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Abstract: The conventional mathematical methods are based on characteristic length, while urban 
form has no characteristic length in many aspects. Urban area is a scale-dependence measure, which 
indicates the scale-free distribution of urban patterns. Thus, the urban description based on 
characteristic lengths should be replaced by urban characterization based on scaling. Fractal 
geometry is one powerful tool for the scaling analysis of cities. Fractal parameters can be defined by 
entropy and correlation functions. However, the question of how to understand city fractals is still 
pending. By means of logic deduction and ideas from fractal theory, this paper is devoted to 
discussing fractals and fractal dimensions of urban landscape. The main points of this work are as 
follows. Firstly, urban form can be treated as pre-fractals rather than real fractals, and fractal 
properties of cities are only valid within certain scaling ranges. Secondly, the topological dimension 
of city fractals based on the urban area is 0; thus, the minimum fractal dimension value of fractal 
cities is equal to or greater than 0. Thirdly, the fractal dimension of urban form is used to substitute 
the urban area, and it is better to define city fractals in a two-dimensional embedding space; thus, 
the maximum fractal dimension value of urban form is 2. A conclusion can be reached that urban 
form can be explored as fractals within certain ranges of scales and fractal geometry can be applied 
to the spatial analysis of the scale-free aspects of urban morphology. 

Keywords: fractal; fractal dimension; pre-fractal; multifractals; scaling range; entropy; spatial 
correlation; fractal cities 

 

1. Introduction 

Scientific research starts from description of a phenomenon and then focuses on understanding 
its work principle. The simple description is based on measurements, while the complex description 
relies heavily on mathematical methods [1]. In order to describe a city, we try to express it using data. 
Mathematical description depends on measurement description, as measurement can be treated as 
the basic link between mathematics and empirical studies [2]. In order to show the results from a 
measurement, we should find the characteristic scale of an entity. A characteristic scale is a special 
one-dimensional measure and can be termed characteristic length, which can integrate a great 
number of values into a simple number. Unfortunately, in many cases, it is impossible to find a 
characteristic length to describe a complex system such as a city and a system of cities. If so, we should 
substitute scaling concept for the characteristic scale concept. Fractal geometry can be regarded as 
one of the best mathematical tools for scaling analysis at present. 

What is a fractal? This is not a problem for many scientists who are familiar with fractals. A 
fractal is regarded as a shape that is made of parts similar to the whole in some way [3]. Quantitatively, 
a fractal is defined as a set for which the Hausdorff–Besicovitch dimension is strictly greater than the 
topological dimension [4]. These definitions are suitable for the classical fractals, which belong to a 
group called thin fractals. The general concept of fractals is well known, but the question of how to 
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understand fractals is still a problem for specific subjects such as urban geography. A fractal has no 
characteristic scale and cannot be described with traditional measures such as length, area, volume, 
and density. The basic parameter used for fractal description is fractal dimension. Since the length of 
coastline cannot be effectively measured, Mandelbrot put forward the concept of fractal dimension 
[5]. Fractal dimension can be defined on the basis of entropy and correlation function [3,4,6]. It is 
actually the invariant quantity in scaling transform and thus a parameter indicating symmetry. 
Where there is an immeasurable quantity, there is symmetry [7]. The discovery of fractals is 
essentially a discovery of scaling symmetry, namely the invariance under contraction or dilation 
transformation [8]. The immeasurability of the length of coastline enlightened Mandelbrot to think 
about the problem of contraction–dilation symmetry [5]. 

Cities and networks of cities are complex systems bearing the property of scaling symmetry. In 
urban studies, it is impossible to determine the length of the urban boundary and the area within the 
urban boundary objectively [9,10]. In this case, it is impossible to quantify the population size of a 
city. The precondition of determining urban population size is to determine the urban boundary line 
effectively. Population is one of the central variables in the study of spatial dynamics of city 
development [11], and it represents the first dynamics of urban evolution [12]. If we cannot measure 
urban population size, how can we describe a city and measure levels of urbanization? If we cannot 
describe a city and quantify urbanization levels, how can we understand the mechanisms of urban 
evolution? Fortunately, today, we can employ the fractal dimension of urban form to replace urban 
area and urban population size. However, a new problem has emerged: how can we define a city 
fractal and determine its fractal dimension? Although fractal cities have been studied for more than 
30 years, some basic problems still puzzle many theoretical geographers. This paper is devoted to 
answering these questions in terms of the author’s experience of long-term studies on fractal cities. 

2. Fractal Cities and City Fractals 

2.1. Are Cities Fractals 

Is the coast of Britain a real fractal line? In fact, we cannot find any real fractals (based on fractal 
geometry) in the real world. This is similar to the fact that we cannot find circles and triangles (based 
on Euclidean geometry) in the real world. All of the fractal images that we encounter in books and 
articles represent pre-fractals rather than real fractals in the mathematical sense. A real fractal has 
infinite levels, which can only be revealed in the mathematical world, but a pre-fractal is a limited 
hierarchy indicating a fractal-like geometric form, which can be found in any textbooks on fractals. 
We can use the ideas from fractal geometry to research pre-fractals, including regular pre-fractals and 
random pre-fractals. The coast of Britain can be regarded as a random pre-fractal curve instead of a 
real fractal line. However, we can study the coast of Britain using the ideas from fractals and fractal 
dimension. Similarly, cities are not true fractals but proved to be random pre-fractals because urban 
form has no characteristic scales. A great number of empirical studies show that, based on certain 
scaling ranges, urban form satisfies three necessary and sufficient conditions for fractals (Table 1). 
Urban form follows power laws, which indicates that cities can be treated as pre-fractals. The basic 
property of a random pre-fractal object is that its scaling range is limited, and its fractal dimension 
value is based on the scaling range [13]. 
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Table 1. Three preconditions for understanding, developing, and generalizing fractal concepts. 

Conditions Formula Note 

Scaling law T ( ) ( ) ( )bf x f x f xλ λ= =  
The relation between scale and the corresponding measures 
follow power laws. 

Fractal 
dimension T Ed D d< <  

The fractal dimension D is greater than the topological 
dimension dT and less than the Euclidean dimension of the 
embedding space dE. 

Entropy 
conservation 

( )
(1 )

1
1q

N r
q Dq

i i
i
P r −

=

=
 

The Renyi entropy values of different fractal units (fractal 
subsets) are equal to one another. 

Note: T—scaling transform; x—scale variable; f(x)—a function of x; λ—scale factor; b—scaling 
exponent; D—fractal dimension; dT—topological dimension; dE—Euclidean dimension of embedding 
space; q—order of moment; Pi, ri—growth probability of the ith fractal set and its linear scale; Dq—
generalized correlation dimension; N(r)—number of fractal units with linear size r; i—ordinal number: 
i = 1,2,…, N(r). 

