . . , T + p, we
have a (T × n) matrix, denoted by Y−1. As above, these equations can be represented by

Y−1 = Z1 · η2 + V,

where Y−1 =


Y′p

Y′p+1
...

Y′T+p−1

 and η2 =


m′

ν0

ζ1
...

ζp−1

.

Considering the OLS estimates of these sets of equations and their respective estimated residuals,
we may write

∆̂Y = Z1 · η̂1 + Û (18)

Ŷ−1 = Z1 · η̂2 + V̂ (19)

where η̂1 = (Z′1Z1)
−1Z′1 · ∆Y, η̂2 = (Z′1Z1)

−1Z′1 · Y−1, Û and V̂ are the respective matrices of
estimated residuals. Thanks to the Frisch–Waugh–Lovell theorem—see [42] theorem 3.3 or [43] Section
2.4—it is possible to show that the estimated residuals of these auxiliary regressions are related by Π
in the following regressions:

Û = Π V̂ + Ŵ. (20)

One can prove that the OLS estimates of Π obtained from (15) and from (20) are numerically
identical, as the estimated residuals Ê and Ŵ.

The second stage of Johansen’s algorithm requires the computation of the following sample
covariance matrices of the OLS residuals obtained above:

Σ̂VV =
1
T
· V̂′V̂ Σ̂UU =

1
T
· Û′Û

Σ̂UV =
1
T
· Û′V̂ Σ̂VU = Σ̂′UV

and, from these, we find the n eigenvalues of matrix

Σ̂−1
VV · Σ̂VU · Σ̂−1

UU · Σ̂UV,

ordering them decreasingly λ̂1 > λ̂2 > . . . > λ̂n. The maximum value attained by the log posterior
subject to the constraint that there are r (0 ≤ r ≤ n) cointegration relationships is

`∗ = K− (T + n + 1)
2

· log |Σ̂UU| −
T + n + 1

2
·

r

∑
i=1

log(1− λ̂i), (21)
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where K is a constant that depends only on T, n and y by means of the marginal distribution of the data
set, y. Since `∗ represents the maximum of the log-posterior, to obtain s∗, one should take s∗ = exp(`∗),
completing step 3 of Table 1.

As in Section 3, we compute ev in step 4 by means of a Monte Carlo algorithm. It is easy to
factor the full posterior (17) as a product of a (matrix) normal and an Inverse-Wishart, suggesting a
Gibbs sampler to generate random samples from the full posterior. See Appendix B for more on the
Inverse-Wishart distribution. Thus, the conditional posteriors for η and Ω are, respectively,

gη(η | Ω, y) ∝ MNn×k(η̂, (Z′Z)−1, Ω) (22)

gΩ(Ω | η, y) ∝ IW(Ω|S + (η − η̂)′ · Z′Z · (η − η̂), T) (23)

where S = ∆Y′∆Y−∆Y′Z(Z′Z)−1Z′∆Y, IW denotes the Inverse-Wishart, k = pn+ n+ 1 is the number
of lines of η, and η̂ its OLS estimator, as above. From a Gibbs sampler set with these conditionals, we
obtain a random sample from the full posterior to estimate ev as the proportion of sampled vectors that
generate a value for the posterior greater than s∗. Finally, we obtain ev = 1− ev in the final step (5).
The whole implementation for cointegration tests, following the assumptions made in this section, is
summarized in Table 4. See Appendix A for more information on the computational resources needed
to implement the steps given by Table 4.

Table 4. Pseudocode to implement the FBST to cointegration tests.

General algorithm: compute ev supporting hypothesis H : rank(Π) = r (0 ≤ r ≤ n) in model (14)

1. Statistical model: Gaussian; prior: h(Θ) ∝ |Ω|−(n+1)/2.
2. Reference density: r(Θ) ∝ 1; relative surprise function: g(Θ | y).
3. Find s∗: Johansen’s algorithm; obtain `∗ from Equation (21) with s∗ = exp(`∗).
4. Gibbs sampler (from Equations (22) and (23)) to obtain N random samples of parameter vectors from (17).

