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Abstract: Emotional and physical stress can cause various health problems. In this paper, we used
tissue blood oxygen saturation (StO2), a newly proposed physiological signal, to classify the human
stress. We firstly constructed a public StO2 database including 42 volunteers subjected to two types
of stress. During the physical stress experiment, we observed that the facial StO2 right after the stress
can be either increased or decreased comparing to the baseline. We investigated the StO2 feature
combinations for the classification and found that the average StO2 values from left cheek, chin,
and the middle of the eyebrow can provide the highest classification rate of 95.56%. Comparison
with other stress classification method shows that StO2 based method can provide best classification
performance with lowest feature dimension. These results suggest that facial StO2 can be used as a
promising features to identify stress states, including emotional and physical stress.

Keywords: human stress database; hyperspectral imaging; tissue oxygen saturation; human stress
classification; emotional stress; physical stress

1. Introduction

Stress, which refers to a state of tension when individuals are mentally or physically threatened,
is a kind of imbalanced homeostasis state. Stress can be divided into psychological stress (also known
as emotional stress) and physical stress according to different sources of stressors. Emotional stress
comes from internal stimuli, such as the nervousness brought by stage speeches and important exams.
Being under emotional stress for a long time is a chronic health challenge to the body. Serious emotional
stress can cause some mental illnesses, such as depression. Physical stress comes from external stimuli,
such as excessive exercise, working or driving long hours [1]. Short-term physical stress gives people
a feeling of exhaustion and listlessness. Being under long-term physical stress will seriously affect
our health. Epidemiological studies have pointed out that stress stimulus has a certain relationship
with the increased incidence of hypertension, ulcers, accidents, cardiovascular events [2,3], myocardial
infarction, diabetes, immunological problems and cancer [4–7].

Since both types of stress have an impact on health, the research of stress detection has attracted
the attention of both engineers and psychologists. Depending on the source of signal, human
stress detection can be based on external visual appearance as well as internal physiological signals.
External appearance features can be extracted from facial expressions, gesture, voice, etc. Internal
physiological features can be extracted from common physiological signals, such as ECG, EMG, EEG,
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breath, respiratory, etc. Although the stress detection based on external appearance is intuitive, it is
also easily to be disguised, resulting in the failure of detection. Nevertheless, the internal physiological
signals are involuntary and hard to manipulate, and usually correspond to true feelings. Therefore,
it is more accurate to use physiological signals for stress detection.

In traditional studies, the stress detection based on physiological signals mostly uses contact
methods [1,8–11]. In the process of this detection, participants need to wear sensors, which leads
to inconvenience in operation and difficulty in promotion and application. In order to improve the
convenience, stress detection based on imaging technology has been developing rapidly in recent
years. Using some specific imaging technologies to extract physiological signals to detect stress has
also achieved good results. Pavlidis et al. [12,13] used thermal imaging (TI) to measure blood flow
under skin surface and perspiration of nose to detect stress. McDuff et al. [14] used broadband imaging
to measure heart rate variability (HRV) to detect stress. We [15] used hyperspectral imaging (HSI)
technology to extract tissue blood oxygen saturation (StO2) to detect psychological stress. Later on
Hong et al. [16] used multispectral imaging (MSI) technology to measure the physical stress.

StO2, one of the latest physiological indicators, is associated closely with stress. When an
individual feels stressed, the hypothalamus-pituitary-adrenal (HPA) secretes adrenaline, preparing the
body for fight-or-flight. When in a state of stress, heart and lung activity increases, and nutrients such
as glucose and oxygen are released in large quantities for muscle activity. At the same time, the blood
of the whole body will also have corresponding changes. For example, blood pressure increases,
blood thickens, and blood flow speeds up to 300~400% [15] for aroused brain, heart, and muscles.
The response to stressors will bring about a series of changes in physiological indicators, including
facial StO2, which is the basis of this study [15].

Most of the stress detection studies mentioned above focus on one type of stress recognition.
However, physical stress and emotional stress share some similar characteristics, such as increased
heart rate [15] and breathing rates, muscle tension [17], perspiration [12], which makes it somewhat
difficult to distinguish between physical and emotional stress. Meanwhile, relief methods for the two
types of stress are completely different [18]. Emotional stress requires proper psychological counseling,
while physical stress requires adequate rest and relaxation. It is easy to confuse the two types of
stress when the content of stimuli is unknown, or when the selection of physiological features is not
appropriate. It is necessary to accurately distinguish between physical stress and emotional stress,
and to take the problem-oriented strategy for different types of stress.

One of key factors for distinguishing these two types of stress would be to understand the
characteristics of these two, i.e., to find out the distinguishing features among these two. We have
investigated [19,20] one of traditional physiological signals, the respiratory signal, to find out some
useful features for distinguishing these two types of stress. However, as regard to the latest physiological
signal, the StO2, little work has been done to find out their distinguishing features. In a previous
study [15], we found that when the participants were under psychological stress, the average StO2
values of their forehead were significantly higher than those of the baseline condition. In another pilot
study [21], we found that the change trend of StO2 was different among different participants under
physical stress. Some persons have higher StO2 right after the physical stress than that of baseline,
while some have lower ones.

In this paper, we would like to examine in depth the distinguishing StO2 features of these two
and differentiate the two types of stress only by using StO2 features. To achieve this, we firstly build
an StO2 database including 42 participants’ facial StO2 data, under emotional stress, physical stress,
and baseline states. This database is the first StO2 database including two types of stress and will
be publicly available to the research community. We then carefully examine the facial regional StO2
when participants are in stress. The changes of StO2 due to stress vary from person to person and
from face region to region. After that the best combination of regional StO2 were determined by using
exhaustive search. By using the group of regional StO2, the emotional stress and physical stress are
differentiated. The average accuracy of classifying the two types of stress reaches 95.56%.
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To sum up, the main contributions of this paper have three aspects. Firstly, we provide the first
public stress database of StO2 through non-contact HSI, which contains emotional stress and physical
stress. Secondly, we found that the changes of facial StO2 vary in different face regions and different
persons, and the type of stress also make difference. Thirdly, we tested all the combinations of the
seven regional StO2 features to find the optimal StO2 feature combination, and classified the two types
of stress by only using StO2 features.

The structure of the rest paper is arranged as follows: Section 2 shows the experimental design
and the establishment of StO2 stress database. Section 3 explores different facial StO2 changes under
different types of stress. Section 4 presents the detection of emotional stress and physical stress,
including the detection results and the study of certain feature regions. Conclusion and discussion are
given in Section 5.

2. StO2 Stress Database

2.1. Generating Facial StO2 by HSI

HSI is a technique that performs detailed segmentation on spectral dimensions and enables
imaging in hundreds of adjacent narrow bands with a bandwidth of about 10 nm. What is obtained by
HSI is a 3D image cube [22–24], which contains not only spatial (two-dimensional) but also spectral
(one-dimensional) information. The traditional imaging technique is to image on three broad-band
wavelength channels (R,G,B), and tends to reduce the color discrimination ability. However, HSI can
be performed in hundreds of narrow wavebands, with a strong ability to distinguish colors, coupled
with the texture information of the object, making it has a strong ability to distinguish materials [25].
It is based on this characteristic of HSI that we use it to sense and distinguish blood chromophores
inside body tissues [26].