2.2. Fractal Geometry: An Approach to Scale-Free Analysis 

Fractal geometry is a powerful tool for scaling analysis of scale-free phenomena such as urban 
form. Scaling suggests that there is no characteristic scale in an entity. Cities, in many aspects, have 
no characteristic scale and cannot be effectively modeled by conventional mathematical methods. In 
contrast, urban phenomena can be well characterized by fractal parameters. Natural and social 
phenomena can be roughly divided into two categories: one is the phenomena with characteristic 
scales, and the other is the phenomena without characteristic scales. The former can be termed 
scaleful phenomena, and the later can be termed scale-free phenomena (Table 2). For the scaleful 
phenomena, we can find definite length, area, volume, density, eigenvalue, mean value, standard 
deviation, and so on. If the spatial distribution of this kind of phenomena is converted into a 
probability distribution, it has clear and stable probability structure and thus can be described with 
Gaussian function, exponential function, logarithmic function, lognormal function, Weibull function, 
etc. The conventional higher mathematics can be used as an effective tool for modeling and analyzing 
such phenomena. On the contrary, for the scale-free phenomena, we cannot find effective length, area, 
volume, density, eigenvalue, mean value, standard deviation, and so forth. If the spatial distribution 
of this sort of phenomenon is transformed into a probability distribution, it can be characterized with 
power functions, Cobb–Douglas function (production function), or some types of function including 
hidden scaling. The probability structure of the scale-free distributions is not certain. Traditional 
advanced mathematics cannot effectively characterize such phenomena. In recent years, a number of 
theoretical tools for scale-free analysis have emerged, including fractal geometry, wavelet analysis, 
allometric theory, and complex network theory. Among various “new” tools, fractal geometry 
represents an excellent method for scale-free modeling and scaling analysis. 

Table 2. Two types of natural and social phenomena: scaleful and scale-free phenomena. 

Type Probability 
Distribution 

Characteristics Example 
Mathematical 

Tools 
Description 

Scaleful 
phenomena 
(with 
characteristic 
scales) 

Normal, 
exponential, 
logarithmic, 
lognormal, 
Weibull, etc. 

We can find 
definite length, 
area, volume, 
density, 
eigenvalue, mean 
value, standard 
deviation, and so 
on. 

Urban 
population 
density 
distribution, 
which follows 
exponential 
law 

Traditional 
higher 
mathematics 
includes calculus, 
linear algebra, 
probability 
theory, and 
statistics. 

Entropy 
function and 
Gaussian 
distribution 
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Scale-free 
phenomena 
(without 
characteristic 
scale) 

Power law, 
various 
hidden scaling 
distributions 

We cannot find 
effective length, 
area, volume, 
density, 
eigenvalue, mean 
value, standard 
deviation, and so 
on. 

Urban traffic 
network 
density 
distribution, 
which follows 
power law 

Fractal geometry, 
complex network 
theory, allometry 
theory, scaling 
theory 

Fractal 
dimension 
and Pareto 
distribution 

A city is a complex system with multifaceted characteristics. In some respects, a city has 
characteristic scales, e.g., urban population density distribution, which follows negative exponential 
law and can be described with Clark’s model [14]. The spatial distribution function can be derived 
from the principle of entropy maximization [15]. In another respect, a city has no characteristic scale, 
e.g., urban traffic network density distribution, which follows inverse power law and can be 
characterized with Smeed’s model [16]. The corresponding spatial distribution can be characterized 
by spatial correlation and allometric scaling [17]. Where land use is concerned, urban form follows 
the power law distribution and can be treated as random pre-fractal patterns [9,10]. In this sense, we 
cannot find effective characteristic scales for urban morphology. Consequently, the traditional 
methods of quantitative analysis and mathematical modeling are often invalid for research on urban 
form and growth. As a substitute, fractal geometry is one of feasible mathematical tools for the spatial 
analysis of cities. 

2.3. How to Define City Fractals 

The angle of view for fractal studies of cities depends on the definition of embedding space. A 
city fractal based on digital maps or remote sensing images can be defined in a two-dimensional 
embedding space, and also it can be defined in a three-dimensional embedding space [18]. Generally 
speaking, fractal cities are defined in a two-dimensional embedding space based on digital maps or 
remote sensing images [9,10,19]. However, some scholars study fractal cities through three-
dimensional embedding spaces [20]. The fractal city defined in a three-dimensional embedding space 
has attracted the attention of geographers [18]. In fact, a fractal based on the three-dimensional 
embedding space can be explored through the two-dimensional embedding space. In the simplest 
case, the relationship between the fractal dimension based on two-dimensional embedding space, 
D(2), and the fractal dimension based on three-dimensional embedding space, D(3), is as follows, D(3) = 
1 + D(2) [21]. 

For simplicity, we define the city fractals in a two-dimensional embedding space. The main 
reasons are as follows. 

Firstly, fractal dimension is used to replace the two-dimensional urban area rather than the 
three-dimensional urban volume. In order to study a city, we must describe a city; in order to describe 
a city, we must know its basic measures such as population size, urban area, and economic output. 
Unfortunately, urban form has no characteristic scales due to its fractal properties, and thus the urban 
boundary cannot be objectively determined. Urban area cannot be objectively calculated because the 
measurement results depend on scales. This is the well-known scale-dependence property of urban 
form; the cause lies in scale-free distribution of urban land use. In this case, the fractal dimension of 
urban form can be employed to replace the urban area to reflect the extent of space filling. The fractal 
dimension as a degree of urban space filling is exactly a substitute of the urban area. Urban area is a 
scale-dependent measure, while fractal dimension is scaleful parameter. In this sense, fractal 
dimension is more effective than urban area to reflect urban spatial development. Incidentally, some 
scholars prefer to define a city fractal in a three-dimensional space—this means that they try to 
calculate a fractal dimension based on three-dimensional embedding space to replace urban volume. 

Secondly, the general principle of model building is based on reduction of dimension. The 
effective skill of scientific quantitative analysis is to reduce dimension instead of increasing 
dimension. The basic relation between spatial dimension n and the degree of analytical complexity C 
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can be expressed as C = n(n − 1)/2, which represents the least statistical parameter number for 
quantitative analysis. The well-known Clark’s law of urban population density distribution in a two-
dimensional space is actually based on a one-dimensional space modeling, but this model reflects the 
geographical information in a three-dimensional space [14]. In other words, the population 
distribution in the three-dimensional space is projected onto the two-dimensional space by 
population density, and then the mathematical expression is established on the basis of the one-
dimensional space with the help of statistical averaging [15]. The same is the case with Smeed’s model 
of urban traffic density distribution [9,16,17]. If we study a city fractal through a three-dimensional 
embedding space, the amount of work and difficulty of fractal dimension calculation is considerably 
increased, and the accuracy of fractal parameter estimation is reduced, but the increment of the 
gained geographic information is very limited. In short, it is hard to promote the analytical effect of 
fractal cities significantly by substituting the two-dimensional embedding space with the three-
dimensional embedding space. 

Thirdly, the allometric scaling relation between population and land use suggests that urban 
form should be defined in a two-dimensional space. The allometric scaling exponent b is the ratio of 
the fractal dimension of urban form Df to the dimension of urban population Dp; that is, b = Df/Dp. 
Empirical studies show that the b values are close to 0.85 [22]. If Df > 2, then we have Dp > 2/0.85 = 
2.35. Based on Clark’s law and scaling analysis, urban population distribution proved to be a two-
dimension phenomenon (Dp = 2) [23]. If the urban form is defined in a three-dimensional embedding 
space, the fractal dimension Df values will be between 2 and 3, and the allometric scaling exponent b 
values will be greater than 1. However, the observational values of allometric scaling exponent b 
range from 2/3 to 1 in most cases; that is, 2/3 < b < 1 [22,24,25]. This suggests that the dimension of 
urban form, Df, is between 1 and 2. In fact, in urban studies, fractal dimension is not a concept of 
comparability. The fractal dimension value depends on the definition of embedding space. 

