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Abstract: Predictive models play a central role in decision making. Penalized regression approaches,
such as least absolute shrinkage and selection operator (LASSO), have been widely used to construct
predictive models and explain the impacts of the selected predictors, but the estimates are typically
biased. Moreover, when data are ultrahigh-dimensional, penalized regression is usable only after
applying variable screening methods to downsize variables. We propose a stepwise procedure for
fitting generalized linear models with ultrahigh dimensional predictors. Our procedure can provide
a final model; control both false negatives and false positives; and yield consistent estimates, which
are useful to gauge the actual effect size of risk factors. Simulations and applications to two clinical
studies verify the utility of the method.

Keywords: estimation consistency; generalized linear models; high dimensional predictors; model
selection; stepwise regression

1. Introduction

In the era of precision medicine, constructing interpretable and accurate predictive models,
based on patients’ demographic characteristics, clinical conditions and molecular biomarkers, has
been crucial for disease prevention, early diagnosis and targeted therapy [1]. When the number of
predictors is moderate, penalized regression approaches such as least absolute shrinkage and selection
operator (LASSO) by [2] have been used to construct predictive models and explain the impacts of
the selected predictors. However, in ultrahigh dimensional settings where p is in the exponential
order of n, penalized methods may incur computational challenges [3], may not reach globally optimal
solutions and often generate biased estimates [4]. Sure independence screening (SIS) proposed by [5]
has emerged as a powerful tool for modeling ultrahigh dimensional data. However, the method
relies on a partial faithfulness assumption, which stipulates that jointly important variables must
be marginally important, an assumption that may not be always realistic. To relieve this condition,
some iterative procedures, such as ISIS [5], have been adopted to repeatedly screen variables based
on the residuals from the previous iterations, but with heavy computation and unclear theoretical
properties. Conditional screening approaches [see, e.g., [6]] have, to some extent, addressed the
challenge. However, screening methods do not directly generate a final model, and post-screening
regularization methods, such as LASSO, are recommended by [5] to produce a final model.

For generating a final predictive model in ultrahigh dimensional settings, recent years have seen
a surging interest of performing forward regression, an old technique for model selection; see [7–9],
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among many others. Under some regularity conditions and with some proper stopping criteria,
forward regression can achieve screening consistency and sequentially select variables according to
metrics such as AIC, BIC or R2. Closely related to forward selection also, is least angle regression
(LARS) [10], a widely used model selection algorithm for high-dimensional models. In the generalized
linear model setting [11,12], proposed differential geometrical LARS (dgLARS) based on a differential
geometrical extension of LARS.

However, these methods have drawbacks. First, once a variable is identified by the forward
selection, it is not removable from the list of selected variables. Hence, false positives are unavoidable
without a systematic elimination procedure. Second, most of the existing works focus on variable
selection and are silent with respect to estimation accuracy.

To address the first issue, some works have been proposed to add backward elimination steps
once forward selection is accomplished, as backward elimination may further eliminate false positives
from the variables selected by forward selection. For example, ref. [13,14] proposed a stepwise selection
for linear regression models in high-dimensional settings and proved model selection consistency.
However, it is unclear whether the results hold for high-dimensional generalized linear models
(GLMs); Ref. [15] proposed a similar stepwise algorithm in high-dimensional GLM settings, but with
no theoretical properties on model selection. Moreover, none of the relevant works have touched upon
the accuracy of estimation.

We extend a stepwise regression method to accommodate GLMs with high-dimensional predictors.
Our method embraces both model selection and estimation. It starts with an empty model or
pre-specified predictors, scans all features and sequentially selects features, and conducts backward
elimination once forward selection is completed. Our proposal controls both false negatives and false
positives in high dimensional settings: the forward selection steps recruit variables in an inclusive
way by allowing some false positives for the sake of avoiding false negatives, while the backward
selection steps eliminate the potential false positives from the recruited variables. We use different
stopping criteria in the forward and backward selection steps, to control the numbers of false positives
and false negatives. Moreover, we prove that, under a sparsity assumption of the true model, the
proposed approach can discover all of the relevant predictors within a finite number of steps, and
the estimated coefficients are consistent, a property still unknown to the literature. Finally, our GLM
framework enables our work to accommodate a wide range of data types, such as binary, categorical
and count data.

To recap, our proposed method distinguishes from the existing stepwise approaches in high
dimensional settings. For example, it improves [13,14] by extending the work to a more broad GLM
setting and [15] by establishing the theoretical properties.

Compared with the other variable selection and screening works, our method produces a final
model in ultrahigh dimensional settings, without applying a pre-screening step which may produce
unintended false negatives. Under some regularity conditions, the method identifies or includes the
true model with probability going to 1. Moreover, unlike the penalized approaches such as LASSO,
the coefficients estimated by our stepwise selection procedure in the final model will be consistent,
which are useful for gauging the real effect sizes of risk factors.

2. Method

Let (Xi, Yi), i = 1, . . . , n, denote n independently and identically distributed (i.i.d.) copies of
(X, Y). Here, X = (1, X1, . . . , Xp)T is a (p+ 1)-dimensional predictor vector with X0 = 1 corresponding
to the intercept term, and Y is an outcome. Suppose that the conditional density of Y, given X, belongs
to a linear exponential family:

π(Y | X) = exp{YXTβ− b(XTβ) +A(Y)}, (1)
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where β = (β0, β1, . . . , βp)T is the vector of coefficients; β0 is the intercept; and A(·) and b(·) are
known functions. Model (1), with a canonical link function and a unit dispersion parameter, belongs
to a larger exponential family [16]. Further, b(·) is assumed twice continuously differentiable with a
non-negative second derivative b′′(·). We use µ(·) and σ(·) to denote b′(·) and b′′(·), i.e., the mean
and variance functions, respectively. For example, b(θ) = log(1 + exp(θ)) in a logistic distribution
and b(θ) = exp(θ) in a Poisson distribution.

Let L(u, v) = uv − b(u) and En{ f (ξ)} = n−1 ∑n
i=1 f (ξi) denote the mean of { f (ξi)}n

i=1 for a
sequence of i.i.d. random variables ξi (i = 1, . . . , n) and a non-random function f (·). Based on the i.i.d.
observations, the log-likelihood function is

`(β) = n−1
n

∑
i=1

L(XT
i β, Yi) = En{L(XTβ, Y)}. (2)

We use β∗ = (β∗0, β∗1, . . . , β∗p)T to denote the true values of β. Then the true model isM = {j : β∗j 6=
0, j ≥ 1} ∪ {0}, which consists of the intercept and all variables with nonzero effects. Overarching
goals of ultra-high dimensional data analysis are to identifyM and estimate β∗j for j ∈ M. While
most of the relevant literature [8,9] is on estimatingM, this work is to accomplish both identification
ofM and estimation of β∗j.

When p is in the exponential order of n, we aim to generate a predictive model that contains the
true model with high probability, and provide consistent estimates of regression coefficients. We further
introduce the following notation. For a generic index set S ⊂ {0, 1, . . . , p} and a (p + 1)-dimensional
vector A, we use Sc to denote the complement of a set S and AS = {Aj : j ∈ S} to denote the subvector
of A corresponding to S. For instance, if S = {2, 3, 4}, then XiS = (Xi2, Xi3, Xi4)

T. Moreover, denote
by `S(βS) = En{L(XT

S βS, Y)} the log-likelihood of the regression model of Y on XS and denote by
β̂S the maximizer of `S(βS). Under model (1), we elaborate on the idea of stepwise (details in the
supplementary materials) selection, consisting of the forward and backward stages.

Forward stage: We start with F0, a set of variables that need to be included according to some a priori
knowledge, such as clinically important factors and conditions. If no such information is available, F0

is set to be {0}, corresponding to a null model. We sequentially add covariates as follows:

F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fk,

where Fk ⊂ {0, 1, . . . , p} is the index set of the selected covariates upon completion of the kth step,
with k ≥ 0. At the (k + 1)th step, we append new variables to Fk one at a time and refit GLMs: for
every j ∈ Fc

k , we let Fk,j = Fk ∪ {j}, obtain β̂Fk,j by maximizing `Fk,j(βFk,j), and compute the increment
of log-likelihood,

`Fk,j(β̂Fk,j)− `Fk (β̂Fk ).

Then the index of a new candidate variable is determined to be

jk+1 = arg max
j∈Fc

k

`Fk,j(β̂Fk,j)− `Fk (β̂Fk ).

Additionally, we update Fk+1 = Fk ∪ {jk+1}. We then need to decide whether to stop at the kth
step or move on to the (k + 1)th step with Fk+1. To do so, we use the following EBIC criterion:

EBIC(Fk+1) = −2`Fk+1(β̂Fk+1) + |Fk+1|n−1(log n + 2η1 log p), (3)

where the second term is motivated by [17] and |F| denotes the cardinality of a set F.
The forward selection stops if EBIC(Fk+1) > EBIC(Fk). We denote the stopping step by k∗ and

the set of variables selected so far by Fk∗ .
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Backward stage: Upon the completion of forward stage, backward elimination, starting with B0 = Fk∗ ,
sequentially drops covariates as follows:

B0 ⊃ B1 ⊃ B2 ⊃ · · · ⊃ Bk,

where Bk is the index set of the remaining covariates upon the completion of the kth step of the
backward stage, with k ≥ 0. At the (k + 1)th backward step and for every j ∈ Bk, we let Bk/j = Bk \ {j},
obtain β̂Bk/j by maximizing `(βBk/j), and calculating the difference of the log-likelihoods between these
two nested models:

`Bk (β̂Bk )− `Bk/j(β̂Bk/j).

The variable that can be removed from the current set of variables is indexed by

jk+1 = arg min
j∈Bk

`Bk (β̂Bk )− `Bk/j(β̂Bk/j).

Let Bk+1 = Bk \ {jk+1}. We determine whether to stop at the kth step or move on to the (k + 1)th
step of the backward stage according to the following BIC criterion:

BIC(Bk+1) = −2`Bk+1(β̂Bk+1) + η2n−1|Bk+1| log n. (4)

If BIC(Bk+1) > BIC(Bk), we end the backward stage at the kth step. Let k∗∗ denote the stopping
step and we declare the selected model Bk∗∗ to be the final model. Thus, M̂ = Bk∗∗ is the estimate
ofM. As the backward stage starts with the k∗ variables selected by forward selection, k∗∗ cannot
exceed k∗.

A strength of our algorithm, termed STEPWISE hereafter, is the added flexibility with η1 and η2

in the stopping criteria for controlling the false negatives and positives. For example, a smaller value
of η1 close to zero in the forward selection step will likely include more variables, and thus incur more
false positives and less false negatives, whereas a larger value of η1 will recruit too few variables and
cause too many false negatives. Similarly, in the backward selection step, a large η2 would eliminate
more variables and therefore further reduce more false positives, and vice versa for a small η2. While
finding optimal η1 and η2 is not trivial, our numerical experiences suggest a small η1 and a large η2

may well balance the false negatives and positives. When η2 = 0, no variables can be dropped after
forward selection; hence, our proposal includes forward selection as a special case.

Moreover, [8] proposed a sequentially conditioning approach based on offset terms that absorb
the prior information. However, our numerical experiments indicate that the offset approach may be
suboptimal compared to our full stepwise optimization approach, which will be demonstrated in the
simulation studies.

3. Theoretical Properties

With a column vector v, let ‖v‖q denote the Lq-norm for any q ≥ 1. For simplicity, we denote the
L2-norm of v by ‖v‖, and denote vvT by v⊗2. We use C1, C2, . . . , to denote some generic constants that
do not depend on n and may change from line to line. The following regularity conditions are set.

1. There exist a positive integer q satisfying |M| ≤ q and q log p = o(n1/3) and a constant K > 0
such that sup|S|≤q ‖β∗S‖1 ≤ K, where β∗S = arg maxβS

E [`S(βS)] is termed the least false value of
model S.

2. ‖X‖∞ ≤ K. In addition, E(Xj) = 0 and E(X2
j ) = 1 for j ≥ 1.