Evaluate the posterior at the sampled vectors and estimate ev as the proportion of N for which the
evaluated values are larger than s∗.

5. Find ev = 1− ev.

Before presenting the results of the procedure applied to real data sets, it is important to remark
one feature of the FBST applied to cointegration tests. The estimated eigenvalues of matrix Π, λ̂i,
correspond to the squared canonical correlations between ∆Yt and Y−1 corrected for the variable in
Z1 and therefore lie between 0 and 1. Therefore, (21) shows that `∗0 ≤ `∗1 ≤ . . . `∗n, where `∗r denotes
the maximum of the posterior (14) assuming Π has rank 0 ≤ r ≤ n. Therefore, one may say that the
hypotheses rank(Π) = r are nested, in the sense that the respective e-values obtained by the FBST for
these hypotheses are always non-decreasing ev(0) ≤ ev(1) ≤ . . . ≤ ev(n).

This nested formulation is also present in the frequentist procedure proposed by [2], based on the
likelihood ratio statistics for successive ranks of Π. Thus, the FBST should be used, like the maximum
eigenvalue test, in a sequential procedure to test for the number of cointegrating relationships. We will
show how this should be done in presenting the applied results in the sequel.

Results

Now we present, by means of four examples, the application of FBST as a cointegration test. In all
the examples, we have adopted a Gaussian likelihood and the improper prior (16). The Gibbs sampler
was implemented as described above, providing 51,000 random vectors from the posterior (17). The
first 1000 samples were discarded as a burn-in sample, the remaining 50,000 being used to estimate the
integral (2). The tables show the e-value computed from the FBST and the maximum eigenvalue test
statistics with their respective p-values.
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Example 1. We analyzed four electroencephalography (EEG) signals from a subject that has previously presented
epileptic seizures. The original study, [44], had the aim of detecting seizures based on multiple hours of recordings
for each individual and the cointegration analysis of the mentioned signals was presented by [45]. In fact, the
cointegration hypothesis is tested using the phase processes estimated from the original signals. This is done by
passing the signal into the Hilbert transform and then “unwrapping” the resulting transform. Sections 2 and 5
of [45,46] provide more details on the Hilbert transform and unwrapping.

The labels of the modeled series refer to the electrodes on the scalp. As seen in Figures 1 and 2,
the series are called FP1-F7, FP1-F3, FP2-F4, and FP2-F8, where FP refers to the frontal lobes and F
refers to a row of electrodes placed behind these. Even numbered electrodes are on the right side
and odd numbered electrodes are on the left side. The electrodes for these four signals mirror each
other on the left and right sides of the scalp. The recordings of the studied subject, an 11-year-old
female, identified a seizure in the interval (measured in seconds) [2956, 2996]. Therefore, like [45],
we analyze the period of 41 seconds prior to the seizure—interval [2956, 2996]—and the subsequent
41 seconds—interval [2996, 3036]—the seizure period. In the sequel, we will refer to these as prior to
seizure and during seizure, respectively. Since the sample frequency has 256 measurements per second,
there are a total of 10,496 measurements for each of the four signals. Ref. [45] used 40 seconds for each
period, obtaining slightly different results.

Figures 1 and 2 display the estimated phases based on the original signals. The model proposed
by [45] is a VAR(1), resulting in a VECM given by

∆Yt = c + ΠYt−1 + Et. (24)

Tables 5 and 6 present the results that essentially lead to the same conclusions obtained by [45],
even though they have based their findings on the trace test. See Table 8 of [45].