If a city fractal is defined in a two-dimensional embedding space, the fractal form includes two 
aspects: urban area and urban boundary. The above discussion is actually based on urban area, but 
urban boundary can be treated as fractal lines [9,26–31]. The closed urban boundary curve is termed 
the urban envelope, in which we can determine a Euclidean urban area [9,32]. The length of the urban 
boundary and the Euclidean area within the urban envelope follow the geometric measure relation 
as follows: 

2/ bDA aL=  (1) 

where A refers to the Euclidean area of a city (urban area), L denotes the length of urban envelope 
(urban perimeter), a is the proportionality coefficient, and Db is the fractal dimension of urban 
boundary, which can be termed boundary dimension [28]. In fact, Equation (1) can be generalized to 
the more general expression shown below [27,33]: 

/f bD DA aL=  (2) 

where A denotes the Euclidean area of a city, and Df is the fractal dimension of “urban area”. Equation 
(2) is in fact an allometric scaling relation of urban shape [33]. The topological dimension of the urban 
boundary is dT = 1, so the boundary dimension is greater than 1. The fractal parameter value is 
between 1 and 2; that is, 1 < Db < 2. Now, a question arises: what determines the lower limit of fractal 
dimension of urban morphology, urban area or urban boundary? The answer is clear. If we study 
urban form and try to substitute the urban area with form dimension, it is the topological dimension 
of the urban area that determines the least value of the fractal dimension; on the other hand, if we 
research urban boundary and attempt to replace urban perimeter length with boundary dimension, 
it is the topological dimension of urban boundary that determines the minimum value of the fractal 
dimension. In most cases, we study an urban impervious area which is represented by the pixels of 
buildings (fractal separated spaces) rather than the urban boundary (fractal lines). 
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2.4. The Lower and Upper Limits of Fractal Dimension 

Fractal dimension values have a strict lower limit and upper limit. This is beyond doubt. 
However, what are the lower limit and upper limit of the fractal dimension of urban from? This is 
still a pending question. Empirically, if a city fractal is defined in a two-dimensional embedding space, 
the fractal dimension value is between 0 and 2 [34–37]. In theory, the lower and upper limits of the 
fractal dimension of urban form rely on the topological dimension and embedding dimension. In 
many cases, the box-counting method is employed to estimate the fractal dimension values of urban 
form. The lower limit of the fractal dimension Dmin depends on the topological dimension of urban 
form dT, while the upper limit Dmax depends on the Euclidean dimension of the embedding space dE. 
As indicated above, the embedding space can be defined as a two-dimensional space; thus, the 
Euclidean dimension of dE = 2, so we have Dmax ≤ dE = 2. As for the topological dimension of urban 
form, dT, in theory, it should be dT = 0. Therefore, we have Dmin ≥ dT = 0. 

How can we determine the topological dimension of urban form? As we know, the Lebesgue 
measures of real fractals are zero [4]. This suggests that if we treat urban form as a fractal, the urban 
area of land use should be treated as zero. Please note that this is based on theoretical understanding, 
which is different from reality. How can we understand the assumption that the area of a city fractal 
is zero? This means that an urban fractal can be reduced to either a separated space or a space-filling 
curve under the limit conditions. For a separated space, the topological dimension is dT = 0, while for 
a space-filling curve, the topological dimension is dT = 1. In fact, using the ArcGIS technique, we can 
reduce a city fractal to a separated space rather than a space-filling curve. A separated space of a city 
comprises pixels or building cells on a remote sensing image or digital map. This indicates that the 
topological dimension of city fractals is dT = 0 instead of dT = 1. According to Shen [36], the box 
dimension values of Baltimore are between 0.6641 and 1.7211 from years 1792 to 1992. 

In practice, the lower and upper limits of fractal dimension of urban form depend on the 
methods of defining the study area. There are two approaches to obtaining the time series of the 
fractal dimension values of urban growth and form [34]. One is based on a constant study area [9,36], 
and the other is based on a variable study area [19,37]. Each approach has its advantages and 
disadvantages (Table 3). If we define a study area with fixed size for different years, the largest box 
can be determined by the urban boundary of the most recent year. Then, the largest box can be 
applied to digital maps of the city in previous years (Figure 1a). Using the same set of boxes, we 
estimate the fractal dimension values of urban form in different years. Based on this approach, the 
fractal dimension values of a city’s form in different years are more comparable. The time series of 
fractal dimension values can better reflect the space replacement process of an urban region. The 
subsets of the time series are termed sample paths. If a sample path is very long, the original urban 
form can be treated as a point. As a result, the fractal values may be between 0 and 2 [34,38]. In 
contrast, if we define a variable study area, the size of the largest box is determined by the urban 
boundary in a given year. Thus, the largest boxes are different from year to year (Figure 1b). Based 
on this approach, the comparability of fractal dimension values of urban form in different years is 
reduced. However, these fractal dimension values can better reflect the degree of urban space filling. 
As a result, the fractal values may be between 1 and 2 [34]. 

Table 3. Two approaches to defining the study area for fractal dimension estimation of urban form. 

Approach Property Merit Demerit 
Dimension 

Range 

Constant 
study area 

Fixed 
size 

The comparability of fractal parameters 
of different years is strong. The time 
series of fractal dimension can be used 
to reflect space replacement of urban 
region. 

The reality of fractal 
parameters of each 
year is weak. 

Between 0 
and 2 

Variable 
study area 

Unfixed 
size 

The reality of fractal dimension values 
of urban form is strong. The time series 
of fractal dimension can be used to 

The comparability of 
fractal parameters of 
different years is weak. 

Between 1 
and 2 
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reflect space filling of urban growth. 

b Variable study area

a Fixed study area

 
Figure 1. The sketch maps for two types of approaches to defining study areas for fractal dimension 
estimation of urban form (by Chen [34]). Note: The square frames surrounding the growing fractals 
represent the study area of fractal dimension measurements. Figure 1a shows a fixed study area, and 
Figure 1b displays a variable study area, the size of which depends on the extent of fractal city cluster. 

3. Fractal Modeling of Urban Form 

3.1. Two Research Directions of Fractal Cities 

A complete scientific research process comprises two elements. One is to describe a system, and 
the other is to understand the mechanism by which the system works. In short, scientific studies 
should proceed first by describing how things work and later by understanding why [39]. 
Accordingly, the scientific method contains two elements: description and understanding. Concretely 
speaking, as stated by Henry [1] (p. 14), “The two main elements of this scientific method are the use 
of mathematics and measurement to give precise determinations of how the world and its parts work, 
and the use of observation, experience, and where necessary, artificially constructed experiments, to 
gain understanding of nature.” A comparison between the two elements of the scientific process can 
be drawn as follows (Table 4). The most important method of scientific description is to establish 
mathematical models. 

Table 4. A complete scientific research process consists of two elements. 