3. Let εi = Yi − µ(βT
∗Xi). There exists a positive constant M such that the Cramer condition holds,

i.e., E[|εi|m] ≤ m!Mm for all m ≥ 1.
4. |σ(a)− σ(b)| ≤ K|a− b| and σmin := inf|t|≤K3 |b′′(t)| is bounded below.
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5. There exist two positive constants, κmin and κmax such that 0 < κmin < Λ
(

E
(

X⊗2
S

))
< κmax < ∞,

uniformly in S ⊂ {0, 1, . . . , p} satisfying |S| ≤ q, where Λ(A) is the collection of all eigenvalues
of a square matrix A.

6. minS:M6⊆S,|S|≤q DS > Cn−α for some constants C > 0 and α > 0 that satisfies qn−1+4α log p→ 0,
where DS = maxj∈S c∩M

∣∣E [(µ(βT
∗X)− µ(β∗TS XS)

)
Xj
]∣∣.

Condition (1), as assumed in [8,18], is an alternative to the Lipschitz assumption [5,19]. The
bound of the model size allowed in the selection procedure or q is often required in model-based
screening methods see, e.g., [8,20–22]. The bound should be large enough so that the correct model
can be included, but not too large; otherwise, excessive noise variables would be included, leading
to unstable and inconsistent estimates. Indeed, Conditions (1) and (6) reveal that the range of q
depends on the true model size |M|, the minimum signal strength, n−α and the total number of
covariates, p. The upper bound of q is o((n1−4α/ log p) ∧ (n1/3/ log p)), ensuring the consistency of
EBIC [17]. Condition (1) also implies that the parameter space under consideration can be restricted
to B := {β ∈ Rp+1 : ‖β‖1 ≤ K2}, for any model S with |S| ≤ q. Condition (2), as assumed in [23,24],
reflects that data are often standardized at the pre-processing stage. Condition (3) ensures that Y has a
light tail, and is satisfied by Gaussian and discrete data, such as binary and count data [25]. Condition
(4) is satisfied by common GLM models, such as Gaussian, binomial, Poisson and gamma distributions.
Condition (5) represents the sparse Riesz condition [26] and Condition (6) is a strong "irrepresentable"
condition, suggesting thatM cannot be represented by a set of variables that does not include the
true model. It further implies that adding a signal variable to a mis-specified model will increase the
log-likelihood by a certain lower bound [8]. The signal rate is comparable to the conditions required
by the other sequential methods, see, e.g., [7,22].

Theorem 1 develops a lower bound of the increment of the log-likelihood if the true modelM is
not yet included in a selected model S.

Theorem 1. Suppose Conditions (1)–(6) hold. There exists some constant C1 such that with probability at least
1–6exp(−6q log p),

min
S:M6⊆S,|S|<q

{
max
j∈Sc

`S∪{j}(β̂S∪{j})− `S(β̂S)

}
≥ C1n−2α.

Theorem 1 shows that, before the true model is included in the selected model, we can append a
variable which will increase the log-likelihood by at least C1n−2α with probability tending to 1. This
ensures that in the forward stage, our proposed STEPWISE approach will keep searching for signal
variables until the true model is contained. To see this, suppose at the kth step of the forward stage
that Fk satisfies M 6⊆ Fk and |Fk| < q, and let r be the index selected by STEPWISE. By Theorem 1,
we obtain that, for any η1 > 0, when n is sufficiently large,

EBIC(Fk,r)− EBIC(Fk) = −2`Fk,r (β̂Fk,r ) + (|Fk|+ 1)n−1(log n + 2η1 log p)

−
[
−2`Fk (β̂Fk ) + |Fk|n−1(log n + 2η1 log p)

]
≤ −2C1n−2α + n−1(log n + 2η1 log p) < 0,

with probability at least 1 − 6 exp(−6q log p), where the last inequality is due to Condition (6).
Therefore, with high probability the forward stage of STEPWISE continues as long as M 6⊆
Fk and |Fk| < q. We next establish an upper bound of the number of steps in the forward stage
needed to include the true model.
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Theorem 2. Under the same conditions as in Theorem 1 and if

max
S:|S|≤q

{
max

j∈S c∩Mc

∣∣∣E [{Y− µ(β∗TS XS)
}

Xj

]∣∣∣} = o(n−α),

then there exists some constant C2 > 2 such thatM⊂ Fk, for some Fk in the forward stage of STEPWISE and
k ≤ C2|M|, with probability at least 1− 18 exp(−4q log p).

The "max" condition, as assumed in Section 5.3 of [27], relaxes the partial orthogonality
assumption that XMc are independent of XM, and ensures that with probability tending to 1, appending
a signal variable increases log-likelihood more than adding a noise variable does, uniformly over all
possible models S satisfyingM 6⊆ S, |S| < q. This entails that the proposed procedure is much more
likely to select a signal variable, in lieu of a noise variable, at each step. Since EBIC is a consistent model
selection criterion [28,29], the following theorem guarantees termination of the proposed procedure
withM⊂ Fk for some k.

Theorem 3. Under the same conditions as in Theorem 2 and ifM 6⊂ Fk−1 andM ⊂ Fk, the forward stage
stops at the kth step with probability going to 1− exp(−3q log p).

Theorem 3 ensures that the forward stage of STEPWISE will stop within a finite number of steps
and will cover the true model with probability at least 1− q exp(−3q log p) ≥ 1− exp(−2q log p). We
next consider the backward stage and provide a probability bound of removing a signal from a set in
which the set of true signalsM is contained.

Theorem 4. Under the same conditions as in Theorem 2, BIC(S\{r})− BIC(S) > 0 uniformly over r ∈ M
and S satisfyingM⊂ S and |S| ≤ q, with probability at least 1− 6 exp(−6q log p).

Theorem 4 indicates that with probability at 1− 6 exp(−6q log p), BIC would decrease when
removing a signal variable from a model that contains the true model. That is, with high probability,
back elimination is to reduce false positives.

Recall that Fk∗ denotes the model selected at the end of the forward selection stage. By Theorem 2,
M⊂ Fk∗ with probability at least 1− 18 exp(−4q log p). Then Theorem 4 implies that at each step of
the backward stage, a signal variable will not be removed from the model with probability at least
1− 6 exp(−6q log p). By Theorem 2, |Fk∗ | ≤ C2|M|. Thus, the backward elimination will carry out
at most (C2 − 1)|M| steps. Combining results from Theorems 2 and 3 yields that M ⊂ M̂ with
probability at least 1− 18 exp(−4q log p)− 6(C2 − 1)|M| exp(−6q log p). Let β̂ be the estimate of β∗
in model (1) at the termination of STEPWISE. By convention, the estimates of the coefficients of the
unselected covariates are 0.

Theorem 5. Under the same conditions as in Theorem 2, we have thatM⊆ M̂ and

‖β̂− β∗‖ → 0

in probability.

The theorem warrants that the proposed STEPWISE yields consistent estimates, a property not
shared by many regularized methods, including LASSO. Our later simulations verified this. Proof of
main theorems and lemmas are provided in Appendix A.

4. Simulation Studies

We compared the proposal with the other competing methods, including the penalized methods,
such as least absolute shrinkage and selection operator (LASSO); the differential geometric least angle



Entropy 2020, 22, 965 7 of 28

regression (dgLARS) [11,12]; the forward regression (FR) approach [7]; the sequentially conditioning
(SC) approach [8]; and the screening methods, such as sure independence screening (SIS) [5], which
is popular in practice. As SIS does not directly generate a predictive model, we applied LASSO for
the top [n/ log(n)] variables chosen by SIS and denoted the procedure by SIS+LASSO. As the FR, SC
and STEPWISE approaches involve forward searching and to make them comparable, we applied the
same stopping rule, for example, Equation (3) with the same γ, to their forward steps. In particular,
the STEPWISE approach, with η1 = γ and η2 = 0, is equivalent to FR and asymptotically equivalent
to SC. By varying γ in FR and SC between γL and γH , we explored the impact of γ on inducing false
positives and negatives. In our numerical studies, we fixed γH = 10 and set γL = η1. To choose η1 and
η2 in (3) and (4) in STEPWISE, we performed 5-fold cross-validation to minimize the mean squared
prediction error (MSPE), and reported the results in Table 1. Since the proposed STEPWISE algorithm
uses the (E)BIC criterion, for a fair comparison we chose the tuning parameter in dgLARS by using
the BIC criterion as well, and coined the corresponding approach as dgLARS(BIC). The regularization
parameter in LASSO was chosen via the following two approaches: (1) giving the smallest BIC for the
models on the LASSO path, denoted by LASSO(BIC); (2) using the one-standard-error rule, denoted by
LASSO(1SE), which chooses the most parsimonious model whose error is no more than one standard
error above the error of the best model in cross-validation [30].

Table 1. The values of η1 and η2 used in the simulation studies.

Normal Model Binomial Model Poisson Model
Example 1 (0.5, 3) (0.5, 3) (1, 3)
Example 2 (0.5, 3) (1, 3) (1, 3)
Example 3 (1, 3) (0.5, 3) (0.5, 1)
Example 4 (1, 3.5) (0, 1) (1, 3)
Example 5 (0.5, 3) (0.5, 2) (0.5, 3)

Note: values for η1 and η2 were searched on the grid {0, 0.25, 0.5, 1} and {1, 2, 3, 3.5, 4, 4.5, 5}, respectively.

Denote by Xi = (Xi1, . . . , Xip)
T and β = (β1, . . . , βp)T, the covariate vector for subject i (1, . . . , n)

and the true coefficient vector. The following five examples generated XT
i β, the inner product of the

coefficient and covariate vectors for each individual, which were used to generate outcomes from the
normal, binomial and Poisson models.

Example 1. For each i,

cXT
i β = c×

(
p0

∑
j=1

β jXij +
p

∑
j=p0+1

β jXij

)
, i = 1, . . . , n,

where β j = (−1)Bj (4log n/
√

n + |Zj|), for j = 1, . . . , p0 and β j =0 otherwise Bj was a binary random variable
with P(Bj = 1) = 0.4 and Zj was generated by a standard normal distribution; p0 = 8; Xijs were independently
generated from a standardized exponential distribution, that is, exp(1)− 1. Here and also in the other examples,
c (specified later) controls the signal strengths.

Example 2. This scenario is the same as Example 1 except that Xij was independently generated from a
standard normal distribution.

Example 3. For each i,

cXT
i β = c×

(
p0

∑
j=1

β jXij +
p

∑
j=p0+1

β jX∗ij

)
, i = 1, . . . , n,
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where β j = 2j for 1 ≤ j ≤ p0 and p0 = 5. We simulated every component of Zi = (Zij) ∈ Rp and Wi =
(Wij) ∈ Rp independently from a standard normal distribution. Next, we generated Xi according to Xij =

(Zij + Wij)/
√

2 for 1 ≤ j ≤ p0 and X∗ij = (Zij +
p0

∑
j′=1

Zij′)/2 for p0 < j ≤ p.

Example 4. For each i,

cXT
i β = c×

(
500

∑
j=1

β jXij +
p

∑
j=501

β jXij

)
, i = 1, . . . , n,

where the first 500 Xijs were generated from the multivariate normal distribution with mean 0 and a covariance
matrix with all of the diagonal entries being 1 and cov(Xij, Xij′) = 0.5|j−j′ | for 1 ≤ j, j′ ≤ p. The remaining
p− 500 Xijs were generated through the autoregressive processes with Xi,501 ∼ Unif(-2, 2), Xij = 0.5 Xi,j−1
+ 0.5 X∗ij, for j = 502, . . . , p, where X∗ij ∼ Unif(-2, 2) were generated independently. The coefficients β j for

j = 1, . . . , 7, 501, . . . , 507 were generated from (−1)Bj (4log n/
√

n + |Zj|), where Bj was a binary random
variable with P(Bj = 1) = 0.4 and Zj was from a standard normal distribution. The remaining β j were zeros.