The comparison between p-values and the FBST e-values must be made carefully, the main reason
being the fact that p-values are not measures supporting the null hypothesis, while e-values provide
exactly such a kind of support. That being said, a possible way to compare them is by checking the decision
their use recommend regarding the hypothesis being tested, i.e., to reject or not the null hypothesis.
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Figure 1. Estimated phase processes prior to a seizure.
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Figure 2. Estimated phase processes during a seizure.

Table 5. FBST and max. eig. test: prior to seizure.

H0 FBST Max. p-Value

r = 0 '0 60.966 '0
r = 1 0.0691 30.727 0.0010
r = 2 0.9990 11.458 0.1337
r = 3 '1 0.0812 0.7757

Table 6. FBST and max. eig. test: during seizure.

H0 FBST Max. p-Value

r = 0 '0 1120.5 '0
r = 1 0.1144 31.563 0.0007
r = 2 0.9999 6.5015 0.5574
r = 3 '1 1.4383 0.2304

Frequentist tests often adopt a significance level approach: given an observed p-value, the hypothesis
is rejected if the p-value is smaller or equal to the mentioned level, usually 0.1, 0.05, or 0.01. Since the
cointegration ranks generate nested likelihoods, the hypotheses are tested sequentially, starting with null
rank, r = 0. For Table 5, adopting a 0.01 significance level, the maximum eigenvalue test would reject r = 0
and r = 1, and would not reject r = 2. The same conclusions follow for Table 6. Thus, the recommended
action is to work, for estimation purposes for instance, assuming two cointegration relationships.

The question on which threshold value to adopt for the FBST was already mentioned on Section 1.1,
but it is worthwhile to underline it once more. We highly recommend a principled approach deriving
the cut-off value from a loss function, which is specific for the problem at hand and the purposes of
the analysis. A naive but simpler approach would be to reject the hypothesis if the e-value is smaller
than 0.05 or 0.01, emulating the frequentist strategy. Even not recommending this path, since p-values
are not supporting measures for the hypothesis being tested while e-values are, the researcher may
numerically compare p-values and e-values in a specific scenario. If the researcher derived the p-values
from a generalized likelihood ratio test, it is possible to asymptotically compare them. The relationship
is: ev = 1− Fm[F−1

m−h(1− p)], where m is the dimension of the full parameter space, h the dimension of
the parameter space under the null hypothesis, Fm the chi-square distribution function with m degrees
of freedom and p the corresponding p-value. See [9,12] for the proof of the asymptotic relationship
between e-values and p-values.
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Since the maximum eigenvalue test is derived as a likelihood ratio test, this comparison may be
done for the results of all the examples presented here, and more appropriately to this example, given
its sample size of 10,496 observations. Regarding Tables 5 and 6, one could be in doubt regarding
whether to reject or not the hypothesis r = 1 since the e-values are larger than 0.01. However, for this
model and hypothesis, the e-value corresponding to 0.01 is 0.436. Therefore, in both tables, one could
reject the hypothesis and proceed to the next rank that has plenty of evidence in its favor. In conclusion,
the practical decisions of both tests (FBST and maximum eigenvalue) would be the same: to not reject
r = 2.

Example 2 ([47]). Compare three methods for modeling empirical seasonal temperature forecasts over South
America. One of these methods is based on a (possible) long-term cointegration relationship between the temperatures
of the quarter March–April–May (MAM) of each year and the temperature of the previous months of November–
December–January (NDJ). When there is such a relationship, the authors used the NDJ temperatures (of the
previous year) as a predictor for the following MAM season.

The original data set has monthly temperatures for each coordinate (latitude and longitude) of
the covered area. The mentioned series of temperatures (MAM and NDJ) are computed as seasonal
averages from this monthly data set by averaging over consecutive three months. Since we have data
available from January 1949 to May 2020, the time series of monthly and seasonal average surface
temperatures of length 72 for each grid point.