Element Level Method Purpose Result Finding 
Fractal 
Theory 

Description 
Macro 
level 

Mathematics, 
measurement, 
and computation 

Data, 
numbers 

Show 
characteristics of 
a system’s 
behavior 

How a 
system 
works 

Geometrical 
method 

Understanding 
Micro 
level 

Observation, 
experience, 
experiments, and 
simulation 

Insight, 
sharpen 
questions 

Reveal 
dynamical 
mechanism 

Why the 
system 
works in 
this way 

Ideas of 
complex 
systems 

Fractal theory comprises two related parts: one is the scaling theory of complex systems, and the 
other is the mathematical method known as fractal geometry. As a complex system theory, it can be 
employed to understand the complexity of cities; as a geometry, it can be used to describe cities from 
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the angle of view of scaling analysis. In fact, a mathematical theory plays two roles in any type of 
scientific research (Table 5). One is to produce models and develop a theory (mathematical modeling), 
and the other is to process experimental and observational data (statistical analysis). In urban studies, 
fractal geometry can serve two functions. One is to establish models for cities as systems and systems 
of cities, and the other is to carry out empirical analysis of cities using observational data. Many 
scholars utilize fractal geometry to process the observational data of urban geography, but I 
emphasize the basic function: mathematical modeling. No matter what type of study is conducted, 
there is no contradiction between models and observed data. All models rely heavily on observational 
data. The spatial data can be used in the empirical analyses of fractal models of cities. 

Table 5. Two functions of fractal geometry in urban studies. 

Function Use Purpose Approach 

Theoretical 
Present postulates and 
produce models 

Develop urban theory 
based on the possible 
world 

Build mathematical models based 
on fractals or fractal dimension 

Empirical 
Process experimental and 
observational data 

Solve practical problems in 
the real world 

Rely heavily on fractal dimension 

In fact, one of the main tasks in scientific research is to produce models. As Neumann [40] (p. 
492) said, “The sciences do not try to explain, they hardly even try to interpret, they mainly make 
models.” I agree with Hamming [41], who said, “The purpose of modelling is insight, not numbers.” 
Karlin [42] has a similar viewpoint, “The purpose of models is not to fit the data, but to sharpen the 
questions.” However, the confidence level of a model depends heavily on the relationship between 
mathematical expression and observed data. In order to verify a mathematical model, we must fit it 
to observational data and illustrate the statistical relationships and analytical effect. I am very much 
in favor of the viewpoint of Louf and Barthelemy [43], who said, “The success of natural sciences lies 
in their great emphasis on the role of quantifiable data and their interplay with models. Data and 
models are both necessary for the progress of our understanding: data generate stylized facts and put 
constraints on models. Models on the other hand are essential to comprehend the processes at play 
and how the system works. If either is missing, our understanding and explanation of a phenomenon 
are questionable. This issue is very general, and affects all scientific domains, including the study of 
cities.” The basic functions of mathematical models are explanation and prediction. As Fotheringham 
and O’Kelly [44] pointed out, “All mathematical modelling can have two major, sometimes 
contradictory, aims: explanation and prediction.” Not only that, as Kac [45] observed, “The main role 
of models is not so much to explain or predict—although ultimately these are the main functions of 
science—as to polarize thinking and to pose sharp questions.” The chief uses of fractal models lie in 
explanation and prediction. Let us take the logistic model of fractal dimension growth curves as an 
example. The model can be used to explain the speed change characteristics of urban growth [35]. It 
can tell us when the growth rate of a city will peak. It can also tell us the maximum space-filling index 
of a city’s land use. What is more, the model can sharpen questions for us. For example, the similarity 
and difference between the model of fractal dimension growth curves of Chinese cities such as Beijing 
and that of cities in western countries such as London, Baltimore, and Tel Aviv gives rise to new 
thinking about the spatial dynamics of urban evolution. 

3.2. Two Approaches to Modeling Cities 

As indicated above, one of the important tasks of fractal urban studies is to produce models. As 
Longley [46] (p. 605) pointed out, “In the most general terms, a ‘model’ can be defined as a 
‘simplification of reality’, nothing more, nothing less.” In scientific research, mathematical models 
can be classified into two categories: mechanistic models and parametric models [47]. Accordingly, 
there exist two approaches to establishing mathematical models: analytical methods and 
experimental methods [48] (Table 6). The so-called analytical method is the approach to deriving a 
mathematical model with the help of existing scientific theories and laws and in light of the 
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relationship and evolution of the various components of the studied system. The process is as follows: 
establish a functional equation based on one or more postulates, and then find the general solution 
to the functional equation. The solution to the equation is exactly the theoretical model (mechanistic 
or structural model) that we need. The experimental method is to select the most appropriate model 
in a set of hypothetical or imaginary models so that the model can be well fitted to the observational 
or experimental data. What is more, the model will not give rise to logical contradiction and difficulty 
in interpretation. Thus, we have an empirical model (parametric or functional model). In geography, 
the traditional gravity model is an empirical model, which is obtained by analogy with Newton’s law 
of universal gravitation. In contrast, the spatial interaction model of Wilson [49] is a theoretical model. 
The model is derived by constructing the postulates and solving the maximum entropy equation of 
traffic flows. The two types of models are not opposed but can be transformed into each other. An 
effective theoretical model must be an empirical model, which must be well fitted to observational 
data. On the other hand, an empirical model will become a theoretical model by mathematical 
demonstration. A typical example is Clark’s urban population density model [14]. The model was 
originally presented as an empirical model based on observation data [9]. However, it has become a 
theoretical model because it can be derived from the postulates of spatial entropy maximization of 
urban population distribution [15]. In an article, limited to the conditions at the time, we may fulfil 
some aspects of the research work but not necessarily complete all the research processes. 

Table 6. Two types of models and methods of model building. 

Model type Property 
Building 
Method 

Principle Example 

Mechanistic model 
(structural model) 

Theoretical 
model 

Analytical 
method 

Postulates and 
demonstration 

Wilson’s spatial 
interaction model 

Parametric model 
(functional model) 

Empirical 
model 

Experimental 
method 

Data and fitting 
Traditional gravity 
model 

3.3. Fractal Models and Parameters of Cities 

We have at least three approaches to developing mathematical models of urban form by using 
ideas from fractal theory. The first is to produce new models, the second is to improve the old models, 
and the third is to borrow models from other disciplines (Table 7). A typical example is the models 
of the fractal dimension growth curve of urban form: different approaches result in different models, 
and different models are suitable for different situations [34,35]. It is necessary to briefly comment on 
the third approach. In scientific research, a mathematical model can be transplanted from one field 
and applied to another field. The logistic function was originally proposed by Verhulst in 1838 to 
predict population growth [50]. Today, the well-known logistic function has been employed to 
predict many growing phenomena in many different fields, including urbanization levels and fractal 
dimension growth [35]. Similarly, the Boltzmann equation can also be generalized to other fields and 
used to model urban growth [34,51]. The allometric growth equation of urban geography came from 
biology [28,52]. The gravity model of geography resulted from Newton’s law of universal gravitation 
by analogy, and the spatial autocorrelation models of geography come from mathematical and 
statistical biology. These examples are too numerous to enumerate. The uniqueness of different fields 
is always determined by the physical meaning of model parameters rather than by the expression of 
mathematical models. The mathematical expression of a model is often general, but the parameters 
are for special purposes. The same mathematical model can be applied to many different fields, but 
different fields have different parameter meanings. 
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Table 7. Three approaches to developing models for fractal dimension growth curves of urban form. 