When air is inhaled into the lungs, oxygen diffuses in the lung to the blood and binds to
deoxygenated hemoglobin to form oxyhemoglobin (HbO2) in an unstable and reversible way. When the
oxygen detached to diffuse in the cell, the HbO2 complex becomes into deoxygenated hemoglobin
(Hb). Hb returns to the heart through the veins and then enters the lungs to bind to the inhaled oxygen
again. The body’s entire blood will carry out such circulation process. Each hemoglobin molecule can
bind to up to four oxygen molecules. Hemoglobin oxygen saturation (SO2) is defined as the ratio of
the amount of HbO2 to the total amount of hemoglobin:

SO2 =
HbO2

Hb + HbO2
(1)

The StO2 used in this paper is the SO2 of microcirculation in tissues, ranging from approximately
60% of venous SO2 to 98% of arterial SO2 [15,27,28]. When the individual performs strenuous exercise
or experiences extreme emotions such as fear, the value of StO2 will deviate from the normal level.
For example, the facial StO2 during exercise could be less than 60%. Sufficient work has been done to
extract StO2 data by HSI based on Beer-Lambert Law [29–31]. The facial StO2 in this paper is deduced
from HSI date by using Modified Beer Lambert Three-Chromosphere model [15,24].

2.2. Experimental Setup

The HSI system utilized in this study consists of a Specim VNIR spectrograph (SPECIM, SPECTRAL
IMAGING LTD., Oulu, Finland) together with a PixelFly camera (PCO, PCO AG, Kelheim, Gemany)
and a home-designed mirror scanning system. The slit of the spectrograph is 30 µm width giving
a maximum spectral resolution of 2.8 nm. The limit of the spectral sensitivity of the PCO camera
ranges from 400 nm to 1000 nm with a maximum quantum efficiency yield of 65% at 650 nm. The size
of whole HSI system is about 40 cm × 20 cm × 12cm. The HSI system images at a fixed number of
wavelengths, i.e., from 380 nm to 800 nm with a step of 2 nm (300 wavelengths). It needs 20 s for the
system to record one image cube.
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During the whole imaging process, halogen lights were used as the sole illumination source.
The HSI system is about 1 m away from the participants. The HSI data were obtained when the
participants were in still pose. During the imaging, the participants were required to rest their jaws on
a jaw bracket just like the ones used in optometry to keep the face still. Twenty seconds are required
for the system to record one image cube. Any slight movement of the participants will cause distortion
of the StO2 image, however, this distortion will be adjusted by using a registration operation.

2.3. Experimental Procedures and Protocols

Forty-two volunteers participated in the experiment. They were students aged from 18 to 25 at
Southwest University, half of whom were male and half female. All participants were healthy, with
no color recognition disorder and free from mental and physical illnesses. Prior to the experiments,
everyone signed an informed consent. The experimental protocols were approved by the local Ethics
Committee of Southwest University. All the experiments were conducted indoors with the room
temperature being 26 degrees Celsius (air conditioning was applied), and the data were collected
while the participant was sitting in a chair. The participant was given 10 min to adapt after entering
the experimental environment. During the 10 min, the participant was introduced the procedure
details of the experiment (see Figure 1). The experiment consisted of three main sessions: the baseline
session, the emotional stress session and the physical stress session. A modified Trier Social Stress
Test (TSST) was used to stimulate participants’ emotional stress. The TSST is a widely used social
psychological stress test in the world [32]. Its psychological stress test includes public speaking
and numerical calculation. Since there is no professional audience in our experiment, we used a
Stroop Color-Word test [33] to replace the public speech. In this paper, timed mental arithmetic and
Stroop Color-Word tests [33] were employed as emotional stressors, and each stimulus was randomly
presented. Studies have shown that Stroop Color-Word test can effectively stimulate participants’
psychological stress [34,35]. The Stroop Color-Word test slide shows a color-meaning word (Red, blue,
green or yellow) in colors that differ from the meaning of the word, such as the word “Green” in
Blue. Participants were asked to randomly choose the meaning or color of the word. Before the test,
the participant was told that if he/she made more correct choices than the average, he/she would get
CNY20 as a reward. The answer time per slide was 5 s at the beginning, and gradually decreased
to 3.5 s at the end of the test to increase the difficulty. HSI data of emotional stress was collected as
ES. In the physical stress session, participants were asked to perform 30 to 60 self-weight squats as
many as they could. After the squats, they returned to their seats immediately and we obtained the
facial HSI data of physical stress as PS1. Physical stress data PS2 was taken after the participant had
rested for two minutes after the squats. Before each session, there was a baseline session, during which
participants were given a five-minute break to adjust their states back to normal. Then HSI data of
baseline was collected. After all sessions were completed, participants were asked to evaluate the
levels of emotional and physical stress on a scale of 1 to 10. A self-reported score greater than 6 was
considered as valid data for subsequent analysis and identification. In our experiments, all participants
reported stress levels greater than 6. HSI data were collected at the end of each experimental session.
The baseline data corresponding to each session were collected to remove individual differences.
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The emotional stress test was performed first and then the physical stress was performed
(See Figure 1). The sequence of these two tests was not randomized. To eliminate the any possible
effect of emotional stress test on the physical stress, there are five minutes for the participant to prepare
the physical stress and another five minutes to break so as to restore himself/herself back to normal.
That is to say from the end of the emotional stress test to the beginning of physical stress, there are
ten minutes for the participant to rest. Another way to ensure the independence of these two tests
or sessions is to take different baseline StO2 for the two tests. Right before the emotional stress and
physical stress, the HSI data was recorded to generate emotional stress baseline StO2 (ES_baseline in
Figure 1) and physical stress baseline (PS_baseline in Figure 1). Right after the stress test, the HSI data
was recorded again to generate emotional stress StO2 (ES in Figure 1) and physical stress StO2 (PS1 and
PS2 in Figure 1). The differences between baseline and stress StO2, ES-ES_baseline and PS-PS_baseline,
were used to classify the two types of stress.