The authors of [47] consider Yt as a two-dimensional vector, its first component being the seasonal
(average) MAM temperature of year t and the second component the seasonal NDJ temperature of the
previous year. They consider a VAR(2) without deterministic terms to model the series, resulting in
a VECM

∆Yt = Γ1∆Yt−1 + ΠYt−1 + Et. (25)

We have chosen five grid points corresponding to major Brazilian cities to test the cointegration
hypothesis of the mentioned seasonal series. The coordinates chosen were the closest ones from:
23.5505◦ S, 46.6333◦ W for São Paulo; 22.9068◦ S, 43.1729◦ W for Rio de Janeiro; 19.9167◦ S, 43.9345◦

W for Belo Horizonte; 15.8267◦ S, 47.9218◦ W for Brasília and 12.9777◦ S, 38.5016◦ W for Salvador.
Figures 3 and 4 show the seasonal temperatures for São Paulo and Brasília, respectively, indicating
that the cointegration hypothesis is plausible for both cities.
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Figure 3. Seasonal (MAM and NDJ) temperatures for São Paulo from 1949 to 2020.
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Figure 4. Seasonal (MAM and NDJ) temperatures for Brasília from 1949 to 2020.

Table 7. FBST and maximum eigenvalue test applied to temperature data (MAM and NDJ series) of
the mentioned Brazilian cities.

H0 : r = 0 H0 : r = 1
Cities FBST Max. p-Value FBST Max. p-Value

São Paulo 0.0012 33.302 '0 '1 0.0893 0.8205
Rio de Janeiro 0.0273 23.294 0.0004 '1 2.43e-5 0.9986
Belo Horizonte 0.0173 24.621 0.0001 '1 0.0963 0.8126
Brasília 0.1129 18.008 0.0045 0.9999 1.3321 0.2892
Salvador 0.0172 24.431 0.0001 '1 0.2450 0.6838

The results are shown in Table 7. Assuming a significance level of 0.01, the maximum eigenvalue
test reject the null rank and do not reject r = 1 for all the five cities. If we adopt the asymptotic
relationship between p-values and e-values for the model under analysis, we obtain an e-value of 0.276
corresponding to a 0.01 p-value for r = 0. Therefore, the FBST would also reject the null rank for all
the cities. The hypothesis r = 1 is not rejected since all the e-values are close to 1, once more agreeing
with the maximum eigenvalue test.

One remark about Brasília seems in order. The city was built to be the federal capital, being officially
inaugurated on 21 April 1960. The construction began circa 1957 and before that the site had no human
occupation. The process of moving all the administration from Rio de Janeiro, the former capital, was
slow and only the 1980 census detected a population over 1 million inhabitants. The present population is
almost 3.2 million inhabitants living in the Federal District that includes Brasília and minor surrounding
cities. Figure 4 indicates that the seasonal temperatures began to rise exactly after 1980.

Example 3. we applied the FBST to the Finish data set used in their seminal work [2].

The authors used the logarithms of the series of M1 monetary aggregate, inflation rate, real income,
and the primary interest rate set by the Bank of Finland to model the money demand, which, in theory,
follows a long-term relationship. The sample has 106 quarterly observations of the mentioned variables,
starting at the second trimester of 1958 and finishing in the third trimester of 1984. The chosen model
was a VAR(2) with unrestricted constant, meaning that the series in Yt have one unit root with drift
vector c and the cointegrating relations may have a non-zero mean. For more information about how to
specify deterministic terms in a VAR see [48], chapter 6. Seasonal dummies for the first three quarters
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of the year were also considered in the model chosen by [2]. Writing the model in the error correction
form, we have:

∆Yt = c + Φ0,1D1t + Φ0,2D2t + Φ0,3D3t + Γ1∆Yt−1 + ΠYt−1 + Et. (26)

where Π = Φ1 + Φ2− I3, Γ1 = −Φ2, c is a vector with constants and Dit denote the seasonal dummies
for trimester i = 1, 2, 3. The results are displayed in Table 8.

Table 8. FBST and maximum eigenvalue test applied to Finish data of Johansen and Juselius (1990).