Approach Example and Mathematical Expression Name 

Produce new models 

max

max (1)

( )
1 ( / 1) b

DD t
D D t −

=
+ −

 Growth function of 
hidden scaling 

max min
min

max (1) (1) min

( )
1 [( ) / ( )] b

D DD t D
D D D D t −

−= +
+ − −

 

Improve old model 2
max

max (0)

( )
1 ( / 1) kt

DD t
D D e−

=
+ −

 

Quadratic logistic 
function 

Borrow model from 
another discipline 

max min
min

max (0) (0) min

( )
1 [( ) / ( )] kt

D DD t D
D D D D e−

−= +
+ − −

 

Boltzmann equation 

Note: (1) Models. The logistic function and Boltzmann equation of fractal dimension growth curve 
were demonstrated by Chen [34], and the quadratic logistic function was derived and demonstrated 
by Chen [35]. (2) Parameters. D(t)—fractal dimension of urban form at time t; D(0)—the initial value 
of fractal dimension of urban form (t = 0); Dmax, Dmin—the upper limit and lower limit of fractal 
dimension; b—the scaling exponent of fractal dimension growth; r—the original growth rate of fractal 
dimension. 

The notion of maximum and minimum of fractal dimension discussed above is important for 
producing models of the fractal dimension growth curves of urban form. The fractal dimension 
growth curve results from the time series of urban growth. In theory, we can calculate the fractal 
dimension values of a city’s form at different times. These values compose a sample path of fractal 
dimension and further form a curve of fractal dimension change of urban morphology. A sample 
path can be regarded as a subset of a time series [53]. Due to the lower and upper limits of urban 
fractal dimension, a fractal dimension growth curve takes on a squashing effect and can be described 
with one of the sigmoid functions such as logistic function and Boltzmann’s equation [34,35,54]. On 
the other hand, the question of how to determine fractal parameter values depends on specific 
research objectives and data conditions. This is a complex problem and needs to be judged on the 
basis of long-term research experience. Even for theoretical research, if the sample path of fractal 
dimension is short, we can take Dmin = 1 and adopt the quadratic Boltzmann equation. For example, 
in one of the studies conducted by Chen [35], the time span was around 25 years (1984–2008). All the 
fractal dimension values are greater than 1. On the other hand, even for application research, if the 
sample path of fractal dimension is very long, we can take Dmin = 0 and adopt the quadratic logistic 
function. For instance, in the study of Shen [36], the time span was around 200 years (1792–1992). One 
of the fractal dimension values for early years was less than 1. The situations can be classified into 
four groups and tabulated as below (Table 8). 

Table 8. Four cases for the lower limit of fractal dimension growth curves of urban form. 

 Fixed Study Area Variable Study Area 

In theory Dmin = 0, logistic function 
Dmin = 0, long sample path, logistic function; 
Dmin = 1, usual cases, Boltzmann equation 

In 
practice 

Dmin = 1, short sample path, Boltzmann 
equation; Dmin = 0, usual cases, logistic function 

Dmin = 1, Boltzmann equation 
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4. Questions and Discussion 

4.1. Problems of Fractal Dimension Values 

The concept of fractal dimension proceeded from Hausdorff’s fractional dimension. Today, there 
are various definitions for fractal dimension, and the common fractal dimensions in urban studies 
are the box dimension and similarity dimension. The box dimension is mainly suitable for the spatial 
structure of cities and systems of cities, while the similarity dimension is chiefly applied to urban 
hierarchies, including hierarchies of cities and hierarchies of urban internal elements such as land use 
patches. Generally speaking, fractal dimension values come between the topological dimension and 
the Euclidean dimension of embedding space. For a regular fractal, if fractal copies/units have no 
overlapping, the Hausdorff dimension will equal the similarity dimension. Empirically, both the 
Hausdorff dimension and similarity dimension can be represented with the box dimension. All these 
dimension values are less than the Euclidean dimension of the embedding space and greater than the 
topological dimension of fractal objects. However, if fractal copies have overlapped parts, the 
similarity dimension will exceed the dimension of embedding space in value. Thus, similarity 
dimension will not equal the Hausdorff dimension or box dimension. In contrast, the box dimension 
will never exceed the embedding dimension. 

Let us examine two kinds of fractal dimension of the fractals with overlapped parts. The interior 
boundary line of the Sierpinski gasket is a typical fractal line with overlapped parts (Figure 2). The 
initiator is a straight-line segment with length of unit (Figure 3a); the generator is a curve consisting 
of five straight-line segments with the length of 1/2 unit (Figure 3b). From step 3 onward, fractal 
copies begin to overlap with one another, and the overlapped parts are marked with red circles 
(Figure 3c,d). 

dcba  
Figure 2. The interior boundary line of the Sierpinski gasket (the first four steps) (a) Initiator; (b) 

Generator; (c) The third step; (d) The fourth step. 

Ten overlapped 
parts

Two overlapped 
parts

GeneratorInitiator

dcba  
Figure 3. A special fractal line with overlapped parts (the first four steps). (a) Initiator; (b) 

Generator; (c) The third step; (d) The fourth step. 

The similarity dimension and box dimension can be calculated by the ideas from fractal 
dimension. In the mth step, the length (linear size) of line segments can be expressed as 

1)
2
1( −= m

ms  (3) 

where m = 1, 2, 3, … denotes the ordinal numeration of steps. The number of line segments in each 
step can be counted in two different ways. One is to repeat the counting of the overlapped parts, and 
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the other is to count the overlapped parts only once. For example, for the curve of step 3 (Figures 2c 
and 3c), the number of line segments is N3 = 52 = 25 according to the first counting method and N3 = 3 
× 5 + 22 = 19 according to the second counting method. According to the first method with repeated 
counting, the line segment number in the mth step is 

15 −= m
mN  (4) 

Thus, the similarity dimension is 

1
s

1

ln( / ) ln 5 2.322 2
ln( / ) ln 2

m m

m m

N ND d
s s

+

+

= − = = > =  (5) 

According to the second method without repeated counting, the line segment number of step m is 
1

1 23 −
− += m

mm NN  (6) 

where N0 = 0 for m = 1. By recurrence, we have 


−

=

−
−

=

−− ==
1

0

1
1

0

1 ])
3
2[(3)23(

m

j

jm
m

j

jjm
mN  (7) 

where j = 1, 2, … m−1. Under the condition of limit, the result is 

1
1 1

0

2 13 [( ) ] 3 3
3 1 2 / 3lim

m
m j m m

m
m j

N
−

− −

→∞ =

 
= = =  − 

  (8) 

This suggests that when m becomes large enough, Nm will approach 3m. Therefore, the box dimension 
is 

b
ln ln 3 ln 3 1.585 2
ln ( 1) ln 2 ln 2

mm

m

N mD d
s m

→∞= − = ⎯⎯⎯→ ≈ < =
−

 (9) 

For this special regular fractal, the box dimension equals the Hausdorff dimension in theory. 
Therefore, for the regular monofractals with overlapped units, we have the following relation: 
topological dimension < Hausdorff dimension = box dimension < embedding space dimension < 
similarity dimension. However, for the regular monofractals without overlapped units, the 
dimension relation is as follows: topological dimension < Hausdorff dimension = box dimension = 
similarity dimension < embedding space dimension. 