2.4. Processing of HSI Data

The processing flow of HSI data is shown in Figure 2. The raw HSI date of faces were processed by
using Modified Beer Lambert Three-Chromosphere model [15,24] to obtain facial StO2 data. Because
each pixel of the StO2 image is affected by surrounding tissues, the final StO2 image was generated by
averaging the raw StO2 image. For the convenience of subsequent use, we then registered the acquired
facial StO2 image to the standard face through 65 key points of the face.
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The standard face (see Figure 3a) is the average image of 100 students’ face images from Southwest
University, which is generated by superimposing and averaging these 100 images through key points
of the face. The StO2 registration process is as follows: Firstly, according to the facial 65 key points
(see Figure 3b), we select the corresponding points on the original face image one by one to form a
65 × 2 matrix. Then, through geometric transformation, the original matrix is mapped to the same size
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matrix of 65 key points on the standard face, and a fourth-order polynomial transformation matrix is
obtained. Finally, through this fourth-order polynomial transformation matrix, the original StO2 can
be registered to the standard face.Entropy 2020, 22, x FOR PEER REVIEW 6 of 23 
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By performing this processing, all the StO2 faces of different shape will become the same shape,
so that the regional facial StO2 analysis can be conducted precisely (the size of the ROI of every StO2
face is the same). In our previous pilot study [21], we registered the face through 23 key points. In this
paper, we used more key points for registration to achieve higher accuracy.

The ear region is not used in this research, therefore the key points do not include the points on
the ear. The StO2 values in the final registered StO2 maps in ear regions are average StO2 values from
the neighbor face regions and do not indicate real StO2 values of the ears.

2.5. Overview of StO2 Stress Database

The StO2 Stress database (Table 1) include stress data from 42 participants. Data for each
participant include emotional stress data ES, physical stress data PS1, PS2, emotional stress baseline
data ES_baseline, and physical stress baseline data PS_baseline. The data is facial StO2 image after
registration, with the size of 513 × 911. Therefore, the StO2 Stress database include 210 (42 × 5) facial
StO2 images. The baseline data can be used to remove individual differences. It is worth noting
that due to the nature of the HSI imaging system mentioned earlier (see Section 2.2), some raw StO2
images may be distorted and stretched. However, after registration this distortion does not affect the
subsequent analysis and use of data.

Table 1. Overview of StO2 stress database.

Total Number of
Participants Stress Categories Spatial Resolution of

Each Image
Total Number of StO2

Images

42

Baseline of ES
ES

Baseline of PS
PS1
PS2

513∗911 210
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3. Facial StO2 of Stress

In this research, seven regions of interest (ROIs) were selected to explore the changes of StO2
under different types of stress, i.e., forehead [15], left cheek, nose, right cheek, chin, the middle of
the eyebrow (meixin) [16,21], and philtrum [16,21]. Within these ROIs, two [16,21] of them have been
investigated under solo type of stress. The rest five will be examined for the first time in this paper.
The seven regions selected cover most of the upper, middle and lower parts of the face, which may
fully represent facial StO2 features. The selected ROIs and their numberings are shown in Figure 4.
Among them, ROI1 represents forehead, ROI2 represents the right cheek, ROI3 represents the nose,
ROI4 represents the left cheek, ROI5 represents the chin, ROI6 represents the philtrum and ROI7
represents the meixin. Because all the StO2 maps were registered in a standard face, the area of each
ROI of each participant is the same. When the HSI camera took a face image, the left part of the image
collected was actually the right part of the participant, and no image mirror flip was performed in the
subsequent processing. So ROI2 represents the right cheek of the participant, and ROI4 represents
the left cheek of the participant. The mean StO2 (M_StO2) value within each ROI calculated. In the
study of facial StO2 changes under different stress states, we selected typical data of six participants for
analysis. Of course the StO2 figures of all the 42 participants can be accessed in our published database.
The data of the six participants selected are named from sub1 to sub6, and the corresponding ID of
these participants in the database is 2, 15, 19, 10, 23 and 29, respectively.
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3.1. Facial StO2 of Emotional Stress

The left part of Figure 5 shows the facial StO2 of six participants under baseline state and ES state,
and right part shows the delta% of ES StO2, with the warm color representing high StO2 value and high
delta% (see color bar of Figure 5). Figure 6 shows the average StO2 values within ROIs under baseline
state and emotional stress state. From Figure 5, it is seen that the ES facial StO2 are higher than the
baseline facial StO2 visually (more warm color is presented). Quantitative analysis of change of StO2
due to ES from Figure 6 indicates that StO2 rises in the forehead region under emotional stress, which
is consistent with our previous research [15]. Meanwhile, the left and right cheeks and the meixin
region (except for sub 4) also rise significantly. However, compared to other regions, the increase of
StO2 in the nose region was small or even unchanged (see Figure 6). StO2 in the chin region even
decreased in three of these six participants (sub3, sub5, sub6).



Entropy 2020, 22, 962 8 of 22
Entropy 2020, 22, x FOR PEER REVIEW 8 of 23 

 

 
Figure 5. Facial StO2 maps of six participants under (a) baseline and (b) emotional stress. (c) delta% 
represents the incremental percentage of facial StO2 under emotional stress. 

Figure 5. Facial StO2 maps of six participants under (a) baseline and (b) emotional stress. (c) delta%
represents the incremental percentage of facial StO2 under emotional stress.

The average StO2 of every ROI of all participants can form a vector with 42 elements
(42 participants). Performing statistical analysis on this vector (maximum, minimum, median,
quartile), we can obtain a boxplot shown in Figure 7. It is observed that the ES StO2 are higher than
baseline StO2 statistically. However, the StO2 within RIO3 (nose), ROI5 (chin), and ROI6 (Philtrum)
have smaller change. At the same time, we calculate the delta score of M_StO2=ES-ES_baseline in
seven ROIs of all participants under emotional stress, which are illustrated in Figure 8 with colors
representing facial regions, numbers at horizontal axis representing ID of participants, and numbers in
vertical axis representing delta score of M_StO2. It can be seen that most of the delta scores are larger
than 0, which indicates that the ES StO2 trend is rising compared to the baseline. The delta scores
that are smaller than 0 mostly belong to chin (black dots in Figure 8) and philtrum (green dots) areas,
and the delta scores of nose areas (gray dots) are mostly near the 0, which indicate that the nose, chin
and philtrum area will have smaller rising. These observation accords with the boxplot in Figure 7.
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The increase of facial StO2 during ES could be due to the “fight-or-flight” state. When a person is
under emotional stress, this “fight-or-flight” state could be triggered. The brain needs to function more
quickly to prepare for the potential threat and the eye needs to see more sharply [36], therefore more
oxygenated blood could flow into head through the neck artery. This oxygenated blood also floods the
face and makes most of the facial areas experience higher StO2. The chin, philtrum, and nose areas are
relatively small areas compared to the other facial areas. Most of lower StO2 during ES are observed in
these three areas. We do not have a good physiological explanation for this observation. The small
cases of lower StO2 in this area might be due to individual differences in the blood flow distribution
mechanism. During the ES, the blood vessels of these areas are contracted and the blood flow to these
three areas is restricted to supply more oxygenated blood to the more functional areas such as the
eyes and brain. This phenomenon is similar to the “cold nose during stress”. When some persons are
stressed, the blood flow to the nose can be reduced and thus they feel a cold nose.

3.2. Facial StO2 of Physical Stress

In our pilot experiment [21], in which 20 participants took physical stress tests, we found that
some had lower overall PS1 data than baseline, while others had higher PS1 data. After a two-minute
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rest, the PS2 gradually rose towards baseline. In this paper, we increased the number of participants to
42, and still observed this phenomenon.