H0 FBST Max. p-Value

r = 0 0.132 38.489 0.0007
r = 1 0.994 26.642 0.0060
r = 2 '1 7.8924 0.3983

In [2], the authors concluded that there is, at least, two cointegration vectors, a conclusion that
follows if one adopts a 0.01 significance level, for instance. Using the asymptotic relationship between
p-values and e-values for Equation (26), we obtain, for r = 0, an e-value of 0.998, and, for r = 1,
an e-value of 0.999, corresponding to a 0.01 p-value. These apparently discrepant values for the e-values
are due to the high dimensions of the unrestricted (m = 58) and under H0 (h = 42 for r = 0 and h = 43
for r = 1) parameter spaces. Therefore, under this criterion, the FBST also rejects the null rank and r = 1
(since 0.132 < 0.998 and 0.994 < 0.999, respectively) and does not reject r = 2, recommending the same
action as the maximum eigenvalue test.

Example 4. As a final example, we apply the FBST to a US data set discussed in [49]. The observations have
annual periodicity and went from 1900 to 1985. We tested for cointegration between real national income, M1
monetary aggregate deflated by the GDP deflator and the commercial papers return rate. The chosen model was a
VAR(1) with unrestricted constant. The series were used in natural logarithms and the results follow below:

Table 9. FBST and maximum eigenvalue test applied to US data of Lucas (2000).

H0 FBST Max. p-Value

r = 0 0.042 25.334 0.0101
r = 1 0.996 4.2507 0.8271

Table 9 shows that the maximum eigenvalue test rejects r = 0 and does not reject r = 1 at a 0.05
significance level. Once more adopting the asymptotic relationship between p-values and e-values
for the chosen model, we obtain, for r = 0, an e-value of 0.247 corresponding to a 0.01 p-value. Thus,
under this criterion, the FBST also rejects the null rank and does not reject r = 1.

6. Conclusions

In the past few decades, the econometric literature introduced statistical tests to identify unit
roots and cointegration relationships in time series. The Bayesian approach applied to these topics
advanced considerably after the 1990s, developing interesting alternatives, mostly for unit root testing.
The (parametric) frequentist tests mentioned here may not be suitable since these procedures rely on
the distribution of the test statistic—usually assuming the hypothesis being tested is true—which
depend on a particular a statistical model, usually Gaussian. When the distributions of such statistics
cannot be obtained, the procedure is saved by asymptotic results. If the researcher considers different
statistical models and the available sample is small, the results of the tests may be quite misleading.

The present work reviewed a simple and powerful Bayesian procedure that can be applied to both
purposes: unit root and cointegration testing. We have also shown that the FBST works considerably
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well even when one uses improper priors, a choice that may preclude the derivation of Bayes Factors,
a standard Bayesian procedure in hypotheses testing.

A long series of articles provided in [7] and the references therein, has showed the versatility and
properties of FBST, such as: a. the e-value derivation and computation are straightforward from its
general definition; b. it uses absolutely no artificial restrictions like a distinct probability measure on the
hypothesis set, induced by some specific parametrization; c. it is in strict compliance with the likelihood
principle; d. it can conduct the test with any prior distribution; e. it does not need closed conjectures
concerning error distributions, even for small samples; f. it is an exact procedure, since it does rely on
asymptotic assumptions; and g. it is invariant with respect to the null hypothesis parametrization and
with respect to the parameter space parametrization. See [9], p. 253 for this property.