The phenomenon of overlapped fractal units resulting in fractal dimension values greater than 
the embedding space dimension can be employed to explain abnormal multifractal spectral curves. 
In theory, the generalized correlation dimension, Dq, should be between 0 and 2 if a fractal city is 
defined in a two-dimensional embedding space. However, in many cases, the generalized correlation 
dimension values of urban morphology always exceed 2 or even go beyond 3 if the moment order, q, 
approaches negative infinity [55]. The reason is that, even based on the box-counting method, if q < 0 
or q > 1, we will obtain the similarity dimension instead of a strict box dimension of urban form. When 
q < 0, the small patches in the urban pattern are enlarged gradually, and this leads to the overlapping 
and interlacing of random fractal units. If and only if the urban spatial structure is very well 
organized, the overlapping distributions of the magnified patches will be reduced in order to be 
omitted. In this sense, multifractal spectra can be adopted to appraise the quality of the spatial 
structures of cities and systems of cities. 

4.2. Spatial Meanings of Fractal Dimension 

Fractal dimension is a measure for scale-free phenomena which have no characteristic scales and 
cannot be effectively described by traditional mathematical methods. Where cities are concerned, the 
meanings and uses of fractal dimension of urban form rest with at least three aspects: degree of space 
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filling, degree of spatial uniformity, degree of spatial complexity. As a space-filling index, fractal 
dimension can be used to reflect the replacement process of urban and rural space in theory. 
Unfortunately, it is both impossible and unnecessary to distinguish between urban area and rural 
area strictly. When we define a study area for a fractal cities, it comprises urban buildings, rural 
buildings, and other types of land. Various types of land form a hierarchy, with a cascade structure 
of land use based on different levels of scales [56]. In the urban regions, there are rural buildings, and 
in the rural regions, there are urban buildings. If we examine a city’s form from various spatial scales, 
we can find interlaced distributions of urban and rural land and buildings. The hierarchy with the 
cascade structure of urban and rural landscapes should be described with multifractals [57]. To solve 
this problem, we can use the concepts of space-filling extent, U(t), and space-saving extent, V(t), to 
replace urban land use and rural land use [34]. 

In the generalized correlation dimension spectrum, three parameters are very important, namely 
capacity dimension, information dimension, and correlation dimension. Among the three common 
parameters, capacity dimension is the most basic. The essence of capacity dimension is just space-
filling ratio, and this can be demonstrated easily. Space-filling measures should be defined by 
logarithmic scales rather than conventional scales. The reason is that the spatial recursion process is 
based on exponential decay and logarithmic scale [9,57,58]. Let us define an index of space filling as 
follows: 

b bln ( ) ln ( )
ln ( ) ln ( )
A r N rF
A r N r

= =  (10) 

where F denotes the space-filling ratio, Ab refers to filled area, which can be represented by 
impervious area, A is the total area, Nb is the number of nonempty boxes, and A is the number of all 
boxes. It can be proven that 

b b
0

2 ln ( ) 2 ln ( )2
ln ( ) ln ( )
A r N rF D
A r N r

= = =  (11) 

where r denotes the ordinal numeration of steps, and D0 refers to capacity dimension. For example, 
for the growing fractal displayed in Figure 1, we have 

0
2 ln(5 ) 2 ln(5) ln(5)2
ln(9 ) ln(9) ln(3)

m

mF D= = = =  (12) 

where m refers to the ordinal numeration of steps. This suggests that the doubling space-filling ratio 
yields the capacity dimension of a regular fractal. This conclusion can be generalized to urban 
morphology. On the other hand, in Equation (10), the numerator is the Hartley entropy, H, and the 
denominator is the maximum entropy, Hmax [55]. If the minimum entropy and minimum fractal 
dimension are zero, the space-filling ratio is proven to be the normalized entropy and the normalized 
capacity dimension [59]. What is more, fractal dimension is proven to be the scaling exponent of 
spatial correlation, and a correlation function can be expressed as 

02( ) 1
1( ) D dC r C r − +=  (13) 

where r refers to distance, C(r) denotes spatial correlation function, C1 is proportionality coefficient, 
and d represents embedding space dimension [60]. Spatial correlation suggests spatial displacement, 
which corresponds to time lag and implies spatial complexity. In short, fractal dimension means 
space filling, spatial uniformity, and spatial complexity (Table 9). 
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Table 9. The three basic meanings of fractal dimension of urban morphology. 

Basic 
Measurement Principle Meaning Explanation 

Degree of space 
filling 

b

b
0

2 ln ( )2
ln ( )

2 ln ( )
ln ( )

A rF
A r

N r D
N r

=

= =
 

Capacity dimension 
equals doubled space-
filling ratio 

The space-filling ratio equals the 
logarithm of occupied area divided 
by the logarithm of total area 

Degree of spatial 
uniformity 

max

b
0

2 ln2
ln

2 ln ( )
ln ( )

HF
H

N r D
N r

=

= =
 

Capacity dimension 
equals doubled 
normalized Hartley 
entropy 

Entropy is a measure of spatial 
uniformity 

Degree of spatial 
complexity 

02( ) 1
1( ) D dC r C r − +=  

Capacity dimension 
suggests a spatial 
correlation exponent 

Spatial correlation indicates spatial 
complexity of cities 

Note: The formula of space-filling degree is derived in this paper, and the spatial correlation function 
was presented by Chen [60]. Regarding the relationships between entropy and fractal dimension, see 
[59]. 

4.3. Statistical Evaluation of Fractal Parameters 

It is necessary to discuss fractal dimension measurement methods and related statistical test 
parameters simply. In practice, the double logarithmic linear regression based on the least square 
method can be employed to estimate fractal dimension values. Two methods can be utilized to carry 
out regression analysis: one is fixed intercept to 0, and the other is to let the intercept be free. The 
former can be termed fixed intercept regression, and the latter can be termed free intercept regression. 
For theoretical analysis, the intercept should be fixed to 0 so that the proportionality coefficient of the 
corresponding fractal model equals 1. For positive studies, the intercept depends on the measurement 
results and should not be fixed to a certain value [61]. No matter which method is adopted, a 
statistical test should be carried out for the calculation of results (Table 10). The basic and most 
important statistic for fractal dimension test is goodness of fit, R2, which is also termed the 
determination coefficient. Actually, the R statistic is called the multiple correlation coefficient, which 
equals the absolute value of the Pearson correlation coefficient for univariate linear regression 
analysis. Sometimes, we examine standard error and probability value, i.e., p value, of a fractal 
dimension. A proper statement in scientific research should be presented with a confidence statement 
[59]. A confidence statement comprises two elements: margin of error and level of confidence [62]. 
According to the standard error, δ, we can estimate the margin of error of a fractal dimension; 
according to the p value, we can calculate the level of confidence of the fractal dimension. In most 
cases, the fractal dimension calculation is based on univariate linear regression analysis. For 
univariate linear regression, the R2 value, the F statistic, t statistic, and the corresponding p value are 
equivalent to one another. What is more, the fractal dimension D and the R2 value can be associated 
with the standard error δ. The formulae are as follows (see Appendix A): 

2
2

21
vRF t
R

= =
−

 (14) 

21/ 1RD
v

δ −=  (15) 

where v denotes the degree of freedom. If the intercept of the log-log linear model for regression 
analysis is free, the degree of freedom is v = n − 2; if the intercept is fixed to 0, the degree of freedom 
is v = n − 1. Here, n is the sample size, i.e., the data point number. Then, using the t distribution 



Entropy 2020, 22, 961 15 of 21 

 

function tdist, we can convert the t statistic into the corresponding p value by means of MS Excel. The 
grammar is “= tdist(abs(t value), v, 2)”. Thus based on the 95% level of confidence, the margin of error 
of the fractal dimension value can be approximately expressed as D±2δ.This means that, in the 
absence of special requirements, the R2 value will provide enough numerical information for 
statistical description of fractal dimension. 