The left part of Figure 9 shows the facial StO2 of the six participants under baseline, PS1, and PS2
states, and right part shows the delta% of PS1 StO2 and PS2 StO2, respectively. Figure 10 shows the
average StO2 values within ROIs under different states. It is seen from Figure 9 that three participants,
i.e., sub1, sub2, sub3, had lower PS1 StO2 than the baseline, while for sub4, sub5, and sub6, their PS1
StO2 was higher than the baseline. These conclusions are reflected in the delta% (Figure 9d) that the
most delta% colors of PS1 StO2 of sub1, sub2, sub3 are cold colors, while the most delta% colors of
sub4, sub5, and sub6 are warm colors. Quantitative analysis from Figure 10 confirms the observation
of Figure 9. All the PS1 StO2 values in the seven ROIs are lower than baseline in the three participants
(left column of Figure 10). For the other three participants, forehead, nose, cheek (except for right cheek
of sub5) all experienced little higher PS1 StO2.
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By analyzing all 42 subjects, we found that more than 60% of the participants had lower PS1 StO2
than the baseline StO2. After a two-minute rest, the PS2 increases from PS1, which means PS2 changes
towards the baseline value. On the other hand, other participants showed an overall increased PS1
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compared to the baseline. The PS2 of these participants decreased compared to PS1, which means the
PS2 also changes towards baseline. The boxplots of average StO2 of ROIs of all participants under PS
and baseline are shown in Figure 11. The average PS1 StO2 is lower than average baseline StO2 in all
ROIs. This is because more than 60% participants have lower PS1 StO2. The PS2 StO2 are all higher
than PS1 and recover towards baseline.
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PS1 StO2 is the StO2 collected when physical stress just finished, while PS2 StO2 is the StO2
collected when physical stress gradually dropped but had not completely disappeared. The different
change trends of PS1 StO2 may thus be understandable. A familiar scene similar to this could be that
different people may have different facial color changes right after a thousand-meter race. Some will
turn pale and others will turn red. This difference may be due to the diversity of blood regulation
mechanisms of individuals. When some persons exercise vigorously, the hearts beat faster and the
breathing become faster. At this time, the cells of the body need a lot of oxygen support, which makes
the blood vessels dilate and faces become red. However, for some other individuals, the ability of
blood to carry and transport oxygen might be limited. When these people do exercise, most of the
blood is supplied to the muscles, which causes the blood to the face to be reduced, resulting in the
appearance of facial paleness.

We also calculated the delta scores of M_StO2 = PS1−PS_baseline, M_StO2 = PS2−PS1,
and M_StO2 = PS2−PS_baseline in seven ROIs of all participants, which are illustrated in Figure 12
with colors representing facial regions, numbers at horizontal axis representing ID of participants,
and numbers in vertical axis representing M_StO2. It is seen in Figure 12 that most data of
M_StO2 = PS1-PS_baseline are smaller than 0, which confirms that the PS1 is lower than PS_baseline
in most of the cases. For PS2-PS1, more than half of the values are larger than 0. The participants with
more dots over 0 line in the PS1-PS_baseline (upper part of Figure 12) will have more dots below 0 line
(middle part of Figure 12). For example, the participants 10, 29, and 33 have more dots over black line
(0 values) in the PS1-PS_baseline plot, they also have more dots below the black line in the PS2-PS1
plot. This indicates that for those participants having higher PS1 than baseline, they will have lower
PS2 than PS1, and their PS2 StO2 is changing towards baseline. This is also true for those participants
with lower PS1 than PS_baseline, their PS2 are also changing towards baseline. By observing the
PS2-PS_baseline in the lower part of Figure 12, we can see that more than 60% of the dots deviate more
than 5% from the 0 value, which indicates that most participants still do not recover to baseline after
2 min rest. But comparing to the PS1-PS_baseline, the dots in PS2-PS_baseline are closers to the 0 value.
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There is no particular StO2 changing pattern, like that in the ES test, observed for specific facial areas
in the PS test.
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4. Stress Detection

4.1. Feature Extraction

Based on the analysis of ROI StO2, it is obvious that the value of ROI StO2 could be an indicator
of stress. However, it is hard to determine which ROI or which combination of ROIs could be used
to classify the two types of stress only by using statistic methods. Since there are seven selected
ROIs, the number of the combination of ROIs is 7 + 21 + 35 + 35 + 21 + 7 + 1 = 127 (which is not
large), we used an exhaustive search to find the best combination of ROIs that can give the highest
classification rate.

For all participants, we took ES as the emotional stress data and PS1 as the physical stress data.
The M_StO2 of ROIs were calculated as the features. StO2 may vary individually, it is influenced by
adipose tissue thickness and gender [37]. Baseline information for each participant was also taken into
account due to the individual differences among participants. The final features for the classification
were M_StO2 of ES or PS1 minus M_StO2 of its corresponding baseline. Because each ROI produces
one features, there are a total of 127 feature combinations (same as the number of ROI combinations).
Each of 127 feature combinations was tried as input to a SVM classifier for the classification. The radial
basis function (RBF) [38] was selected in SVM.

4.2. Feature Selection

Five-fold random cross-validation for 50 times was used in the classification task. The classification
in this research is a two-class classification (either ES or PS). The database is well balanced, i.e.,
the number of ES samples is the same of the number of PS samples. Therefore, the classification rate is
used as the object function, which is defined as the ratio of the number of predicted class to the number
of actual class.

When the feature dimension is one (only one ROI), we can observe the effect of each ROI on the
classification task. The average classification rate of every ROI is shown in Figure 13a. It is seen that
the chin region (ROI5) had a poor effect on the discrimination of both stresses. The chin area only
achieved an average recognition rate of 62.89% while the rest ROIs achieved an average recognition
rate of more than 80%.

Figure 13b shows the average classification rate under different dimension size of features.
When the feature dimension is 6, there are seven combinations of features, i.e., ROI{1,2,3,4,5,6}
ROI{1,2,3,4,5,7}, ROI{1,2,3,4,6,7}, ROI{1,2,3,5,6,7}, ROI{1,2,4,5,6,7}, ROI{1,3,4,5,6,7}, and ROI{2,3,4,5,6,7}.
The classification rate at feature dimension 6 in the Figure 13b is the average classification rate of these
seven cases, which is 91.61%. It is observed from Figure 13b that as the dimension of features increases,
the average of classification rate increases.

Figure 13c shows the best classification rate and combination of features within each feature
dimension size. It is seen that the best classification rate at dimension size 6 is achieved by the
combination ROI{1,2,3,4,5,7}, which is 93.09%. The highest classification rate (95.56%) of all 127 features
combinations is achieved by combination ROI{4,5,7}.

Therefore, the selected ROIs/features are left cheek (ROI4), chin (ROI5) and meixin (ROI7).
These three ROIs correspond to the middle, lower and upper facial areas of the whole face, so it is
understandable that this combination can achieve a high recognition rate.