To proceed with this research agenda, it would be interesting to perform more simulation studies
with the FBST applied to unit root testing for a larger group of parametric and semi-parametric
models (likelihoods). Another possibility is to include moving average terms in the data generating
processes and work with Gaussian and non-Gaussian ARMA models. Notice that, given the points
made above, these extensions would not impose major problems to the FBST as they would to the
frequentist procedures. Regarding cointegration, the same extensions may be studied in future works,
although the adoption of statistical models outside the Gaussian family would require further efforts to
numerically implement the FBST. We shall also investigate the effect of the prior choice in the estimates
of cointegration relations, especially for small samples.
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Appendix A. Computational Resources

The FBST was implemented in all the examples using codes written by the authors in Matlab/
Octave programming language. The results displayed in Tables 3 and 5–9 were obtained using GNU
Octave version 4.4.1. The only package required to run the routines was the statistics package
(version 1.4.1), necessary to simulate vectors of random variables from the distributions mentioned in
the text. The codes are briefly described at https://www.ime.usp.br/~jstern/software/, where they
can be freely downloaded.

The original data sets used in the examples presented in this work can be obtained from the
following sources:

1. Table 3: fourteen U.S. economic time series used by [23]. Available at the R library urca, where it
is named “npext”.

2. Example 1: the original series used in [44,45] are available at https://physionet.org/content/chbmit/
1.0.0/. The data for the subject analyzed in Example 1 is from file chb01_03.edf, found inside
folder chb01. To obtain Tables 5 and 6, the data were transformed as described in Example 1.

https://www.ime.usp.br/~jstern/software/
https://physionet.org/content/chbmit/1.0.0/
https://physionet.org/content/chbmit/1.0.0/
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3. Example 2: the original data set used in [47] is available at https://climexp.knmi.nl/NCEPData/
ghcn_cams_05.nc, provided by the Global Historical Climatology Network (GHCN)/Climate
Anomaly Monitoring System (CAMS). The data set studied here is the 2 m temperature analysis
(0.5 × 0.5) data, a high resolution (0.5 × 0.5 degrees in latitude and longitude) global land surface
temperature data set covering the period 1949 to near present, in our case May 2020.

4. Example 3: the original data set with four macroeconomic series used by [2] to estimate the
money demand of Finland is available in the R library urca with the name “finland”.

5. Example 4: the original data used in [49] can be downloaded from https://www.ime.usp.br/
~jstern/software/.

Appendix B. Non-Standard Distributions Used in This Article

Appendix B.1. Inverse-Gamma

The probability density function of the Inverse-Gamma distribution is given

f0(x | a, b) =
ba

Γ(a)
·
(

1
x

)a+1
exp

(
− b

x

)
for x > 0 and zero, otherwise. The parameters a and b are both positive real numbers and Γ is the
gamma function.

Appendix B.2. Matrix Normal

The probability density function of the random matrix X with dimensions p× q that follows the
matrix normal distribution MNp×q(M, U, V) has the form:

f1(X | M, U, V) =
exp

(
− 1

2 tr
[
V−1(X−M)′U−1(X−M)

])
(2π)pq/2|V|p/2|U|q/2

where M ∈ Rp×q, U ∈ Rp×p and V ∈ Rq×q, being U and V symmetric positive semidefinite matrices.
The matrix normal distribution can be characterized by the multivariate normal distribution as follows:
X ∼ MNp×q(M, U, V) if and only if vec(X) ∼ Npq(vec(M), V⊗U), where ⊗ denotes the Kronecker
product and vec the vectorization of M.

Appendix B.3. Inverse-Wishart

The probability density function of the Inverse-Wishart distribution is

f2(x | Λ, ν) =
|Λ|ν/2

2νp/2Γp(
ν
2 )
|x|−(ν+p+1)/2 exp

[
−1

2
tr(Λx−1)

]
where x and Λ are p× p positive-definite matrices, and Γp is the multivariate gamma function. Notice
that we may also write the same density with tr(x−1Λ) inside the exponential function, as would be
convenient in our implementation of the Gibbs sampler in Section 5.