Example 5. For each i,

cXT
i β = c× (−0.5Xi1 + Xi2 + 0.5Xi,100) , i = 1, . . . , n,

where Xi were generated from a multivariate normal distribution with mean 0 and a covariance matrix with all
of the diagonal entries being 1 and cov(Xij, Xij′) = 0.9|j−j′ | for 1 ≤ j, j’ ≤ p. All of the coefficients were zero
except for Xi1, Xi2 and Xi,100.

Examples 1 and 3 were adopted from [7], while Examples 2 and 4 were borrowed from [5,15],
respectively. We then generated the responses from the following three models.

Normal model: Yi = cXT
i β + εi with εi ∼ N(0, 1).

Binomial model: Yi ∼ Bernoulli( exp(cXT
i β)/{1 + exp(cXT

i β)}).
Poisson model: Yi ∼ Poisson( exp(cXT

i β)).

We considered n = 400 and p = 1000 throughout all of the examples. We specified the magnitude
of the coefficients in the GLMs with a constant multiplier, c. For Examples 1–5, this constant was set,
respectively for the normal, binomial and Poisson models, to be: (1, 1, 0.3), (1, 1.5, 0.3), (1, 1, 0.1),
(1, 1.5, 0.3) and (1, 3, 2). For each parameter configuration, we simulated 500 independent data sets.
We evaluated the performances of the methods by the criteria of true positives (TP), false positives
(FP), the estimated probability of including the true models (PIT), the mean squared error (MSE) of β̂

and the mean squared prediction error (MSPE). To compute the MSPE, we randomly partitioned the
samples into the training (75%) and testing (25%) sets. The models obtained from the training datasets
were used to predict the responses in the testing datasets. Tables 2–4 report the average TP, FP, PIT,
MSE and MSPE over 500 datasets along with the standard deviations. The findings are summarized
below.

First, the proposed STEPWISE method was able to detect all the true signals with nearly zero FPs.
Specifically, in all of the Examples, STEPWISE outperformed the other methods by detecting more TPs
with fewer FPs, whereas LASSO, SIS+LASSO and dgLARS included much more FPs.

Second, though a smaller γ in FR and SC led to the inclusion of all TPs with a PIT close to 1, it
incurred more FPs. On the other hand, a larger γ may eliminate some TPs, resulting in a smaller PIT
and a larger MSPE.

Third, for the normal model, the STEPWISE method yielded an MSE close to 0, the smallest
among all the competing methods. The binary and Poisson data challenged all of the methods, and
the MSEs for all the methods were non-negligible. However, the STEPWISE method still produced
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the lowest MSE. The results seemed to verify the consistency of β̂, which distinguished the proposed
STEPWISE method from the other regularized methods and highlighted its ability to provide a more
accurate means to characterize the effects of high dimensional predictors.

Table 2. Normal model.

Example Method TP FP PIT MSE (×10−4) MSPE
1 (p0 = 8) LASSO(1SE) 8.00 (0.00) 5.48 (6.61) 1.00 (0.00) 2.45 1.148

LASSO(BIC) 8.00 (0.00) 2.55 (2.48) 1.00 (0.00) 2.58 1.172
SIS+LASSO(1SE) 8.00 (0.00) 6.59 (4.22) 1.00 (0.00) 1.49 1.042
SIS+LASSO(BIC) 8.00 (0.00) 6.04 (3.33) 1.00 (0.00) 1.37 1.025
dgLARS(BIC) 8.00 (0.00) 3.52(2.53) 1.00 (0.00) 2.25 1.130
SC (γL) 8.00 (0.00) 3.01 (1.85) 1.00 (0.00) 1.09 0.895
SC (γH) 7.60 (1.59) 0.00 (0.00) 0.94 (0.24) 14.56 5.081
FR (γL) 8.00 (0.00) 2.96 (2.04) 1.00 (0.00) 1.08 0.896
FR (γH) 7.88 (0.84) 0.00 (0.00) 0.98 (0.14) 3.74 2.040
STEPWISE 8.00 (0.00) 0.00 (0.00) 1.00 (0.00) 0.21 0.972

2 (p0 = 8) LASSO(1SE) 8.00 (0.00) 4.74 (4.24) 1.00 (0.00) 2.46 1.154
LASSO(BIC) 8.00 (0.00) 2.12 (2.02) 1.00 (0.00) 2.62 1.182
SIS+LASSO 7.99 (0.10) 6.84 (4.57) 0.99 (0.10) 1.65 1.058
SIS+LASSO(BIC) 7.99 (0.10) 6.11 (3.85) 0.99 (0.10) 1.56 1.041
dgLARS(BIC) 8.00 (0.00) 3.26(2.62) 1.00 (0.00) 2.28 1.138
SC (γL) 8.00 (0.00) 2.73 (1.53) 1.00 (0.00) 0.98 0.901
SC (γH) 7.30 (2.11) 0.00 (0.00) 0.90 (0.30) 23.70 6.397
FR (γL) 8.00 (0.00) 2.45 (1.65) 1.00 (0.00) 0.92 0.907
FR (γH) 7.94 (0.60) 0.00 (0.00) 0.99 (0.00) 2.69 2.062
STEPWISE 8.00 (0.00) 0.01 (0.10) 1.00 (0.00) 0.21 0.972

3 (p0 = 5) LASSO(1SE) 5.00 (0.00) 8.24 (2.63) 1.00 (0.00) 3.07 1.084
LASSO(BIC) 5.00 (0.00) 12.33 (3.28) 1.00 (0.00) 27.97 2.398
SIS+LASSO(1SE) 0.97 (0.26) 15.94 (2.93) 0.00 (0.00) 1406.22 76.024
SIS+LASSO(BIC) 0.97 (0.26) 16.20 (2.81) 0.00 (0.00) 1354.54 71.017
dgLARS(BIC) 5.00 (0.00) 53.91 (14.44) 1.00 (0.00) 6.63 0.979
SC (γL) 4.48 (0.50) 0.25 (0.44) 0.48 (0.50) 21.74 3.086
SC (γH) 4.48 (0.50) 0.14 (0.35) 0.48 (0.50) 21.70 2.065
FR (γL) 5.00 (0.00) 0.23 (0.66) 1.00 (0.00) 0.27 0.973
FR (γH) 5.00 (0.00) 0.14 (0.35) 1.00 (0.00) 0.15 0.074
STEPWISE 5.00 (0.00) 0.03 (0.22) 1.00 (0.00) 0.18 0.976

4 (p0 = 14) LASSO(1SE) 14.00 (0.00) 29.84 (15.25) 1.00 (0.00) 13.97 1.148
LASSO(BIC) 13.94 (0.24) 4.92 (5.54) 0.94 (0.24) 38.69 1.995
SIS+LASSO(1SE) 11.44 (1.45) 15.19 (7.29) 0.05 (0.21) 133.38 4.714
SIS+LASSO(BIC) 11.35 (1.51) 10.98 (7.19) 0.05 (0.21) 137.06 4.940
dgLARS(BIC) 14.00 (0.00) 13.93 (6.68) 1.00 (0.00) 18.08 1.329
SC (γL) 13.68 (0.60) 0.86 (0.62) 0.75 (0.44) 11.80 1.148
SC (γH) 4.20 (2.80) 0.03 (0.17) 0.03 (0.17) 407.86 6.567
FR (γL) 14.00 (0.00) 0.50 (0.76) 1.00 (0.00) 1.23 0.940
FR (γH) 4.99 (3.07) 0.00 (0.00) 0.03 (0.17) 360.65 6.640
STEPWISE 14.00 (0.00) 0.00 (0.00) 1.00 (0.00) 0.91 0.958

5 (p0 = 3) LASSO(1SE) 3.00 (0.00) 22.76 (9.05) 1.00 (0.00) 1.01 0.044
LASSO(BIC) 3.00 (0.00) 8.29 (3.23) 1.00 (0.00) 1.75 0.054
SIS+LASSO(1SE) 3.00 (0.00) 8.40 (3.10) 1.00 (0.00) 0.44 0.041
SIS+LASSO(BIC) 3.00 (0.00) 9.58 (3.36) 1.00 (0.00) 0.29 0.040
dgLARS(BIC) 3.00 (0.00) 13.39 (4.94) 1.00 (0.00) 1.28 0.048
SC (γL) 3.00 (0.00) 1.47 (0.67) 1.00 (0.00) 0.03 0.038
SC (γH) 2.01 (0.10) 0.01 (0.10) 0.01 (0.10) 4.51 0.008
FR (γL) 3.00 (0.00) 1.21 (1.01) 1.00 (0.00) 0.03 0.038
FR ( γH) 3.00 (0.00) 0.00 (0.00) 1.00 (0.00) 0.01 0.003
STEPWISE 3.00 (0.00) 0.00 (0.00) 1.00 (0.00) 0.01 0.039

Note: TP, true positives; FP, false positives; PIT, probability of including all true predictors in the selected
predictors; MSE, mean squared error of β̂; MSPE, mean squared prediction error; numbers in the parentheses
are standard deviations; LASSO(BIC), LASSO with the tuning parameter chosen to give the smallest BIC for the
models on the LASSO path; LASSO(1SE), LASSO with the tuning parameter chosen by the one-standard-error
rule; SIS+LASSO(BIC), sure independence screening by [5] followed by LASSO(BIC); SIS+LASSO(1SE), sure
independence screening followed by LASSO(1SE); dgLARS(BIC), differential geometric least angle regression
by [11,12] with the tuning parameter chosen to give the smallest BIC on the dgLARS path; SC(γ), sequentially
conditioning approach by [8]; FR(γ), forward regression by [7]; STEPWISE, the proposed method; in FR and
SC, the smaller and large values of γ are presented as γL and γH , respectively; p0 denotes the number of true
signals; LASSO(1SE), LASSO(BIC), SIS and dgLARS were conducted via R packages glmnet [31], ncvreg [32],
screening [33] and dglars [34], respectively

.
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Table 3. Binomial model.

Example Method TP FP PIT MSE MSPE
1 (p0 = 8) LASSO(1SE) 7.99 (0.10) 4.77 (5.56) 0.99 (0.10) 0.021 0.104

LASSO(BIC) 7.99 (0.10) 3.19 (2.34) 0.99 (0.10) 0.021 0.104
SIS+LASSO(1SE) 7.94 (0.24) 35.42 (6.77) 0.94 (0.24) 0.119 0.048
SIS+LASSO(BIC) 7.94 (0.24) 16.83 (21.60) 0.94 (0.24) 0.119 0.073
dgLARS(BIC) 8.00 (0.00) 3.27 (2.29) 1.00 (0.00) 0.019 0.102
SC (γL) 8.00 (0.00) 2.81 (1.47) 1.00 (0.00) 0.009 0.073
SC (γH) 1.02 (0.14) 0.00 (0.00) 0.00 (0.00) 0.030 0.028
FR (γL) 8.00 (0.00) 3.90 (2.36) 1.00 (0.00) 0.032 0.066
FR (γH) 2.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.025 0.027
STEPWISE 7.98 (0.14) 0.08 (0.53) 0.98 (0.14) 0.002 0.094

2 (p0 = 8) LASSO(1SE) 7.98 (0.14) 3.29 (2.76) 0.98 (0.14) 0.054 0.073
LASSO(BIC) 7.99 (0.10) 3.84 (2.72) 0.99 (0.10) 0.052 0.067
SIS+LASSO(1SE) 7.92 (0.27) 28.20 (7.31) 0.92 (0.27) 0.038 0.030
SIS+LASSO(BIC) 7.92 (0.27) 9.60 (12.92) 0.92 (0.27) 0.051 0.058
dgLARS(BIC) 7.99 (0.10) 3.94 (2.65) 0.99 (0.10) 0.050 0.067
SC (γL) 7.72 (0.45) 0.39 (0.49) 0.72 (0.45) 0.005 0.063
SC (γH) 1.13 (0.37) 0.00 (0.00) 0.00 (0.00) 0.069 0.044
FR (γL) 7.99 (0.10) 0.66 (0.76) 0.99 (0.10) 0.014 0.051
FR (γH) 2.10 (0.30) 0.00 (0.00) 0.00 (0.00) 0.061 0.033
STEPWISE 7.99 (0.10) 0.02 (0.14) 0.99 (0.10) 0.004 0.056