4.3. Cheek ROIs Comparison

The three selected ROIs correspond to the middle, lower and upper facial areas of the face.
The middle part is the left cheek (ROI4). Because the blood vessels on both cheeks are symmetrical [39],
it is natural to ask whether right cheek (ROI2) will have the same effect if it replaces the left cheek.
The classification rates achieved by ROI4 and ROI2 are compared in Table 2. ROI4 can give 2% higher
classification rate than ROI2 in both ES and PS situation. This finding might be related to the theory of
division of labor between right and left brains [40–43].
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Table 2. Comparison of accuracy between ROI2, ROI4 and feature combination with ROI5 and ROI7.

Single Feature or Combination of Features ES (%) PS (%) Average (%)

ROI2 84.71 84.61 85.66
ROI4 87.26 86.78 87.02

ROI{2,5,7} 85.78 91.94 88.86
ROI{4,5,7} 96.82 94.3 95.56

Sperry’s split brain experiment in the late 1950s found that for the vast majority of right-handed
people and the majority of left-handed people, the left hemisphere was associated with verbal,
reasoning, rational and analytical thinking, while the right hemisphere was associated with perceptual,
spatial subject perception and intuitive thinking. Therefore, the left brain could be called “conscious
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brain”, “academic brain” and “language brain”, while the right brain could be called “subconscious
brain”, “creative brain”, “musical brain” and “artistic brain”. In our experimental process, stimulus
sources of ES include timed mental calculation and Stroop Color-Word tests, both of which require
rational calculation and analysis of participants. According to Sperry’s theory of the right and left brain,
during the experiment of ES, the left brain activity increased, and the StO2 in the left cheek connected
with the left brain nerve increased, resulting in the left cheek (ROI4) features showing considerable
superiority to the identification of ES. In order to explore whether the StO2 in the left cheek (ROI4) was
significantly higher than that in the right cheek (ROI2) under the ES condition, we performed a t-test.

However, the t-test results between StO2 of ROI2 and ROI4 under various affective states in
Table 3 show that there is no statistical difference between these two areas. The values that we used to
conduct the t-test are the features that we used to detect stress. The h in Table 3 is the result of test,
where h = 0 means there is no statistical difference between two datasets and h = 1 means there is a
difference. The p is possibility. The smaller the p value, the more the difference. In general, when
p is less than 0.05, we believe that there is a statistical difference between the two datasets. The ci
is confidence interval and the t is the t-test value. The results of the t-test directly indicate that the
difference of StO2 changes in the left and right cheeks could not reach statistical significance under
neither emotional stress nor physical stress. The observation in this research might also be because
that the dataset is not large enough, the division theory does not apply in our study.

Table 3. T-test results of ROI2 and ROI4 features.

Features for t-Test h p ci t

All_ROI2,All_ROI4 0 0.3776 −1.6550,0.6340 −0.8872
ES_ROI2,ES_ROI4 0 0.4111 −2.4781,1.0340 −0.8304
PS_ROI2,PS_ROI4 0 0.6973 −1.8402,1.2423 −0.3917

We have also examined the combination of ROI{2,5,7} and found this combination can only give a
classification rate of 88.86%, much lower than what ROI{4,5,7} can achieve (95.56%). This observation
from purely data analysis confirm that the left cheek is more suitable for stress detection in terms of
achieving higher accuracy. The superiority of ROI {4,5,7} may came from the combination of ROI4 and
the remaining two ROIs.

4.4. Classification of PS and ES

We used optimal ROI feature combination as input to some classical machine learning algorithms
to classify the ES and PS, and the classification results were shown in Table 4. Except for the decision
tree, all the classification rate achieved were more than 90%. In other words, the feature combination
of the left cheek (ROI4), chin (ROI5), and meixin (ROI7) is robust for stress detection. All of the above
results also indicate that stress can be identified and that the non-contact method of extracting StO2
features through HSI can effectively separate emotional stress from physical stress.

Table 4. Recognition rate of other algorithms with the best ROIs’ features as the input.

Algorithms Accuracy

Linear Discriminant 90.5%
Logistic Regression 91.98%

KNN 92.28%
Decision Tree 86.9%

Ensemble learning 92%

4.5. Comparison with Other Methods

Since there was no public HSI stress database before, there are no studies on using HSI to classify
stress. Therefore, we cannot directly compare our results with those of others. However, we can
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compare achieved accuracy with that of the other methods, which have the similar goal with our
task. The comparison is divided into three parts: the first part is the comparison with emotional
stress detection, as shown in Table 5; the second part is the comparison with physical stress detection,
as shown in Table 6; the third part is the comparison with the classification of emotional stress and
physical stress, as shown in Table 7.

In related researches of emotional stress detection, some researchers [44–46] used physiological signals
collected by the contact method to perform stress detection. Non-contact stress detection [14,15,20,47,48]
had also achieved good results with the development of imaging technology. As shown in Table 5, among
all methods, whether contact or non-contact, our proposed method achieved the highest accuracy
(96.82%). Moreover, the number of features in our method is very small (only three features).

Table 5. Comparison of emotional stress detection.

Methods Measurements Amount of Features Classifier Accuracy

[46] Wearable EEG devices 80 Gaussian SVM 80.32%

[14] Five band DC for heart rate,
breath rate, HRV 3 Linear SVM 85%

[15] HSI for StO2 signal of forehead 1 Binary classifier 88.1%
[44] Galvanic skin response 16 ANOVA test 89%
[45] ECG, HRV 20 KNN, SVM 92.75%
[47] Thermal signals 3 EM-CCA, BP 93.3%

[48] Non-contact Bioradar for
respiratory signals 3 3 layer

perceptron 94.44%

[20] Kinect for respiratory signals 56 SVM 94.76% 1

Ours HSI for facial StO2 signals 3 SVM 96.82%
1 Results of classification for emotional stress and the other two states (physical stress and relaxation).

Table 6. Comparison of physical stress detection.

Methods Measurements Amount of Features Classifier Accuracy

[21] HSI for facial StO2 signals 5 SVM 82.11%
[47] Thermal signals 3 Back Propagation 93.3%
[16] MSI for StO2 signal 2 MCDS, LSTM 93.3% 1

[20] Kinect for respiratory signals 56 SVM 92.17% 2

Ours HSI for facial StO2 signals 3 SVM 94.3%
1 The result is the average accuracy of PS for three different loads. 2 Results of classification of physical stress and
the other two states (emotional stress and relaxation).

Table 7. Comparison of emotional and physical stress classification.

Methods Measurements Amount of Features Classifier Accuracy

[47] Thermal signals 3 EM-CCA, BP 93.3%
[20] Kinect for respiratory signals 56 SVM 97.93% 1

Ours HSI for facial StO2 signals 3 SVM 95.56%
1 Results of classification of emotional stress and physical stress.