Table 10. The transformation relationships between F statistic, t statistic, p values, standard deviation, 
and fractal dimension. 

Item Free Intercept (Arbitrary 
Value) 

Fixed Intercept (Zero) 

Fractal model ( ) DN r Kr−= (0 < K < 2) ( ) DN r Kr−= (K = 1) 

Logarithmic linear relation ln ( ) ln lnN r K D r= −  ln ( ) lnN r D r= −  
(lnK=0) 

Degree of freedom, v 2v n= −  1v n= −  

F statistic, F, t statistic, t, and goodness of fit, 
R2 

2
2

2
( 2)

1
n RF t

R
−= =
−

 
2

2
2

( 1)
1
n RF t
R

−= =
−

 

Standard error δ, fractal dimension D, and 
R2 

21/ 1
2

RD
n

δ −=
−

 
21/ 1
1

RD
n

δ −=
−

 

Margin of error of fractal dimension D 
(significance level α=0.05) 2D δ±  2D δ±  

Excel conversion formula from t statistic to 
p value 

tdist(abs( ), 2, 2)t n −  tdist(abs( ), 1, 2)t n −  

Definition of R statistic Pearson correlation coefficient Cosine coefficient 
Note: (1) Fomulae. See Appendix A for derivation. (2) Parameters. r—spatial measurement scale such 
as linear size of box; N(r)—spatial measurement with linear size r such as the number of non-empty 
boxes; K—proportionality coefficient; D—fractal dimension; ln—natural logarithm function; n—
sample size; F—F statistic; t—t statistic; R—multiple correlation coefficient; tdist, abs—MS Excel 
functions for t distribution and absolute value. 

The analytical process and discussion of this paper are based on the standard definition of 
fractals. A fractal has three elements, i.e., form, chance, and dimension [63]. The first definition of 
Mandelbrot [4] (p. 15) based on dimension and chance is as follows: “A fractal is by definition a set 
for which the Hausdorff-Besicovitch dimension strictly exceeds the topological dimension.” The 
second definition based on form and chance is as follows: “A fractal is a shape made of parts similar 
to the whole in some way.” The second definition is given by Mandelbrot but published by Feder [3] 
(p. 11). The quantitative criterion of fractals is the Hausdorff–Besicovitch dimension. Recently, Jiang 
and his co-workers tried to relax the definition of fractals and gave the third definition as follows: a 
set or pattern is fractal if the scaling of far more small things than large ones recurs multiple times 
[64]. According to the new definition, the quantitative criterion of fractals is replaced by the head/tail 
index [65,66]: the ht-index of a fractal set or fractal pattern is at least three [64]. The new definition 
and criterion of fractals are very interesting and instructive. Sometimes, definitions of concepts or 
terms are most likely to lead to ambiguity, misunderstanding, and controversy. Therefore, scientific 
studies should sidestep the terminological minefield so that we can move beyond the semantic debate 
[67]. On the one hand, we should leave certain room for developing and consolidating a definition as 
the research approach continues to mature [67]. On the other hand, as West and West [68] (p. 210) 
once pointed out, “…science does not wait for definitions, it continues forward in exploring 
phenomena with or without a clear understanding, confident that such understanding will 
eventually emerge.” Saint Thomas Aquinas once said, “What, then, is time? If no one asks me, I know 
what it is. If I wish to explain it to him who asks me, I do not know.” Now, for me, what, then, is 
city/fractal/science? If no one asks me, I know what it is. If I wish to explain it to him who asks me, I 
do not know. Even so, as Potter Stewart, the well-known former judge of the United States, said, “I 
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know it when I see it.” [12]. I know if it is a city when I see a city, I know if it is a fractal when I see a 
fractal, and I know if it is scientific research when I see a research result. 

5. Conclusions 

Fractal geometry provides us with a new mathematical framework of describing urban 
morphology. To characterize urban form and explain urban growth, we need various fractal 
dimensions. Fractal dimensions can be defined by generalized entropy and correlation functions. To 
understand the essence of fractal dimension, we must learn about entropy and correlation functions. 
On the one hand, fractal dimension is a characteristic value of entropy, and on the other, fractal 
dimension is a scaling exponent of correlation function. Where entropy is concerned, fractal 
dimension indicates uniformity, and inequality degree and uniformity degree represent two different 
sides of the same coin. In this sense, fractal dimension suggests difference and diversity. Where 
correlation is concerned, fractal dimension implies the complexity degree of dynamical systems. 
Moreover, to understand the concept of fractal dimension, we should know the notions of topological 
dimension and Euclidean dimension of embedding space in which fractal cities are defined. Fractal 
theory can be employed to carry out spatial analysis for the scale-free aspects of urban morphology. 
To research urban growth, we can employ sigmoid functions to model fractal dimension growth 
curves of urban form based on time series of fractal dimension. Thus, we have to know the upper 
limit and lower limit of fractal dimension values. The lower limit of fractal dimension relates to the 
topological dimension of fractal sets, while the upper limit depends on the embedding space 
dimension. 

The main points of this paper can be summarized as follows. Firstly, fractal geometry is a 
powerful tool of scale-free analysis, and urban morphology is a typical scale-free geographical 
phenomenon. Therefore, fractal theory can be naturally applied to urban studies. Cities are not true 
fractals, but they can be treated as random pre-fractals, which bear fractal properties within certain 
scaling ranges. If urban form had characteristic scales, we would be able to calculate urban area and 
urban perimeters. Thus, urban form can be described with the methods from traditional advanced 
mathematics. Unfortunately, urban form has no characteristic scales: it belongs to scale-free 
distributions. A great many studies show that urban form follows power laws indicative of fractal 
nature. In this case, it is an advisable selection to employ fractal geometry to describe urban 
morphology and carry out scaling analysis of urban patterns and dynamic processes. Secondly, the 
most appropriate dimension of embedding space for city fractals is two dimensions rather than three 
dimensions. The upper limit of the fractal dimension of urban form should not exceed the embedding 
dimension. A city fractal can be defined in a two-dimensional space, and it can also be defined in a 
three-dimensional space. It is better to define city fractals in a two-dimensional space. On the one 
hand, fractal dimension is used to replace urban area, which cannot be objectively measured due to 
the scale-free distribution of cities. Urban area is a measure defined in a two-dimensional space. 
Therefore, city fractals can be defined in two-dimensional space so that fractal dimension can be 
employed to successfully replace urban area. On the other hand, the criterion of the scientific method 
is to reduce dimensions rather than increase dimensions. Moreover, more available datasets of cities 
are based on two-dimensional space. It is simpler and more effective to analyze a city fractal through 
two-dimensional space. Thirdly, the topological dimension of urban form is zero dimension rather 
than one dimension. The lower limit of fractal dimension is equal to or greater than the topological 
dimension. For modeling fractal dimension growth curves of urban form, it is significant to identify 
the lower limit of fractal dimension. In theory, urban form can be reduced to separated spaces, so the 
topological dimension of city fractals is dT = 0. The lower limit of the fractal dimension of urban form 
is Dmin = 0. The topological dimension of the urban boundary is 1, but the most important city fractals 
are based on the urban area instead of urban boundary. In practice, the lower limit of the fractal 
dimension of urban form can also be treated as Dmin = 1, especially when the sample path is short. 
Based on a constant study area and fixed largest box, the lower limit of the fractal dimension of urban 
form should be taken as Dmin = 0. Based on a variable study area and unfixed largest box, the lower 
limit of the fractal dimension of urban form should be taken as Dmin = 1. Based on a constant study 