3 (p0 = 5) LASSO(1SE) 4.51 (0.52) 7.36 (2.57) 0.52 (0.50) 0.155 0.051
LASSO(BIC) 4.98 (0.14) 5.97 (2.25) 0.98 (0.14) 0.118 0.037
SIS+LASSO(1SE) 0.85 (0.46) 10.66 (3.01) 0.00 (0.00) 0.206 0.186
SIS+LASSO(BIC) 0.85 (0.46) 12.10 (3.13) 0.00 (0.00) 0.197 0.185
dgLARS(BIC) 4.92 (0.27) 16.21 (6.21) 0.92 (0.27) 0.112 0.035
SC (γL) 4.32 (0.49) 0.47 (0.50) 0.33 (0.47) 0.016 0.048
SC (γH) 2.62 (1.34) 0.42 (0.50) 0.00 (0.00) 0.104 0.066
FR (γL) 4.98 (0.14) 0.67 (0.79) 0.98 (0.14) 0.020 0.033
FR (γH) 2.98 (0.95) 0.40 (0.49) 0.00 (0.00) 0.087 0.043
STEPWISE 4.97 (0.17) 0.04 (0.28) 0.97 (0.17) 0.014 0.034

4 (p0 = 14) LASSO(1SE) 9.96 (1.89) 6.78 (7.92) 0.01 (0.01) 0.112 0.107
LASSO(BIC) 9.33 (1.86) 2.79 (2.87) 0.00 (0.00) 0.112 0.118
SIS+LASSO(1SE) 10.03 (1.62) 28.01 (9.54) 0.03 (0.17) 0.098 0.070
SIS+LASSO(BIC) 8.90 (1.99) 5.42 (10.64) 0.01 (0.10) 0.114 0.120
dgLARS(BIC) 9.31 (1.85) 2.84 (2.86) 0.00 (0.00) 0.110 0.117
SC (γL) 9.48 (1.40) 2.35 (2.14) 0.00 (0.00) 0.043 0.070
SC (γH) 1.17 (0.40) 0.00 (0.00) 0.00 (0.00) 0.125 0.049
FR (γL) 11.83 (1.39) 1.58 (1.60) 0.09 (0.29) 0.026 0.048
FR (γH) 2.06 (0.24) 0.00 (0.00) 0.00 (0.00) 0.119 0.032
STEPWISE 11.81 (1.42) 1.52 (1.58) 0.09 (0.29) 0.026 0.048

5 (p0 = 3) LASSO(1SE) 2.00 (0.00) 1.55 (1.76) 0.00 (0.00) 0.008 0.215
LASSO(BIC) 2.00 (0.00) 1.86 (1.57) 0.00 (0.00) 0.008 0.213
SIS+LASSO(1SE) 2.23 (0.42) 10.81 (6.45) 0.23 (0.42) 0.007 0.192
SIS+LASSO(BIC) 2.10 (0.30) 3.60 (4.65) 0.10 (0.30) 0.007 0.206
dgLARS(BIC) 2.00 (0.00) 1.64 (1.49) 0.00 (0.00) 0.008 0.213
SC (γL) 2.27 (0.49) 7.16 (3.20) 0.29 (0.46) 0.060 0.166
SC (γH) 1.87 (0.34) 0.03 (0.17) 0.00 (0.00) 0.005 0.030
FR (γL) 2.96 (0.20) 8.88 (5.39) 0.96 (0.20) 0.013 0.147
FR ( γH) 1.97 (0.17) 0.03 (0.17) 0.00 (0.00) 0.005 0.019
STEPWISE 2.89 (0.31) 0.76 (1.70) 0.89 (0.31) 0.001 0.194

Note: abbreviations are explained in the footnote of Table 2.
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Table 4. Poisson model.

Example Method TP FP PIT MSE MSPE
1 (p0 = 8) LASSO(1SE) 7.93 (0.43) 4.64 (4.82) 0.96 (0.19) 0.001 4.236

LASSO(BIC) 7.99 (0.10) 14.37 (14.54) 0.99 (0.10) 0.001 3.133
SIS+LASSO(1SE) 7.89 (0.37) 25.37 (8.39) 0.91 (0.29) 0.001 3.247
SIS+LASSO(BIC) 7.89 (0.37) 17.77 (11.70) 0.91 (0.29) 0.001 3.078
dgLARS(BIC) 8.00 (0.00) 13.28 (14.31) 1.00 (0.00) 0.001 3.183
SC (γL) 7.96 (0.20) 4.94 (3.46) 0.96 (0.20) 0.001 2.874
SC (γH) 5.05 (1.70) 0.04 (0.24) 0.07 (0.26) 0.001 3.902
FR (γL) 7.93 (0.26) 4.86 (3.73) 0.93 (0.26) 0.001 2.837
FR (γH) 5.13 (1.61) 0.06 (0.31) 0.07 (0.26) 0.001 3.833
STEPWISE 7.91 (0.29) 2.77 (2.91) 0.91 (0.29) 0.001 3.410

2 (p0 = 8) LASSO(1SE) 8.00 (0.00) 2.23 (3.52) 1.00 (0.00) 0.001 3.981
LASSO(BIC) 8.00 (0.00) 8.98 (8.92) 1.00 (0.00) 0.001 3.107
SIS+LASSO(1SE) 7.98 (0.14) 22.85 (7.08) 0.98 (0.14) 0.001 2.824
SIS+LASSO(BIC) 7.98 (0.14) 13.55 (8.24) 0.98 (0.14) 0.001 2.937
dgLARS(BIC) 8.00 (0.00) 8.91 (9.10) 1.00 (0.00) 0.001 3.099
SC (γL) 8.00 (0.00) 3.89 (2.89) 1.00 (0.00) 0.000 2.979
SC (γH) 5.68 (1.45) 0.00 (0.00) 0.12 (0.33) 0.001 3.971
FR (γL) 8.00 (0.00) 3.60 (2.80) 1.00 (0.00) 0.000 3.032
FR (γH) 5.71 (1.42) 0.00 (0.00) 0.10 (0.30) 0.001 3.911
STEPWISE 7.98 (0.14) 2.00 (2.23) 0.98 (0.14) 0.000 3.589

3 (p0 = 5) LASSO(1SE) 4.37 (0.51) 6.88 (2.61) 0.38(0.48) 0.001 1.959
LASSO(BIC) 4.79 (0.41) 5.62 (2.17) 0.79 (0.41) 0.000 2.044
SIS+LASSO(1SE) 0.86 (0.47) 10.11 (2.55) 0.00 (0.00) 0.002 3.266
SIS+LASSO(BIC) 0.86 (0.47) 11.86 (2.99) 0.00 (0.00) 0.002 3.160
dgLARS(BIC) 4.55 (0.51) 18.29 (6.13) 0.56 (0.49) 0.001 1.877
SC (γL) 4.73 (0.45) 0.53 (0.66) 0.73 (0.45) 0.000 2.479
SC (γH) 2.84 (0.63) 0.40 (0.49) 0.00 (0.00) 0.001 0.664
FR (γL) 4.54 (0.52) 1.98 (2.19) 0.55 (0.50) 0.000 2.128
FR (γH) 2.71 (0.70) 0.43 (0.50) 0.00 (0.00) 0.001 0.605
STEPWISE 4.54 (0.52) 1.77 (2.01) 0.55 (0.50) 0.000 2.132

4 (p0 = 14) LASSO(1SE) 10.01 (1.73) 3.91 (6.03) 0.01 (0.10) 0.003 15.582
LASSO(BIC) 12.11 (1.46) 36.56 (22.43) 0.19 (0.39) 0.002 5.688
SIS+LASSO(1SE) 10.42 (1.66) 21.41 (8.87) 0.03 (0.17) 0.003 11.316
SIS+LASSO(BIC) 10.73 (1.66) 32.67 (8.92) 0.03 (0.17) 0.003 8.545
dgLARS(BIC) 12.05 (1.52) 38.70 (28.97) 0.18 (0.38) 0.002 5.111
SC (γL) 10.33 (1.63) 10.48 (6.66) 0.02 (0.14) 0.002 4.499
SC (γH) 5.32 (1.92) 0.52 (1.37) 0.00 (0.00) 0.003 14.005
FR (γL) 12.00 (1.71) 8.93 (6.36) 0.23 (0.42) 0.001 4.503
FR (γH) 5.65 (2.13) 0.38 (1.15) 0.00 (0.00) 0.003 13.802
STEPWISE 11.80 (1.72) 5.97 (5.37) 0.19 (0.39) 0.001 5.809

5 (p0 = 3) LASSO(1SE) 2.00 (0.00) 1.13 (2.85) 0.00 (0.00) 0.003 2.674
LASSO(BIC) 2.01 (0.10) 2.82 (2.52) 0.01 (0.10) 0.003 2.583
SIS+LASSO(1SE) 2.87 (0.34) 9.28 (3.85) 0.87 (0.34) 0.002 2.455
SIS+LASSO(BIC) 2.87 (0.34) 9.88 (4.29) 0.87 (0.34) 0.002 2.355
dgLARS(BIC) 2.00 (0.00) 2.88 (2.38) 0.00 (0.00) 0.003 2.562
SC (γL) 2.75 (0.44) 3.27 (1.75) 0.75 (0.44) 0.001 2.339
SC (γH) 2.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.003 1.086
FR (γL) 3.00 (0.00) 2.80 (1.73) 1.00 (0.00) 0.001 2.326
FR (γH) 2.40 (0.49) 0.00 (0.00) 0.40 (0.49) 0.002 0.981
STEPWISE 3.00 (0.00) 0.35 (0.59) 1.00 (0.00) 0.001 2.977

Note: abbreviations are explained in the footnote of Table 2.

5. Real Data Analysis

5.1. A Study of Gene Regulation in the Mammalian Eye

To demonstrate the utility of our proposed method, we analyzed a microarray dataset from [35]
with 120 twelve-week male rats selected for eye tissue harvesting. The dataset contained more than
31,042 different probe sets (Affymetric GeneChip Rat Genome 230 2.0 Array); see [35] for a more
detailed description of the data.

Although our method was applicable to the original 31,042 probe sets, many probes turned out to
have very small variances and were unlikely to be informative for correlative analyses. Therefore, using
variance as the screening criterion, we selected 5000 genes with the largest variances in expressions and
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correlated them with gene TRIM32 that has been found to cause Bardet–Biedl syndrome, a genetically
heterogeneous disease of multiple organ systems including the retina [36].

We applied the proposed STEPWISE method to the dataset with n = 120 and p = 5000, and
treated the TRIM32 gene expression as the response variable and the expressions of 5000 genes as the
predictors. With no prior biological information available, we started with the empty set. To choose η1

and η2, we carried out 5-fold cross-validation to minimize the mean squared prediction error (MSPE)
by using the following grid search: η1 = {0, 0.25, 0.5, 1} and η2 = {1, 2, 3, 4, 5}, and set η1 = 1 and
η2 = 4. We also performed the same procedure to choose the γ for FR and SC. The regularization
parameters in LASSO and dgLARS were selected to minimize BIC values.

In the forward step, STEPWISE selected the probes of 1376747_at, 1381902_at, 1382673_at and
1375577_at, and the backward step eliminated probe 1375577_at. The STEPWISE procedure produced
the following final predictive model:

TRIM32 = 4.6208 + 0.2310× (1376747_at) + 0.1914× (1381902_at) + 0.1263× (1382673_at). Table A1
in Appendix B presents the numbers of overlapping genes among competing methods. It shows that
the two out of three probes, 1381902_at and 1376747_at, selected from our method are also discovered
by the other methods, except for dgLARS.

Next, we performed Leave-One-Out Cross-Validation (LOOCV) to obtain the distribution of the
model size (MS) and MSPE for the competing methods.

As reported in Table 5 and Figure 1, LASSO, SIS+LASSO and dgLARS tended to select more
variables than the forward approaches and STEPWISE. Among all of the methods, STEPWISE selected
the fewest variables but with almost the same MSPE as the other methods.

Table 5. Comparisons of MSPE among competing methods using the mammalian eye data set.