Compared with emotional stress detection, there are relatively few physical stress detection studies.
Early physical stress detection mainly focused on drivers’ physical fatigue while driving [1,11]. In recent
years, most physical stress detection research uses non-contact imaging-based methods [16,20,21,47].
The comparison of PS detection is given in Table 6. Among all the methods, our proposed method
achieved the highest accuracy (94.3%) and the feature dimensions of our method are only three.

Very few studies have been performed to distinguish between emotional and physical stress.
There are two papers that discriminate between emotional stress and physical stress. Both papers used
a contactless measurement, which was similar to the task we did. Hong et al. [47] distinguished the
two types of stress based on thermal signals. Our previous work [20] used respiratory signals based on
a Kinect depth perception camera for the classification. The average accuracy of stress classification is
shown in Table 7. The classification rate achieved in this paper is higher than that in [47], but lower
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than that in [20]. However, the dimension size used in this research is much smaller than that used
in [20], but the same as that in [47].

5. Discussion and Conclusions

In this study, we proposed to classify stress by using facial StO2 extracted from HSI. The way
used to acquire HSI signals is a contact free method. Facial StO2 has been proved to be an excellent
physiological indicator to distinguish stress. When using StO2 features to detect stress, only a few
features can achieve a high accuracy.

We organized the data collected during the experiment into a public StO2 stress database, which
contains two common stress categories, emotional stress and physical stress. Most studies so far have
focused only on one type of stress detection. Our open stress database will provide researchers with a
data platform to study and detect both types of stress.

By visualizing StO2 changes in seven major facial regions under two stress states, we observed
different trends of StO2 change in these seven regions and the changes were also different among
different persons. This indicates that the StO2 feature can effectively distinguish between the two types
of stress. Moreover, by comparing the facial StO2 immediately after physical stress and two minutes
later, we found that the change trend of StO2 among different participants is different. Some people had
higher StO2 levels than baseline after physical stress, while others had lower ones. This is consistent
with the phenomenon in one of our pilot studies [21]. Through data statistics, we found that PS1 StO2
below the baseline StO2 accounted for more than 60% of the total cases. However, this result is based
on the fact that the participants are all young university students. This situation might change if more
participants of different ages or jobs were added. The effect of age or exercise capacity on the change
trend of PS StO2 is still unknown at this stage.

We tried all the feature combinations of the seven selected ROIs to classify stress and found the
feature combination that can achieve the highest recognition rate of 95.56%, i.e., the left cheek, chin,
and meixin. At the same time, it can be observed that under this optimal combination of features, if the
left cheek feature was replaced by the right cheek feature, the classification rate will be greatly reduced.
To understand this phenomenon, we conducted a series data analyses. It was found that there was no
significant difference in StO2 between the left and right cheeks, and the accuracy difference came from
the combination of features.

The StO2 can be influenced by adipose tissue and thus differs between males and females [37].
However, the effect of adipose tissue on StO2 has not been considered in this research. The input
wavelengths of this study is from 518 nm to 580 nm [15]. In this wavelength range, the main
chromophores are Hb, HbO2, and melanin, which have been considered in our StO2 producing
model [15]. Pure mammalian fat starts to absorb light from around 700 nm and reaches absorption
peaks at around 920 nm [49]. Though considering the effect of adipose tissue will provide more
accuracy in the research, we have not taken this effect into account due to the wavelength used in this
research being below 700 nm. The exact reading of StO2 in this research might therefore deviate slightly
from the real reading. However, the input features to the classification model are the PS1-PS_basline,
and ES-ES_baseline, which are the difference between stress StO2 and baseline StO2. That is to say,
we depend on the change of StO2 not the exact reading of StO2 to classify the two types of stress.
This operation could avoid the effect of the small deviation of StO2 readings, because since the deviation
due to the adipose tissue for the same person is fixed, the difference between stress state and baseline
states can eliminate the deviation.

The StO2 was produced by using HSI in this research. The HSI [22] is also a spectroscopy technique,
and a complementary imaging option of the point/line spectroscopy. It uses reflectance or transmittance
at every wavelength of materials to analyze the contents of the materials. This characteristic is the same
as that of NIR spectroscopy. However, the HSI normally takes a wider range of light wavelengths as
the input, such as visible to near-infrared (from roughly 380 nm to 2500 nm), while NIR spectroscopy
uses input wavelengths from roughly 700 nm to 2500 nm. Another characteristics of HSI is that
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it can generate a 3D image cube, where every pixel in a 2D image has also spectral values for all
the wavelengths.

The physical stress test in the research requires the participant to do as many squats as possible
within a certain period of time to trigger physical stress, and the participant will report their stress
level after the test. For the data of 42 participants, the self-assessment stress levels are all greater than 6
points (rating 1 to 10 points), which means that 30 to 60 squats can indeed trigger physical stress for
these participants. The maximal exercise is not achieved in this study, the physical stress induced in
the research is not the stress induced by maximal exercise. In that case, the self-assessment levels could
be as high as 10.

The features used in the research are relatively simple and the classification task is two-class task
(emotional stress or physical stress), we therefore choose SVM as the classifier because SVM is one
of the simplest but classical classifiers suitable for two-class classification task. We also used other
classical and commonly used machine learning algorithms, such as KNN and decision tree (see Table 4),
for the classification. Compared to the SVM, they cannot achieve as high a classification accuracy as
SVM. There will be of course other methods that can improve the classification accuracy. Researchers
are encouraged to develop their own more sophisticated algorithms to reach higher classification rates
on the published database.

To achieve high classification accuracy of stress detection, there are two factors. One is the
algorithm used, the other is the input data. In this paper, what we would like to emphasize is that the
input data (StO2) is a good signal for stress classification. To achieve this purpose, we have used a
very simply algorithm to classify the two types of stress, i.e., calculating the average StO2 on ROIs as
features, using SVM as the classifier. These algorithms are the simplest (or as simple as the others) in
the Tables 5 and 6. However, the algorithm can achieve the best classification accuracy. The results
support our notion that facial StO2 can be used as a promising feature to identify stress states, including
emotional and physical stress.

Since the importance of stress to human health cannot be ignored, it is essential to accurately detect
stress and propose appropriate stress relief methods accordingly. In this paper, the three facial area
features extracted by HSI can achieve an accuracy of more than 95% to distinguish between emotional
stress and physical stress. This indicates that the facial StO2 feature is a valid physiological indicator
of differentiating stress. The proposed method could be used to monitoring and discriminating
human stress and suggest a proper treatment method according to the type of stress detected. It will
also interesting to investigate in the future whether StO2 could be a potential feature for detecting
basic emotions.
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3. Schnall, P.; Belkić, K.; Landsbergis, P.; Baker, D. Why the workplace and cardiovascular disease? Occup. Med.
2000, 15, 1–5. [PubMed]

http://www.ncbi.nlm.nih.gov/pubmed/10620785


Entropy 2020, 22, 962 21 of 22

4. Juster, R.; Mcewen, B.S.; Lupien, S.J. Allostatic load biomarkers of chronic stress and impact on health and
cognition. Neurosci. Biobehav. Rev. 2010, 35, 2–16. [CrossRef]

5. Rugulies, R. Depression as a predictor for coronary heart disease: A review and meta-analysis. Am. J.
Prev. Med. 2002, 23, 51–61. [CrossRef]

6. Anxiety and Physical Illness. Available online: https://www.health.harvard.edu/staying-healthy/anxiety_
and_physical_illness (accessed on 12 February 2016).