Appendix C. Heuristic Proof of Johansen’s Procedure

The goal of this appendix is to provide a brief heuristic explanation of the procedure, discussed in
Section 5 that finds the maximum of posterior (17) subject to the hypothesis that matrix Π has reduced
rank r, 0 ≤ r ≤ n. The procedure is based on the algorithm proposed in [2,50] to maximize a Gaussian
likelihood under the same assumption (reduced rank of matrix Π). The formal proof of Johansen’s
algorithm can be found in [51], chapter 20. As mentioned in Section 5, Johansen’s algorithm can be
applied to the posterior (17) since this distribution is very close to a (multivariate) Gaussian likelihood.

https://climexp.knmi.nl/NCEPData/ghcn_cams_05.nc
https://climexp.knmi.nl/NCEPData/ghcn_cams_05.nc
https://www.ime.usp.br/~jstern/software/
https://www.ime.usp.br/~jstern/software/
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The first step of the algorithm involves “concentrating” the posterior, i.e., to assume Ω and Π are
given and maximize the posterior with respect to all the other parameters in Θ. Hence, let γ denote the
matrix η except for matrix Π, i.e., γ ′ =

[
c Φ′0 Γ′1 . . . Γ′p−1

]
. The concentrated log-posterior, denoted

byM, is found by replacing γ with γ̂(Π) in (17):

M(Π, Ω | y) = ln[g(γ̂(Π); Π, Ω | y)] = C +
(T + n + 1)

2
ln |Ω−1| −

{
− 1

2
· tr[Ω−1(Û−ΠV̂)′(Û−ΠV̂)]

}
(A1)

where C is a constant that depends on T, n and y. The strategy behind concentrating the posterior is
that, if we can find the values Ω̂ and Π̂ that maximizeM, then these same values, along with γ̂(Π̂),
will maximize (17) under the constraint rank(Π) = r. Carrying the concentration on one step further,
we can find the value of Ω that maximizes (A1) assuming Π known, giving

Ω̂(Π) =
1

T + n + 1
· (Û−ΠV̂)′(Û−ΠV̂).

To evaluate the concentrated log-posterior at Ω̂(Π), notice that

tr
[
Ω̂(Π)−1(Û−ΠV̂)′(Û−ΠV̂)

]
= tr[(T + n + 1)In] = n(T + n + 1)

and, therefore, denoting byM∗ this new concentrated log-posterior, we have

M∗(Π | y) = C +
(T + n + 1)n

2
− (T + n + 1)

2
ln
∣∣∣∣ 1
T + n + 1

(Û−ΠV̂)′(Û−ΠV̂)

∣∣∣∣ (A2)

= C +
(T + n + 1)n

2
− (T + n + 1)

2
ln
∣∣∣∣ T
T + n + 1

· 1
T
(Û−ΠV̂)′(Û−ΠV̂)

∣∣∣∣ (A3)

= C +
(T + n + 1)n

2
− (T + n + 1)

2
ln
[(

T
T + n + 1

)n
·
∣∣∣∣ 1
T
(Û−ΠV̂)′(Û−ΠV̂)

∣∣∣∣] (A4)

= K− (T + n + 1)
2

· ln
∣∣∣∣ 1
T
(Û−ΠV̂)′(Û−ΠV̂)

∣∣∣∣ (A5)

where K is a new constant depending only on T, n and y. Equation (A5) represents the maximum
value one can achieve for the log-posterior for any given matrix Π. Thus, maximizing the posterior
comes down to choosing Π so as to minimize the determinant∣∣∣∣ 1

T
(Û−ΠV̂)′(Û−ΠV̂)

∣∣∣∣
subject to the constraint rank(Π) = r. The solution of this problem demands the analysis of the sample
covariance matrices of the OLS residuals Û and V̂ and here we only present the final expression for
the maximum value achieved for the log-posterior, denoted `∗ in Section 5:

`∗ = K− (T + n + 1)
2

· ln |Σ̂UU| −
T + n + 1

2
·

r

∑
i=1

ln(1− λ̂i). (A6)

Chapter 20 of [51] provides the formal derivation of (A6).
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