STEPWISE FR LASSO SIS+LASSO SC dgLARS
Training set 0.005 0.005 0.005 0.006 0.005 0.014
Testing set 0.011 0.012 0.010 0.009 0.014 0.020

Note: The mean squared prediction error (MSPE) was averaged over 120 splits. LASSO, least absolute
shrinkage and selection operator with regularization parameter that gives the smallest BIC; SIS+LASSO, sure
independence screening by [5] followed by LASSO; dgLARS, differential geometric least angle regression
by [11,12] that gives the smallest BIC; SC(γ), sequentially conditioning approach by [8]; FR(γ), forward
regression by [7]; STEPWISE, the proposed method. STEPWISE was performed with η1 = 1 and η2 = 4 ; FR
and SC were performed with γ = 1.
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Figure 1. Box plot of model sizes for each method over 120 different training samples from the
mammalian eye data set. STEPWISE was performed with η1 = 1 and η2 = 4, and FR and SC were
conducted with γ = 1.
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5.2. An Esophageal Squamous Cell Carcinoma Study

Esophageal squamous cell carcinoma (ESCC), the most common histological type of esophageal
cancer, is known to be associated with poor overall survival, making early diagnosis crucial for
treatment and disease management [37]. Several studies have investigated the roles of circulating
microRNAs (miRNAs) in diagnosis of ESCC [38].

Using a clinical study that investigated the roles of miRNAs on the ESCC [39], we aimed to use
miRNAs to predict ESCC risks and estimate their impacts on the development of ESCC. Specifically,
with a dataset of serum profiling of 2565 miRNAs from 566 ESCC patients and 4965 controls without
cancer, we demonstrated the utility of the proposed STEPWISE method in predicting ESCC with
miRNAs.

To proceed, we used a balance sampling scheme (283 cases and 283 controls) in the training
dataset. The design of yielding an equal number of cases and controls in the training set has proved to
be useful [39] for handling imbalanced outcomes as we encountered here. To validate our findings,
samples were randomly divided into a training (n1 = 566, p = 2565) and testing set (n2 = 4965,
p = 2565).

The training set consisted of 283 patients with ESCC (median age of 65 years, 79% male) and 283
control patients (median age of 68 years, 46.3% male), and the testing set consisted of 283 patients with
ESCC (median age of 67 years, 85.7% male) and 4682 control patients (median age of 67.5 years, 44.5%
male). Control patients without ESCC came from three sources: 323 individuals from National Cancer
Center Biobank (NCCB); 2670 individuals from the Biobank of the National Center for Geriatrics and
Gerontology (NCGG); and 1972 individuals from Minoru Clinic (MC). More detailed characteristics of
cases and controls in the training and testing sets are given in Table 6.

Table 6. Clinicopathological characteristics of study participants of the ESCC data set.

Covariates Training Set Testing set
n1 (%) n2 (%)

Esophageal squamous cell carcinoma (ESCC) patients
Total number of patients 283 283
Age, median (range) 65 [40, 86] 67 [37, 90]
Gender:
Male 224 (79.0%) 247 (87.3%)
Female 59 (21.0%) 36 (12.7%)
Stage:
0 24 (8.5%) 27 (9.5%)
1 127 (44.9%) 128 (45.2%)
2 58 (20.5%) 57 (20.1%)
3 67 (23.7%) 61 (21.6%)
4 7 (2.4%) 10 (3.6%)
Non-ESCC Controls
Total number of patients 283 4,682
Age, median (range) 68 [27, 92] 67.5 [20, 100]
Gender:
Male 131 (46.3%) 2,086 (44.5%)
Female 152 (53.7%) 2,596 (55.5%)
Data sources of the controls:
National Cancer Center Biobank (NCCB) 17 (6.0%) 306 (6.5%)
National Center for Geriatrics and Gerontology (NCGG) 158 (55.8%) 2,512 (53.7%)
Minoru clinic (MC) 108 (38.2%) 1,864 (39.8%)

We defined the binary outcome variable to be 1 if the subject was a case and 0 otherwise. As age
and gender (0 = female, 1 = male) are important risk factors for ESCC [40,41] and it is common to adjust
for them in clinical models, we set the initial set in STEPWISE to be F0 = {age, gender}. With η1 = 0
and η2 = 3.5 that were also chosen from 5-fold CV, our procedure recruited three miRNAs. More
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specifically, miR-4783-3p, miR-320b, miR-1225-3p and miR-6789-5p were selected among 2565 miRNAs
by the forward stage from the training set, and then the backward stage eliminated miR-6789-5p.

In comparison, with γ = 0, both FR and SC selected four miRNAs, miR-4783-3p, miR-320b,
miR-1225-3p and miR-6789-5p. The list of selected miRNAs by different methods are given in Table A2
in Appendix B.

Our findings were biologically meaningful, as the selected miRNAs had been identified by other
cancer studies as well. Specifically, miR-320b was found to promote colorectal cancer proliferation
and invasion by competing with its homologous miR-320a [42]. In addition, serum levels of miR-320
family members were associated with clinical parameters and diagnosis in prostate cancer patients [43].
Reference [44] showed that miR-4783-3p was one of the miRNAs that could increase the risk of
colorectal cancer death among rectal cancer cases. Finally, miR-1225-5p inhibited proliferation and
metastasis of gastric carcinoma through repressing insulin receptor substrate-1 and activation of
β-catenin signaling [45].

Aiming to identify a final model without resorting to a pre-screening procedure that may miss
out on important biomarkers, we applied STEPWISE to reach the following predictive model for ESCC
based on patients’ demographics and miRNAs:

logit−1(−35.70 + 1.41 × miR-4783-3p + 0.98 × miR-320b + 1.91 × miR-1225-3p + 0.10 × Age −
2.02×Gender), where logit−1(x) = exp(x)/(1 + exp(x)).

In the testing dataset, the model had an area under the receiver operating curve (AUC) of 0.99
and achieved a high accuracy of 0.96, with a sensitivity and specificity of 0.97 and 0.95, respectively.
Additionally, using the testing cohort, we evaluated the performances of the models sequentially
selected by STEPWISE. Starting with a model containing age and gender, STEPWISE selected
miR-4783-3p, miR-320b and miR-1225-3p in turn. Figure 2, showing the corresponding receiver operating
curves (ROC) for these sequential models, revealed the improvement by sequentially adding predictors
to the model and justified the importance of these variables in the final model. In addition, Figure 2e
illustrated that adding an extra miRNA selected by FR and SC made little improvement of the model’s
predictive power.

Furthermore, we conducted subgroup analysis within the testing cohort to study how the
sensitivity of the final model differed by cancer stage, one of the most important risk factors. The
sensitivities for stages 0, i.e., non-invasive cancer, 9 (n = 27), 1 (n = 128), 2 (n = 57), 3 (n = 61) and 4
(n = 10) were 1.00, 0.98, 0.97, 0.97 and 1.00, respectively. We next evaluated how the specificity varied
across controls coming from different data sources. The specificities for the various control groups,
namely, NCCB (n = 306), NCGG (n = 2512) and MC (n = 1864), were 0.99, 0.99 and 0.98, respectively.
The results indicated the robust performance of the miRNA-based model toward cancer stages and
data sources.

Finally, to compare STEPWISE with the other competing methods, we repeatedly applied the
aforementioned balance sampling procedure and split the ESCC data into the training and testing sets
100 times. We obtained MSPE and the average of accuracy, sensitivity, specificity, and AUC. Figure 3
reported the model size of each method. Though STEPWISE selected fewer variables compared to the
other variable selection methods (for example, LASSO selected 11-31 variables and dgLARS selected
12–51 variables), it achieved comparable prediction accuracy, specificity, sensitivity and AUC (see
Table 7), evidencing the utility of STEPWISE for generating parsimonious models while maintaining
competitive predictability.
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Table 7. Comparisons of competing methods over 100 independent splits of the ESCC data into training
and testing sets.

Training Set MSPE Accuracy Sensitivity Specificity AUC
STEPWISE 0.02 0.97 0.98 0.97 1.00
SC 0.01 0.99 0.98 0.98 1.00
FR 0.02 0.99 0.97 0.97 1.00
LASSO 0.01 0.98 1.00 0.97 1.00
SIS+LASSO 0.01 0.99 1.00 0.99 1.00
dgLARS 0.04 0.96 0.99 0.94 1.00
Training Set MSPE Accuracy Sensitivity Specificity AUC
STEPWISE 0.04 0.96 0.97 0.95 0.99
SC 0.03 0.96 0.97 0.96 0.99
FR 0.04 0.96 0.97 0.95 0.99
LASSO 0.03 0.96 0.99 0.95 1.00
SIS+LASSO 0.02 0.97 0.99 0.96 1.00
dgLARS 0.05 0.94 0.98 0.94 1.00

Note: Values were averaged over 100 splits. STEPWISE was performed with η1 = 0 and η2 = 1. SC and FR
were performed with γ = 1. The regularization parameters in LASSO and dgLARS were selected to minimize
the BIC.

We used R software [46] to obtain the numerical results in Sections 4 and 5 with following packages:
ggplot2 [47], ncvreg [32], glmnet [31], dglars [34] and screening [33].

(a) Model 1, AUC = 0.71 (b) Model 2, AUC = 0.97

(c) Model 3, AUC = 0.98 (d) Model 4, AUC = 0.99

Figure 2. Cont.
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(e) Model 5, AUC = 0.99

Figure 2. Comparisons of ROC curves for the selected models in the ESCC data set by the
sequentially selected order: Model 1: −2.52 + 0.02× Age− 1.86× Gender; Model 2: −20.64 + 0.08×
Age − 2.12× Gender + 2.02× miR-4783-3p; Model 3: −24.21 + 0.09× Age − 2.16× Gender + 1.44×
miR-4783-3p −1.31× miR-320b; Model 4: −35.70 + 0.10× Age− 2.02× Gender + 1.40× miR-4783-3p
−0.98× miR-320b +1.91× miR-1225-3p; Model 5: −53.10 + 0.10 × Age − 1.85 × Gender + 1.43×
miR-4783-3p−0.92× miR-320b +1.43× miR-1225-3p +2.10× miR-6789-5p.
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Figure 3. Box plot of model sizes for each method based on 100 ESCC training datasets. Performance of
STEPWISE is reported with η1 = 0 and η2 = 3.5. Performances of SC and FR are reported with γ = 0.

6. Discussion

We have proposed to apply STEPWISE to produce final models in ultrahigh dimensional settings,
without resorting to a pre-screening step. We have shown that the method identifies or includes the
true model with probability going to 1, and produces consistent coefficient estimates, which are useful
for properly interpreting the actual impacts of risk factors. The theoretical properties of STEPWISE
were established under mild conditions, which are worth discussing. As in practice covariates are
often standardized for various reasons, Condition (2) is assumed without loss of generality. Conditions
(3) and (4) are generally satisfied under common GLM models, including Gaussian, binomial, Poisson
and gamma distributions. Condition (5) is also often satisfied in practice. Proposition 2 in [26] may be
used as a tool to verify Condition (5) as well. Conditions (1) and (6) are in good faith with the unknown
true model size |M| and minimum signal strength n−α in practice. The "irrepresentable" condition (6)
is strong and may not hold in some real datasets, see, e.g., [48,49]. However, the condition holds under
some commonly used covariance structures, including AR(1) and compound symmetry structure [48].

As shown in simulation studies and real data analyses, STEPWISE tends to generate models as
predictive as the other well-known methods, with fewer variables (Figure 3). Parsimonious models
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are useful for biomedical studies as they explain data with a small number of important predictors,
and offer practitioners a realistic list of biomarkers to investigate. With categorical outcome data
frequently observed in biomedical studies (e.g., histology types of cancer), STEPWISE can be extended
to accommodate multinomial classification, with more involved notation and computation. We will
pursue this elsewhere.