7. Thoits, P.A. Stress and health major findings and policy implications. J. Health Soc. Behav. 2010, 51. [CrossRef]
[PubMed]

8. Widanti, N.; Sumanto, B.; Rosa, P.; Miftahudin, M.F. Stress level detection using heart rate, blood pressure,
and GSR and stress therapy by utilizing infrared. In Proceedings of the International Conference on Industrial
Instrumentation and Control, Pune, India, 28–30 May 2015.

9. Wen, W.; Liu, G.; Cheng, N.; Wei, J.; Shangguan, P.; Huang, W. Emotion recognition based on multi-variant
correlation of physiological signals. IEEE Trans. Affect. Comput. 2014, 5, 126–140. [CrossRef]

10. Ren, P.; Barreto, A.; Gao, Y.; Adjouadi, M. Affective assessment by digital processing of the pupil diameter.
IEEE Trans. Affect. Comput. 2012, 4, 2–14. [CrossRef]

11. Healey, J.; Picard, R.W. Detecting stress during real-world driving tasks using physiological sensors.
IEEE Trans. Intell. Transp. Syst. 2005, 6, 156–166. [CrossRef]

12. Shastri, D.; Papadakis, M.; Tsiamyrtzis, P.; Bass, B.; Pavlidis, I. Perinasal imaging of physiological stress and
its affective potential. IEEE Trans. Affect. Comput. 2012, 3, 366–378. [CrossRef]

13. Pavlidis, I.; Dowdall, J.; Sun, N.; Puri, C.; Fei, J.; Garbey, M. Interacting with Human physiology. Comput. Vis.
Image Underst. 2007, 108, 150–170. [CrossRef]

14. Mcduff, D.; Gontarek, S.; Picard, R.W. Remote measurement of cognitive stress via heart rate variability.
In Proceedings of the International Conference of the IEEE Engineering in Medicine and Biology Society,
Chicago, IL, USA, 26–30 August 2014.

15. Chen, T.; Yuen, P.; Richardson, M.; Liu, G.; She, Z. Detection of psychological stress using a hyperspectral
imaging technique. IEEE Trans. Affect. Comput. 2014, 5, 391–405. [CrossRef]

16. Hong, K.; Liu, X.; Liu, G.; Chen, W. Detection of physical stress using multispectral imaging. Neurocomputing
2019, 329, 116–128. [CrossRef]

17. Lundberg, U.; Forsman, M.; Zachau, G.; Eklöf, M.; Palmerud, G.; Melin, B.; Kadefors, R. Effects of
experimentally induced mental and physical stress on motor unit recruitment in the trapezius muscle.
Work Stress 2002, 16, 166–178. [CrossRef]

18. Coping with Stress. Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/

violenceprevention/suicide/copingwith-stresstips.html (accessed on 12 February 2016).
19. Shan, Y.; Chen, T.; Yao, L.; Wu, Z.; Wen, W.; Liu, G. Remote detection and Classification of human stress

using a depth sensing technique. In Proceedings of the Affective Computing and Intelligent Interaction,
Beijing, China, 20–22 May 2018.

20. Shan, Y.; Li, S.; Chen, T. Respiratory signal and human stress: Non-contact detection of stress with a low-cost
depth sensing camera. Int. J. Mach. Learn. Cybern. 2020. [CrossRef]

21. Liu, X.; Xiao, X.; Cao, R.; Chen, T. Evolution of facial tissue oxygen saturation and detection of human physical
stress. In Proceedings of the Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC),
Dalian, China, 14–16 April 2020.

22. Yuen, P.W.; Richardson, M.A. An introduction to hyperspectral imaging and its application for security,
surveillance and target acquisition. Imaging Sci. J. 2010, 58, 241–253. [CrossRef]

23. Newman, J.D. MEMS programmable spectral imaging for remote sensing. SPIE Newsroom 2006, 4. [CrossRef]
24. Chen, T.; Yuen, P.; Richardson, M.; She, Z.; Liu, G. Wavelength and model selection for hyperspectral imaging

of tissue oxygen saturation. Imaging Sci. J. 2015, 63, 290–295. [CrossRef]
25. Yuen, P.W.; Bishop, G.J. Hyperspectral multiple approach fusion for the long-range detection of low observable

objects MUF2. In Proceedings of the International Society for Optics and Photonics, Stockholm, Sweden,
11–12 September 2006.

26. Chen, T.; Yuen, P.; Hong, K.; Ibrahim, I.; Tsitiridis, A.; Soori, U.; Jackman, J.; James, D.; Richardson, M.
Assessment of tissue blood perfusion in-vitro using hyperspectral and thermal imaging techniques.
In Proceedings of the International Conference on Bioinformatics and Biomedical Engineering, Wuhan,
China, 10–12 May 2011.

http://dx.doi.org/10.1016/j.neubiorev.2009.10.002
http://dx.doi.org/10.1016/S0749-3797(02)00439-7
https://www.health.harvard.edu/staying-healthy/anxiety_and_physical_illness
https://www.health.harvard.edu/staying-healthy/anxiety_and_physical_illness
http://dx.doi.org/10.1177/0022146510383499
http://www.ncbi.nlm.nih.gov/pubmed/20943582
http://dx.doi.org/10.1109/TAFFC.2014.2327617
http://dx.doi.org/10.1109/T-AFFC.2012.25
http://dx.doi.org/10.1109/TITS.2005.848368
http://dx.doi.org/10.1109/T-AFFC.2012.13
http://dx.doi.org/10.1016/j.cviu.2006.11.018
http://dx.doi.org/10.1109/TAFFC.2014.2362513
http://dx.doi.org/10.1016/j.neucom.2018.10.011
http://dx.doi.org/10.1080/02678370210136699
https://www.cdc.gov/violenceprevention/suicide/copingwith-stresstips.html
https://www.cdc.gov/violenceprevention/suicide/copingwith-stresstips.html
http://dx.doi.org/10.1007/s13042-020-01074-x
http://dx.doi.org/10.1179/174313110X12771950995716
http://dx.doi.org/10.1117/2.1200608.0378
http://dx.doi.org/10.1179/1743131X15Y.0000000007


Entropy 2020, 22, 962 22 of 22

27. Wolf, M.; Von Siebenthal, K.; Keel, M.; Dietz, V.; Baenziger, O.; Bucher, H.U. Tissue oxygen saturation
measured by near infrared spectrophotometry correlates with arterial oxygen saturation during induced
oxygenation changes in neonates. Physiol. Meas. 2000, 21, 481–491. [CrossRef]

28. Rasmussen, P.; Dawson, E.; Nybo, L.; Van Lieshout, J.J.; Secher, N.H.; Gjedde, A. Capillary-oxygenation-
level-dependent near-infrared spectrometry in frontal lobe of humans. Br. J. Pharmacol. 2006, 27, 1082–1093.
[CrossRef]

29. Yudovsky, D.; Nouvong, A.; Schomacker, K.; Pilon, L. Assessing diabetic foot ulcer development risk with
hyperspectral tissue oximetry. J. Biomed. Opt. 2011, 16, 26009. [CrossRef]

30. Creates, M.S.; Grayson, J. The effect of adrenaline and noradrenaline on coronary vascular reserve in the dog.
J. Physiol. 1980, 309, 557–568. [CrossRef]

31. Chen, T. Hyperspectral Imaging for the Remote Sensing of Blood Oxygenation and Emotions. Ph.D. Thesis,
Cranfield University, Cranfield, UK, 2012.