Entropy 2020, 22, 961 17 of 21 

 

area, fixed largest box, and long sample path (time span is very large), the fractal dimension values 
of urban form are sometimes D < 1. The question of how to measure the Dmin value depends on the 
concrete situation. 
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Appendix A. Derivation of the Relationships between Fractal Dimension and Standard Error 

The relationships between fractal dimension and standard error can be derived with the help of 
knowledge of linear algebra and statistics. The following regression coefficient formula and basic 
statistics such as correlation coefficient R and F and t statistics can be seen in many statistical analysis 
textbooks and will not be explained in detail. The fractal model can be expressed as a power function 
as below: 

( ) DN r Kr−=  (A1) 

where r denotes the spatial measurement scale such as linear size of box, N(r) is the corresponding 
spatial measurement with linear size r, such as the number of non-empty boxes, K is the 
proportionality coefficient, and D is the fractal dimension. The natural logarithm of both sides of the 
Equation (A1) is 

ln ( ) ln lnN r K D r= −  (A2) 

Then, the relationships between fractal dimension and its standard error can be deduced in two cases. 
(1) Free intercept regression. Suppose that K > 0 but K ≠ 1. Thus, we have free intercept regression. 

In this case, the degree of freedom is v = n − 2. For simplicity, Equation (A2) is expressed as a 
univariate linear regression equation as follows: 

y a bx= +  (A3) 

in which x = ln(r) refers to the independent variable and y = lnN(r) to the dependent variable. As for 
the parameters, a = lnK denotes the intercept, and b = −D is the slope. The slope value is termed 
regression coefficient in linear regression analysis. By the idea of least error sum of squares, we can 
construct a normal equation system. Suppose the time of measurements is n, and the measurement 
sequence is numbered as i = 1, 2, …, n. Then, by using the Cramer rule, we can derive the formula of 
the regression coefficient: 
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
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where x , y  represent arithmetic means of the independent variable x and dependent variable y, 
respectively. The multiple correlation coefficient is defined as 

2 2 2

2 1 1 1

2 2 2 2

1 1 1 1

ˆ ˆ( ( )( )) ( ) ( )
1

( ) ( ) ( ) ( )

n n n

i i i i i
i i i

n n n n

i i i i
i i i i

x x y y y y y y
R

x x y y y y y y

= = =

= = = =

− − − −
= = = −

− − − −

  

   
 (A5) 

Substituting Equation (A5) into Equation (A4) yields 
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In fact, Equations (A4) and (A5) can be found in many textbooks of multiple statistical analyses. The 
F statistic is defined as 
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1 ˆ( )
2

n

i
i

n

i i
i

y y
F

y y
n

=

=

−
=

−
−




 (A7) 

Substituting Equation (A5) into Equation (A7) yields 

2 2
2

1 1
2

2 2

1 1

ˆ( 2) ( ) / ( )
( 2)
(1 )ˆ( ) / ( )

n n

i i
i i

n n

i i i
i i

n y y y y
n RF

Ry y y y

= =

= =

− − −
−= =
−− −

 

 
 (A8) 

The t statistic is defined as 

bt
s

=  (A9) 

where s refers to the standard error of the regression coefficient based on sample. In contrast, the 
standard error δ is based on population. The formula is 

2

1

2

1

1 ˆ( )
2

( )

n

i i
i

n

i
i

y y
ns

x x
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=

−
−=

−




 (A10) 

Equations (A7)–(A10) can be found in many statistics textbooks. Substituting Equations (A5), (A6), 
and (A10) into Equation (A9) yields 

2 2 2

1 1 1

2 2 2

1 1 1

1 ˆ ˆ( ) ( ) ( )
2/

1 ˆ( ) ( ) ( )
2

n n n

i i i i
i i i
n n n

i i i i
i i i

y y y y y y
nt R F

x x x x y y
n

= = =

= = =

− − −
−= = =

− − −
−

  

  
 (A11) 

Combining Equations (A8) and (A11), we have 
2

2
2

( 2)
(1 )
n RF t

R
−= =
−  

(A12) 

Substituting Equations (A9) into Equation (A12) yields 

2

2
( 2)
(1 )

b n R
s R

−=
−

 (A13) 

Considering the definition of slope given above, b = −D, we have 
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2 2

2
1 1/ 1

( 2) 2
R Rs b D

n R n
− −= =
− −

 (A14) 

Thus, based on the 95% level of confidence, corresponding to the significance level of 0.05, the margin of 
error of the fractal dimension value can be expressed as 

2 21/ 1 1/ 1tinv( , 2) (1 2 ) 2
2 2

R RD n D D D s
n n

α − −± − ⋅ ≈ ± = ±
− −

 (A15) 

where tinv is the MS Excel function for threshold value investigation of the t statistic, α denotes 
significance level. The grammar the function “tinv” is “tinv(α, v)”, and here the level of significance 
should be α=0.05. 

 (2) Fixed intercept regression. If K = 1, then a = lnK = 0. Thus, we have fixed intercept regression. 
In this case, the degree of freedom is v = n − 1. Then, the Pearson coefficient is replaced by the cosine 
formula, that is 

2

2 1

2 2

1 1

( )
n

i i
i
n n

i i
i i

x y
R

x y

=

= =

=


 
 (A16) 

Using the similar method, we can derive the relation between fractal dimension and standard error 
based on fixed intercept regression as below: 

21/ 1
1

Rs D
n

−=
−

 (A17)  

In order to save space, the detailed derivation of Equation (A17) is omitted. Readers can derive it by 
analogy with the process of deriving Equation (A14). Based on the 95% level of confidence, the 
margin of error of the fractal dimension value is 

2 21/ 1 1/ 1tinv( , 1) (1 2 ) 2
1 1

R RD n D D D s
n n

α − −± − ⋅ ≈ ± = ±
− −

 (A18)  

This means that, based on the 95% confidence level, the error margin of the fractal dimension is 
approximately the fractal dimension value plus or minus twice the standard error. Note that the 
sample standard error s here is used instead of the population standard error δ in the text. The 
population standard error δ is mainly for theoretical derivation, while the sample standard error s is 
principally for empirical analyses. 
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