There are several open questions. First, our final model was determined by using (E)BIC, which
involves two extra parameters η1 and η2. In our numerical experiments, we used cross-validation to
choose them, which seemed to work well. However, more in-depth research is needed to find their
optimal values to strike a balance between false positives and false negatives. Second, despite our
consistent estimates, drawing inferences based on them remains challenging. Statistical inference,
which accounts for uncertainty in estimation, is key for properly interpreting analysis results and
drawing appropriate conclusions. Our asymptotic results, nevertheless, are a stepping stone toward
this important problem.

Supplementary Materials: An R package, STEPWISE, was developed and is available at https://github.com/
AlexPijyan/STEPWISE, along with the examples shown in the paper.
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Appendix A. Proofs of Main Theorems

Since b(·) is twice continuously differentiable with a nonnegative second derivative b′′(·), bmax :=
max|t|≤K3 |b(t)|, µmax := max|t|≤K3 |b′(t)| and σmax := sup|t|≤K3 |b′′(t)| are bounded above, where L
and K are some constants from Conditions (1) and (2), respectively. Let Gn{ f (ξ)} = n−1/2 ∑n

i=1( f (ξi)−
E[ f (ξi)]) for a sequence of i.i.d. random variables ξi (i = 1, . . . , n) and a non-random function f (·).

Given any βS, when a variable Xr, r ∈ Sc is added into the model S, we define the augmented
log-likelihood as

`S∪{r}(βS+r) := En

{
L
(

βT
SXS + βrXr, Y

)}
. (A1)

We use β̂S+r to denote the maximizer of (A1). Thus, β̂S+r = β̂S∪{r}. In addition, denote the
maximizer of E[`S∪{r}(βS+r)] by β∗S+r. Due to the concavity of the log-likelihood in GLMs with the
canonical link, β∗S+r is unique.

Proof of Theorem 1. Given an index set S and r ∈ Sc, let B0
S(d) = {βS : ‖βS − β∗S‖ ≤ d/(K

√
|S|)}

where d = A2
√

q3 log p/n with A2 defined in Lemma A6.
Let Ω be the event that{

sup
|S|≤q,βS∈B0

S(d)

∣∣∣Gn

[
L
(

βT
SXS, Y

)
− L

(
β∗TS XS, Y

)]∣∣∣ ≤ 20A1d
√

q log p and

max
|S|≤q

|Gn

[
L(β∗TS XS, Y)

]
| ≤ 10(A1K2 + bmax)

√
q log p

}
,

where A1 is some constant defined in Lemma A4. By Lemma A4, P(Ω) ≥ 1− 6 exp(−6q log p). Thus
in the rest of the proof, we only consider the sample points in Ω.

https://github.com/AlexPijyan/STEPWISE
https://github.com/AlexPijyan/STEPWISE
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In the proof of Lemma A6, we show that max|S|≤q ‖β̂S − β∗S‖ ≤ A2K−1(q2 log p/n)1/2 under Ω.
Then given an index set S and βS such that |S| < q, ‖βS − β∗S‖ ≤ A2K−1(q2 log p/n)1/2, and for any
j ∈ Sc,

`S∪{j}(β∗S+j)− `S(β̂S) ≥ inf
‖βS−β∗S‖≤A2K−1(q2 log p/n)1/2

`S∪{j}(β∗S+j)− `S(βS)

= n−1/2Gn

[
L(β∗TS+jXS∪{j}, Y)

]
− n−1/2Gn

[
L(β∗TS XS, Y)

]
− sup
‖βS−β∗S‖≤A2K−1(q2 log p/n)1/2

∣∣∣n−1/2Gn

[
L(βT

SXS, Y)− L(β∗TS XS, Y)
]∣∣∣

+ E
[

L(β∗TS+jXS∪{j}, Y)
]
− E

[
L(β∗TS XS, Y)

]
≥ −20(A1K2 + bmax)

√
q log p/n− 20A1 A2q2 log p/n +

σminκmin

2
‖β∗S+j − (β∗TS , 0)T‖2,

where the second inequality follows from the event Ω and Lemma A5.
By Lemma A1, ifM 6⊆ S, there exists r ∈ Sc ∩M, such that ‖β∗TS+r − (β∗TS , 0)‖ ≥ Cσ−1

maxκ−1
maxn−α.

Thus, there exists some constant C1 that does not depend on n such that

max
j∈Sc

`S∪{j}(β̂S+j)− `S(β̂S) ≥ max
j∈Sc

`S∪{j}(β∗S+j)− `S(β̂S) ≥ `S∪{r}(β∗S+r)− `S(β̂S)

≥ −20(A1K2 + bmax)
√

q log p/n− 20A1 A2q2 log p/n +
C2σminκminn−2α

2σ2
maxκ2

max
≥ C1n−2α, (A2)

where the first inequality follows from β̂S+j being the maximizer of (A1) and the second inequality
follows from Conditions (1) and (6).

Withdrawing the restriction to Ω, we obtain that

P
(

min
|S|<q,M6⊆S

max
j∈Sc

`S∪{j}(β̂S∪{j})− `S(β̂S) ≥ C1n−2α

)
≥ 1− 6 exp(−6q log p).

Proof of Theorem 2. We have shown that our forward stage will not stop whenM 6⊆ S and |S| < q
with probability converging to 1.

For any r ∈ Sc ∩ Mc, β∗S+r is the unique solution to the equation E
[{

Y −
µ
(

βT
S+rXS∪{r}

)}
XS∪{r}

]
= 0. By the mean value theorem,

E
[{

Y− µ
(

β∗TS XS
)}

Xr
]
= E

[{
µ
(

βT
∗X
)
− µ

(
β∗TS XS

)}
Xr
]

= E
[{

µ
(

βT
∗X
)
− µ

(
β∗TS XS

)}
Xr
]
− E

[{
µ
(

βT
∗X
)
− µ

(
β∗TS+rXS∪{r}

)}
Xr
]

=
(

β∗TS+r − (β∗TS , 0)
)
E
[
σ
(

β̃T
S+rXS∪{r}

)
X⊗2

S∪{r}
]
er,

where β̃S+r is some point between βS+r and (β∗TS , 0)T and er is a vector of length (|S|+ 1) with the rth
element being 1.

Since |β̃T
S+rXS∪{r}| ≤ |β∗TS+rXS∪{r}| + |(β∗TS , 0)XS∪{r}| ≤ 2K2 by Conditions (1) and (2),

|σ(β̃T
S+rXS∪{r})| ≥ σmin and

o(n−α) =
∣∣∣E [{Y− µ

(
β∗TS XS

)}
Xr

]∣∣∣ ≥ σminκmin‖β∗TS+r − (β∗TS , 0)‖.

Therefore, maxS:|S|≤q,r∈Sc∩Mc ‖β∗TS+r − (β∗TS , 0)‖ = o(n−α).



Entropy 2020, 22, 965 19 of 28

Under Ω that is defined in Theorem 1, max|S|≤q ‖β̂S − β∗S‖ ≤ A2K−1(q2 log p/n)1/2. For any
j ∈ Sc,

`S∪{j}(β∗S+j)− `S(β̂S) ≤ sup
‖βS−β∗S‖≤A2K−1(q2 log p/n)1/2

`S∪{j}(β∗S+j)− `S(βS)

≤
∣∣∣n−1/2Gn

[
L(β∗TS+jXS∪{j}, Y)

]∣∣∣+ ∣∣∣n−1/2Gn

[
L(β∗TS XS, Y)

]∣∣∣
+ sup
‖βS−β∗S‖≤A2K−1(q2 log p/n)1/2

∣∣∣n−1/2Gn

[
L(βT

SXS, Y)− L(β∗TS XS, Y)
]∣∣∣

+
∣∣∣E [L(β∗TS+jXS∪{j}, Y)

]
− E

[
L(β∗TS XS, Y)

]∣∣∣
≤ 20(A1K2 + bmax)

√
qn−1 log p + 20A1 A2q2n−1 log p + σmaxκmax‖β∗S+j − (β∗TS , 0)T‖2/2,

where the second inequality follows from the event Ω and Lemma A5. Since
maxS:|S|<q,r∈Sc∩Mc ‖β∗S+r − (β∗TS , 0)T‖ = o(n−α) and qn−1+4α log p→ 0,

max
S:|S|<q,r∈Sc∩Mc

`S∪{r}(β∗S+r)− `S(β̂S) ≤ 20(A1K2 + bmax)
√

qn−1 log p + 20A1 A2q2n−1 log p

+ σmaxκmax‖β∗S+j − (β∗TS , 0)T‖2/2 = o(n−2α),

with probability at least 1− 6 exp(−6q log p). Then by Lemma A6,

max
S:|S|<q,r∈Sc∩Mc

`S∪{r}(β̂S+r)− `S(β̂S)

≤ max
S:|S|<q,r∈Sc∩Mc

|`S∪{r}(β̂S+r)− `S∪{r}(β∗S+r)|+ max
S:|S|<q,r∈Sc∩Mc

∣∣∣`S∪{r}(β∗S+r)− `S(β̂S)
∣∣∣

≤ A3q2n−1 log p + o(n−2α) = o(n−2α), (A3)

with probability at least 1− 12 exp(−6q log p).
By Theorem 1, ifM 6⊆ S, the forward stage would select a noise variable with probability less

than 18 exp(−6q log p).
For k > |M|,M 6⊆ Sk implies that at least k− |M| noise variables are selected within the k steps.

Then for k = C2|M| with C2 > 2,

P (M 6⊆ Sk) ≤
k

∑
j=k−|M|

(
k
j

){
18 exp(−6q log p)

}j ≤ |M|k|M|
{

18 exp(−6q log p)
}k−|M|

≤ 18 exp(−6q log p + log |M|+ |M| log k) ≤ 18 exp(−4q log p).

Therefore,M⊂ SC2|M| with probability at least 1− 18 exp(−4q log p).

Proof of Theorem 3. By Theorem 2,M will be included in Fk for some k < q with probability going
to 1. Therefore, the forward stage stops at the kth step if EBIC(Fk+1) > EBIC(Fk).

On the other hand, that EBIC(Fk+1) < EBIC(Fk) if and only if 2`Fk+1(β̂Fk+1) − 2`Fk (β̂Fk ) ≥
(log n + 2η1 log p)/n. Thus, to show the forward stage stops at the kth step, we only need to show
that with probability tending to 1,

2`Fk+1(β̂Fk+1)− 2`Fk (β̂Fk ) < (log n + 2η1 log p)/n, (A4)

for all η1 > 0.
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To prove (A4), we first verify the conditions (A4) and (A5) in [17]. Given any index S such that
M⊆ S and |S| ≤ q, let β∗S be the subvector of β∗ corresponding to S. We obtain that

E
[
(Y− µ(βT

∗SXS))XS

]
= E

[
E
[
(Y− µ(βT

∗MXM))|XS

]
XS

]
= 0.

This implies β∗S = β∗S.

Given any π ∈ R|S|, let HS :=
{

h(π, βS) = (σmaxK2|S|)−1σ
(

βT
SXS

) (
πTXS

)2 , ‖π‖ = 1, βS ∈
B0

S(d)
}

. By Conditions (1) and (2), h(π, βS) is bounded between −1 and 1 uniformly over ‖π‖ = 1
and βS ∈ B0

S(d).
By Lemma 2.6.15 in [50], the VC indices of W := {(K

√
|S|)−1πTXS, ‖π‖ = 1} and V :=

{βT
SXS, βS ∈ B0

S(d)} are bounded by |S|+ 2. For the definitions of the VC index and covering numbers,
we refer to pages 83 and 85 in [50]. The VC index of the class U := {(K2|S|)−1(πTXS)

2, ‖π‖ = 1}
is the VC index of the class of sets {(XS, t) : (K2|S|)−1(πTXS)

2 ≤ t, ‖π‖ = 1, t ∈ R}. Since
{(XS, t) : (K2|S|)−1(πTXS)

2 ≤ t} = {(XS, t) : 0 < (K
√
|S|)−1πTXS ≤

√
t} ∪ {(XS, t) : −

√
t <

(K
√
|S|)−1πTXS ≤ 0}, each set of {(XS, t) : (K2|S|)−1(πTXS)

2 ≤ t, ‖π‖ = 1, t ∈ R} is created by
taking finite unions, intersections and complements of the basic sets {(XS, t) : (K

√
|S|)−1πTXS < t}.