32. Kirschbaum, C.; Pirke, K.M.; Hellhammer, D.H. The ‘Trier Social Stress Test’—A tool for investigating
psychobiological stress responses in a laboratory setting. Neuropsychobiology 1993, 28, 76–81. [CrossRef]

33. Golden, C.J.; Freshwater, S.M. Stroop Color and Word Test: A Manual for Clinical and Experimental Uses; Stoelting:
Chicago, IL, USA, 1978.

34. Hjemdahl, P.; Freyschuss, U.; Juhlin-Dannfelt, A.; Linde, B. Differentiated sympathetic activation during
mental stress evoked by the stroop test. Acta Physiol. Scand. 1984, 527, 25–29.

35. Tulen, J.H.M.; Moleman, P.; Van Steenis, H.G.; Boomsma, F. Characterization of stress reaction to the Stroop
Color Word Test. Pharmacol. Biochem. Behav. 1989, 32, 9–15. [CrossRef]

36. Pavlidis, I.; Levine, J. Thermal image analysis for polygraph testing. IEEE Eng. Med. Boil. Mag. 2003, 21,
56–64. [CrossRef] [PubMed]

37. Van Der Zwaard, S.; Jaspers, R.T.; Blokland, I.J.; Achterberg, C.; Visser, J.M.; Uil, A.R.D.; Hofmijster, M.J.;
Levels, K.; Noordhof, D.A.; De Haan, A.; et al. Oxygenation threshold derived from near-infrared
spectroscopy: Reliability and its relationship with the first ventilatory threshold. PLoS ONE 2016, 11,
e0162914. [CrossRef] [PubMed]

38. Chang, C.C.; Lin, C.J. LIBSVM: A Library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011,
2, 1–27. [CrossRef]

39. Benitez-Quiroz, C.F.; Srinivasan, R.; Martinez, A.M. Facial color is an efficient mechanism to visually transmit
emotion. Proc. Natl. Acad. Sci. USA 2018, 115, 3581–3586. [CrossRef] [PubMed]

40. Sperry, R.W. Cerebral organization and behavior. Science 1961, 133, 1749–1757. [CrossRef] [PubMed]
41. Sperry, R.W. Hemisphere deconnection and unity in conscious awareness. Am. Psychol. 1968, 28, 723–733.

[CrossRef]
42. Sperry, R.W. The Neurosciences: A Study Program; Rockefeller University Press: New York, NY, USA, 1967;

pp. 714–722.
43. Lienhard, D.A. Roger Sperry’s Split Brain Experiments; Arizona State University: Tempe, AZ, USA, 2017.
44. Zangroniz, R.; Martinez-Rodrigo, A.; Pastor, J.M.; Bonal, M.T.L.; Fernández-Caballero, A. Electrodermal

activity sensor for classification of calm/distress condition. Sensors 2017, 17, 2324. [CrossRef] [PubMed]
45. Sriramprakash, S.; Prasanna, V.D.; Murthy, O.R. Stress detection in working people. Procedia Comput. Sci.

2017, 115, 359–366. [CrossRef]
46. Jebelli, H.; Hwang, S.; Lee, S. EEG-based workers’ stress recognition at construction sites. Autom. Constr.

2018, 93, 315–324. [CrossRef]
47. Hong, K.; Liu, G.; Chen, W.; Hong, S. Classification of the emotional stress and physical stress using signal

magnification and canonical correlation analysis. Pattern Recognit. 2018, 77, 140–149. [CrossRef]
48. Fernandez, J.R.M.; Anishchenko, L. Mental stress detection using bioradar respiratory signals. Biomed. Signal

Process. Control 2018, 43, 244–249. [CrossRef]
49. Van Veen, R.L.P.; Sterenborg, H.J.C.M.; Pifferi, A.; Torricelli, A.; Chikoidze, E.; Cubeddu, R. Determination of

visible near-IR absorption coefficients of mammalian fat using time- and spatially resolved diffuse reflectance
and transmission spectroscopy. J. Biomed. Opt. 2005, 10, 054004. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1088/0967-3334/21/4/305
http://dx.doi.org/10.1038/sj.jcbfm.9600416
http://dx.doi.org/10.1117/1.3535592
http://dx.doi.org/10.1113/jphysiol.1980.sp013527
http://dx.doi.org/10.1159/000119004
http://dx.doi.org/10.1016/0091-3057(89)90204-9
http://dx.doi.org/10.1109/MEMB.2002.1175139
http://www.ncbi.nlm.nih.gov/pubmed/12613212
http://dx.doi.org/10.1371/journal.pone.0162914
http://www.ncbi.nlm.nih.gov/pubmed/27631607
http://dx.doi.org/10.1145/1961189.1961199
http://dx.doi.org/10.1073/pnas.1716084115
http://www.ncbi.nlm.nih.gov/pubmed/29555780
http://dx.doi.org/10.1126/science.133.3466.1749
http://www.ncbi.nlm.nih.gov/pubmed/17829720
http://dx.doi.org/10.1037/h0026839
http://dx.doi.org/10.3390/s17102324
http://www.ncbi.nlm.nih.gov/pubmed/29023403
http://dx.doi.org/10.1016/j.procs.2017.09.090
http://dx.doi.org/10.1016/j.autcon.2018.05.027
http://dx.doi.org/10.1016/j.patcog.2017.12.013
http://dx.doi.org/10.1016/j.bspc.2018.03.006
http://dx.doi.org/10.1117/1.2085149
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	StO2 Stress Database 
	Generating Facial StO2 by HSI 
	Experimental Setup 
	Experimental Procedures and Protocols 
	Processing of HSI Data 
	Overview of StO2 Stress Database 

	Facial StO2 of Stress 
	Facial StO2 of Emotional Stress 
	Facial StO2 of Physical Stress 

	Stress Detection 
	Feature Extraction 
	Feature Selection 
	Cheek ROIs Comparison 
	Classification of PS and ES 
	Comparison with Other Methods 

	Discussion and Conclusions 
	References