Therefore, the VC index of {(XS, t) : (K2|S|)−1(πTXS)
2 ≤ t, ‖π‖ = 1, t ∈ R} is of the same order as

the VC index of {(XS, t) : (K
√
|S|)−1πTXS < t}, by Lemma 2.6.17 in [50].

Then by Theorem 2.6.7 in [50], for any probability measure Q, there exists some universal constant
C3 such that N(ε,U , L2(Q)) ≤ (C3/ε)2(|S|+1). Likewise, N(dε,V , L2(Q)) ≤ (C3/ε)2(|S|+1). Given
a βS,0 ∈ B0

S(d), for any βS in the ball {βS : supx |βT
Sx − βT

S,0x| < dε}, we have supx |σ(βT
Sx) −

σ(βT
S,0x)| < Kdε by Condition (4). Let V ′ := {σ−1

maxσ(βT
SXS), βS ∈ B0

S(d)}. By the definition of covering

number, N(Kdε,V ′, L2(Q)) ≤ (C3/ε)2(|S|+1)Given a σ(βT
S,0x) and πT

0x, for any σ(βT
Sx) in the ball

{σ(βT
Sx) : supx |σ(βT

Sx) − σ(βT
S,0x)| ≤ Kdε} and π in the ball {π : supx |(πTx)2 − (πT

0x)2| < ε},
(σmaxK2|S|)−1 supx |σ(βT

Sx)(πTx)2 − σ(βT
S,0x)(πT

0x)2| ≤ (σ−1
maxKd + (K2|S|)−1)ε. Thus, N((σ−1

maxKd +

(K2|S|)−1)ε,HS, L2(Q)) ≤ (C3/ε)4(|S|+1), and consequently N(ε,HS, L2(Q)) ≤ (C4/ε)4(|S|+1) for
some constant C4.

By Theorem 1.1 in [51] and |S| ≤ q, we can find some constant C5 such that

P

 sup
‖π‖=1,βS∈B0

S(d)
|Gn [h(π, βS)]| ≥ C5

√
q log p


≤

C′4
C5
√

q log p

(
C′4C2

5q log p
4(|S|+ 1)

)4(|S|+1)

exp(−2C2
5q log p)

≤ exp
(

4(|S|+ 1) log(C′4C2
5q log p)− 2C2

5q log p
)
≤ exp (−5q log p) ,

where C′4 is some constant that depends on C4 only. Thus,

P
(

sup
|S|≤q,‖π‖=1,βS∈B0

S(d)

∣∣∣En

{
σ
(

XT
S βS

) (
πTXS

)2
}
− E

[
σ
(

XT
S βS

) (
πTXS

)2
] ∣∣∣ ≥ C5K2

√
q3 log p/n

)

≤
q

∑
s=|M|

( ep
s

)s
exp (−5q log p) ≤ exp(−3q log p). (A5)

By Condition (5), σminκmin ≤ Λ
(

E
[
σ
(
XT

S βS
)

X⊗2
S

])
≤ σmaxκmax, for all βS ∈ B0

S(d) and S : M ⊆
S, |S| < q. Then, by (A5),

σminκmin/2 ≤ Λ
(
En

{
σ
(

XT
S β∗S

)
X⊗2

S

})
≤ 2σmaxκmax
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uniformly over all S satisfyingM⊆ S and |S| ≤ q, with probability at least 1− exp(−3q log p). Hence,
the condition (A4) in [17] is satisfied with probability at least 1− exp(−3q log p).

Additionally, for any βS ∈ B0
S(d),∣∣∣En

{
σ
(

XT
S βS

) (
πTXS

)2 }
−En

{
σ
(

XT
S β∗S

) (
πTXS

)2 }∣∣∣
≤
∣∣∣n−1/2Gn

{
σ
(

XT
S βS

) (
πTXS

)2 }∣∣∣+ ∣∣∣n−1/2Gn

{
σ
(

XT
S β∗S

) (
πTXS

)2 }∣∣∣
+
∣∣∣E[σ (XT

S βS

) (
πTXS

)2 ]
− E

[
σ
(

XT
S β∗S

) (
πTXS

)2 ]∣∣∣
≤2C5K2

√
q3 log p/n + µmax‖βS − β∗S‖

√
|S|Kλmax.

Hence, the condition (A5) in [17] is satisfied uniformly over all S such thatM⊆ S and |S| ≤ q,
with probability at least 1− exp(−3q log p).

Then (A4) can be shown by following the proof of Equation (3.2) in [17]. Thus, our forward stage
stops at the kth step with probability at least 1− exp(−3q log p).

Proof of Theorem 4. Suppose that a covariate Xr is removed from S. For any r ∈ M, sinceM 6⊆ S\{r}
and r is the only element that is in (S\{r})c ∩M, by Lemma A1 and (A2)

`S(β̂S)− `S\{r}(β̂S\{r}) ≥ `S(β∗S)− `S\{r}(β̂S\{r})

= `S\{r}∪{r}(β∗S\{r}+r)− `S\{r}(β̂S\{r}) ≥ C1n−2α,

with probability at least 1− 6 exp(−6q log p). From the proof of Theorem 1, we have for any η2 > 0,
BIC(S)− BIC(S\{r}) ≤ −2C1n−2α + η2n−1 log n < 0, uniformly over r ∈ M and S satisfyingM⊂ S
and |S| ≤ q, with probability at least 1− 6 exp(−6q log p).

Proof of Theorem 5. By Theorems 1–3, we have that the event Ω1 := {|M̂| ≤ q andM⊆ M̂} holds
with probability at least 1− 25 exp(−2q log p). Thus, in the rest of the proof, we restrict our attention
on Ω1.

As shown in the proof of Theorem 3, we obtain that β∗M̂ = β∗M̂. Then by Lemma A6, we have

‖β̂M̂ − β∗M̂‖ ≤ A2K−1
√

q2 log p/n with probability at least 1− 6 exp(−6q log p). Withdrawing the
attention on Ω1, we obtain that

‖β̂− β∗‖ = ‖β̂M̂ − β∗M̂‖ = ‖β̂M̂ − β∗M̂‖ ≤ A2K−1
√

q2 log p/n,

with probability at least 1− 31 exp(−2q log p).

Additional Lemmas and Proofs

Lemma A1. Given a model S such that |S| < q,M 6⊆ S, under Condition (6),
(i): ∃r ∈ Sc ∩M, such that β∗S+r 6= (β∗TS , 0)T.
(ii): Suppose Conditions (1), (2) and (6’) hold. ∃r ∈ Sc ∩M, such that ‖β∗TS+r − (β∗TS , 0)‖ ≥ Cσ−1

maxκ−1
maxn−α.

Proof. As β∗S+j is the maximizer of E
[
`S∪{j}(βS+j)

]
, by the concavity of E

[
`S∪{j}(βS+j)

]
, β∗S+j is the

solution to the equation E
[(

Y− µ
(

β∗TS XS + β jXj
))

XS∪{j}

]
= 0,

(i): Suppose that β∗S+j = (β∗TS , 0)T, ∀j ∈ Sc ∩M. Then,

0 = E
[(

Y− µ
(

β∗TS XS
))

Xj
]
= E

[(
µ
(

βT
∗X
)
− µ

(
β∗TS XS

))
Xj
]

⇒ max
j∈Sc∩M

∣∣E[(µ(βT
∗X
)
− µ

(
β∗TS XS

))
Xj
]∣∣ = 0,
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which violates the Condition (6). Therefore, we can find a r ∈ Sc ∩M, such that β∗S+r 6= (β∗TS , 0)T.
(ii): Let r ∈ Sc ∩M satisfy that

∣∣E[(µ(βT
∗X
)
− µ

(
β∗TS XS

))
Xr
]∣∣ > Cn−α. Without loss of generality,

we assume that Xr is the last element of XS∪{r}. By the mean value theorem,

E
[(

µ
(

βT
∗X
)
− µ

(
β∗TS XS

))
Xr
]

= E
[(

µ
(

βT
∗X
)
− µ

(
β∗TS XS

))
Xr
]
− E

[(
µ
(

βT
∗X
)
− µ

(
β∗TS+rXS∪{r}

))
Xr
]

= E
[(

µ
(

β∗TS+rXS∪{r}
)
− µ

(
(β∗TS , 0)XS∪{r}

))
Xr
]

=
(

β∗TS+r − (β∗TS , 0)
)
E
[
σ
(

β̃T
S+rXS∪{r}

)
X⊗2

S∪{r}
]
er, (A6)

where β̃S+r is some point between β∗S+r and (β∗TS , 0)T and er is a vector of length (|S|+ 1) with the rth
element being 1.

As β̃S+r is some point between β∗S+r and (β∗TS , 0)T, |β̃T
S+rXS∪{r}| ≤ |β∗TS+rXS∪{r}| +

|(β∗TS , 0)XS∪{r}| ≤ 2K2, by Conditions (1) and (2). Thus, |σ(β̃T
S+rXS∪{r})| ≤ σmax. By (A6) and

Condition (5),

Cn−α ≤
∣∣∣E [(µ

(
βT
∗X
)
− µ

(
β∗TS XS

))
Xr

]∣∣∣
≤ ‖β∗TS+r − (β∗TS , 0)‖σmaxλmax

(
E
[
X⊗2

S∪{r}
])
‖er‖ ≤ σmaxκmax‖β∗TS+r − (β∗TS , 0)‖.

Therefore, ‖β∗TS+r − (β∗TS , 0)‖ ≥ Cσ−1
maxκ−1

maxn−α.

Lemma A2. Let ξi, i = 1, . . . , n be n i.i.d random variables such that |ξi| ≤ B for a constant B > 0. Under
Conditions (1)–(3), we have E [|Yiξi − E [Yiξi] |m] ≤ m!(2B(

√
2M + µmax))m, for every m ≥ 1.

Proof. By Conditions (1) and (2), |βT
∗Xi| ≤ KL, ∀i ≥ 1 and consequently

∣∣µ(βT
∗Xi)

∣∣ ≤ µmax. Then by
Condition (3),

E[|Yi|m] = E[|εi + µ(βT
∗Xi)|m] ≤

m

∑
t=0

(
m
t

)
E
[
|εi|t

]
µm−t

max

≤
m

∑
t=0

t!
(

m
t

)
Mtµm−t

max ≤ m!(M + µmax)
m,

for every m ≥ 1. By the same arguments, it can be shown that, for every m ≥ 1, E [|Yiξi − E [Yiξi] |m] ≤
E
[
(|Yiξi|+ |E [Yiξi] |)m] ≤ m!(2B(M + µmax))m.

Lemma A3. Under Conditions (1)–(3), when n is sufficiently large such that 28
√

q log p/n < 1, we have
supβ∈B

∣∣En
{

L(βTX, Y)
}∣∣ ≤ 2(M + µmax)K3 + bmax, with probability 1− 2 exp(−10q log p).

Proof. By Conditions (2), supβ∈B
∣∣βTX

∣∣ ≤ K3. Thus,

sup
β∈B

∣∣∣En

{
L(βTX, Y)

}∣∣∣ ≤ sup
β∈B

∣∣∣En

{∣∣∣YβTX
∣∣∣}∣∣∣+ bmax

≤
(∣∣En {|Y| − E [|Y|]}

∣∣+ E [|Y|]
)

K3 + bmax

≤
(∣∣En {|Y| − E [|Y|]}

∣∣)K3 + (M + µmax)K3 + bmax,

where the last inequality follows from that E[|Y|] ≤ M + µmax as shown in the proof of Lemma A2.



Entropy 2020, 22, 965 23 of 28

Let ξi = 1{Yi > 0} − 1{Yi < 0}. Thus |ξi| ≤ 1. By Lemma A2, we have E
[∣∣|Yi| − E [|Yi|]

∣∣m] ≤
m!(2(M + µmax))m. Applying Bernstein’s inequality (e.g., Lemma 2.2.11 in [50]) yields that

P
(
|En {|Y| − E [|Y|]}| > 10(M + µmax)

√
q log p/n

)
≤ 2 exp

(
−1

2
196q log p

4 + 20
√

q log p/n

)
≤ 2 exp(−10q log p), (A7)

when n is sufficiently large such that 20
√

q log p/n < 1. Since 10(M + µmax)
√

q log p/n = o(1), then

P

(
sup
β∈B

∣∣∣En

{
L(βTX, Y)

}∣∣∣ ≥ 2(M + µmax)K3 + bmax

)
≤ 2 exp(−10q log p).

Lemma A4. Given an index set S and r ∈ Sc, let B0
S(d) = {βS : ‖βS − β∗S‖ ≤ d/(K

√
|S|)} and A1 :=

(M + 2µmax). Under Conditions (1)–(3), when n is sufficiently large such that 10
√

q log p/n < 1, we have

1. |Gn
[
L
(

βT
SXS, Y

)
− L

(
β∗TS XS, Y

)]
| ≤ 20A1d

√
q log p, uniformly over βS ∈ B0

S(d) and |S| ≤ q, with
probability at least 1− 4 exp(−6q log p).

2. |Gn
[
L(β∗TS XS, Y)

]
| ≤ 10(A1K2 + bmax)

√
q log p, uniformly over |S| ≤ q, with probability at least

1− 2 exp(−8q log p).

Proof. : (1): Let R|S|(d) be a |S|-dimensional ball with center at 0 and radius d/(K
√
|S|). Then

B0
S(d) = R|S|(d) + β∗S. Let C|S| := {C(ξk)} be a collection of cubes that cover the ball R|S|(d), where
C(ξk) is a cube containing ξk with sides of length d/(K

√
|S|n2) and ξk is some point in R|S|(d). As

the volume of C(ξk) is
(
d/(K

√
|S|n2)

)|S| and the volume of R|S|(d) is less than (2d/(K
√
|S|))|S|,

we can select ξks so that no more than (4n2)|S| cubes are needed to cover R|S|(d). We thus assume
|C|S|| ≤ (4n2)|S|. For any ξ ∈ C(ξk), ‖ξ − ξk‖ ≤ d/(Kn2). In addition, let T1S(ξ) := En

[
YξTXS

]
,

T2S(ξ) := En
[
b
( (

β∗S + ξ
)T XS

)
− b
(

β∗TS XS
)]

, and TS(ξ) := T1S(ξ)− T2S(ξ).
Given any ξ ∈ R|S|(d), there exists C(ξk) ∈ C|S| such that ξ ∈ C(ξk). Then

|TS(ξ)− E [TS(ξ)]| ≤ |TS(ξ)− TS(ξk)| |TS(ξk)− E [TS(ξk)]|+ |E [TS(ξ)]− E [TS(ξk)]|
=: I + I I + I I I.

We deal with I I I first. By the mean value theorem, there exists a ξ̃ between ξ and ξk such that

|E [TS(ξk)]− E [TS(ξ)]| =
∣∣∣E[Y(ξk − ξ)TXS

]
+ E

[
µ
((

β∗S + ξ̃
)TXS

)
(ξk − ξ)TXS

]∣∣∣
≤ E[|Y|]‖ξk − ξ‖‖XS‖+ µmax‖ξk − ξ‖‖XS‖ ≤ (M + 2µmax)d

√
|S|n−2 = A1d

√
|S|n−2, (A8)

where the last inequality follows from Lemma A2 and A1 = M + 2µmax.
Next, we evaluate I I. By Condition (2), |XT

iSξ| ≤ ‖XiS‖‖ξ‖ ≤ d/(K
√
|S|)

√
|S|K = d, for all

ξ ∈ R|S|(d). Then by Lemma A2,

E
[∣∣∣YξT

k XS − E
[
YξT

k XS
]∣∣∣m] ≤ m!(2(M + µmax)d)m.
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By Bernstein’s inequality, when n is sufficiently large such that 10
√

q log p/n ≤ 1.

P
(
|T1S(ξk)− E [T1S(ξk)]| > 10(M + µmax)d

√
qn−1 log p

)
≤ 2 exp

(
−1

2
100q log p

4 + 20
√

q log p/n

)
≤ 2 exp(−10q log p). (A9)

Since |b(
(

β∗S + ξk
)T XS)− b(β∗TS XS)| ≤ µmaxd, by the same arguments used for (A9), we have

P
(
|T2S(ξk)− E [T2S(ξk)]| > 10µmaxd

√
qn−1 log p

)
≤ 2 exp(−10q log p). (A10)

Combining (A9) and (A10) yields that uniformly over ξk

|TS(ξk)− E [TS(ξk)]| ≤ 10A1d
√

qn−1 log p, (A11)

with probability at least 1− 2(4n2)|S| exp(−10q log p).
We now assess I. Following the same arguments as in Lemma A3,

P
(

sup
ξ∈C(ξk)

|TS(ξ)− TS(ξk)| > (2M + 3µmax)d
√
|S|n−2

)
≤ 2 exp(−8q log p). (A12)

Since
√
|S|n−2 = o(

√
qn−1 log p), combining (A8), (A11) and (A12) together yields that

P
(

sup
ξ∈R|S|(d)

|TS(ξ)− E [TS(ξ)]| ≥ 20A1d
√

qn−1 log p
)

≤ 2(4n2)|S| exp(−10q log p) + 2 exp(−8q log p) ≤ 4 exp(−8q log p).

By the combinatoric inequality (p
s) ≤ (ep/s)s, we obtain that

P
(

sup
|S|≤q,βS∈B0

S(d1)

∣∣∣Gn

[
L
(

βT
SXS, Y

)
− L

(
β∗TS XS, Y

)]∣∣∣ ≥ 20A1d
√

q log p
)

≤
q

∑
s=1

(ep/s)s4 exp(−8q log p) ≤ 4 exp(−6q log p).

(2): We evaluate the mth moment of L(β∗SXS, Y).

E
[(

Yβ∗SXS − b(β∗SXS)
)m
]
≤ E

[
m

∑
t=0

(
m
t

)
|Y|tK2tbm−t

max

]

≤
m

∑
t=0

(
m
t

)
t!
(
(M + µmax)K2)tbm−t

max ≤ m!((M + µmax)K2 + bmax)
m.

Then, by Bernstein’s inequality,

P
(
|Gn

[
L(β∗TS XS, Y)

]
| > 10(A1K2 + bmax)

√
q log p

)
≤ 2 exp(−10q log p).
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By the same arguments used in (i), we obtain that

P
(

sup
|S|≤q

∣∣∣Gn

[
L
(

β∗TS XS, Y
)]∣∣∣ ≥ 10(A1K2 + bmax)

√
q log p

)
≤

q

∑
s=1

(ep/s)s2 exp(−10q log p) ≤ 2 exp(−8q log p).

Lemma A5. Given a model S and r ∈ Sc, under Conditions (1), (2) and (5), for any ‖βS − β∗S‖ ≤ K/
√
|S|,

σminκmin‖βS − β∗S‖2/2 ≤ E
[
`S(β∗S)

]
− E [`S(βS)] ≤ σmaxκmax‖βS − β∗S‖2/2.

Proof. Due to the concavity of the log-likelihood in GLMs with the canonical link,
E
[
YXS − µ(β∗TS XS)XS

]
= 0. Then for any ‖βS − β∗S‖ ≤ K/

√
|S|, |βTXS| ≤ |β∗TXS|+ |(β− β∗)TXS| ≤

K2 + K/
√
|S| × K

√
|S| = 2KL. Thus, by Taylor’s expansion,

E [`S(βS)]− E [`S(β∗S)] = −
1
2
(βS − β∗S)

TE
[
σ
(

β̃T
SXS

)
X⊗2

S

]
(βS − β∗S),

where β̃S is between βS and β∗S. By Condition (5), σminκmin‖βS − β∗S‖2/2 ≤ E
[
`S(β∗S)

]
− E [`S(βS)] ≤

σmaxκmax‖βS − β∗S‖2/2.

Lemma A6. Under Conditions (1)–(6), there exist some constants A2 and A3 that do not depend on n, such that
‖β̂S − β∗S‖ ≤ A2K−1

√
q2 log p/n and |`S(β̂S)− `S(β∗S)| ≤ A3q2 log p/n hold uniformly over S : |S| ≤ q,

with probability at least 1− 6 exp(−6q log p).

Proof. Define

Ω(d) :=
{

sup
|S|≤q,βS∈B0

S(d)

∣∣∣Gn

[
L
(

βT
SXS, Y

)
− L

(
β∗TS XS, Y

) ]∣∣∣ < 20A1d
√

q log p
}

.

By Lemma A4, the event Ω(d) holds with probability at least 1− 4 exp(−6q log p). Thus, in
the proof of Lemma A6, we shall assume Ω(d) hold with d = A2

√
q3 log p/n for some A2 >

20(σminκmin)
−1K2 A1.

For any ‖βS − β∗S‖ = A2K−1
√

q2 log p/n, since
√

q2 log p/n ≤
√

q3 log p/n/
√
|S|, βS ∈ B0

S(d).
By Lemma A5,

`S(β∗S)− `S(βS)

=
(
`S(β∗S)− E [`S(β∗S)]− (`S(βS)− E [`S(βS)])

)
+ (E [`S(β∗S)]− E [`S(βS)])

≥ σminκmin‖βS − β∗S‖2/2− 20A1d
√

q log p/n

= σminκmin A2
2q2 log p/(K2n)− 20A1 A2q2 log p/n > 0.

Thus,
inf

|S|≤q,‖βS−β∗S‖=A2K−1
√

q2 log p/n
`S(β∗S)− `S(βS) > 0.

Then by the concavity of `S(·), we obtain that max|S|≤q

∥∥∥β̂S − β∗S

∥∥∥ ≤ A2K−1
√

q2n−1 log p.



Entropy 2020, 22, 965 26 of 28

On the other hand, for any ‖βS − β∗S‖ ≤ A2K−1
√

q2 log p/n,

|`S(β∗S)− `S(βS)|

≤
∣∣∣`S(β∗S)− E [`S(β∗S)]− (`S(βS)− E [`S(βS)])

∣∣∣+ |E [`S(β∗S)]− E [`S(βS)]|

≤ σmaxκmax‖βS − β∗S‖2/2 + 20A1d
√

q log p/n ≤ A3q2n−1 log p,

where A3 := 4σmaxλmax A2
2K−2 + 20A1 A2.

Appendix B. Additional Results in the Applications

Table A1. Comparison of genes selected by each competing method from the mammalian eye data set.

STEPWISE FR LASSO SIS+LASSO SC dgLARS
STEPWISE 3 3 2 2 2 0
FR 4 2 2 2 0
LASSO 16 5 2 0
SIS+LASSO 9 2 0
SC 4 0
dgLARS 7

Note: Diagonal and off-diagonal elements of the table represent the model sizes for each method and the
number of overlapping genes selected by the two methods corresponding to the row and column, respectively.

Table A2. Selected miRNAs for ESCC training dataset.

Methods Selected miRNAs
STEPWISE miR-4783-3p; miR-320b; miR-1225-3p

FR miR-4783-3p; miR-320b; miR-1225-3p; 6789-5p

SC miR-4783-3p; miR-320b; miR-1225-3p; 6789-5p

LASSO miR-6789-5p; miR-6781-5p; miR-1225-3p; miR-1238-5p; miR-320b;
miR-6794-5p; miR-6877-5p; miR-6785-5p; miR-718; miR-195-5p

SIS+LASSO miR-6785-5p; miR-1238-5p; miR-1225-3p; miR-6789-5p; miR-320b;
miR-6875-5p; miR-6127; miR-1268b; miR-6781-5p; miR-125a-3p

dgLARS miR-891b; miR-6127; miR-151a-5p; miR-195-5p; ; miR-3688-5p
miR-125b-1-3p; miR-1273c; miR-6501-5p; miR-4666a-5p; miR-514a-3p

Note: LASSO, SIS+LASSO, dgLARS selected 20, 17 and 33 miRNAs, respectively, and we only reported top 10
miRNAs.
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