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Abstract: In a general Markov decision progress system, only one agent’s learning evolution is
considered. However, considering the learning evolution of a single agent in many problems has some
limitations, more and more applications involve multi-agent. There are two types of cooperation,
game environment among multi-agent. Therefore, this paper introduces a Cooperation Markov
Decision Process (CMDP) system with two agents, which is suitable for the learning evolution of
cooperative decision between two agents. It is further found that the value function in the CMDP
system also converges in the end, and the convergence value is independent of the choice of the value
of the initial value function. This paper presents an algorithm for finding the optimal strategy pair
(π0

k , π1
k) in the CMDP system, whose fundamental task is to find an optimal strategy pair and form

an evolutionary system CMDP (π0
k ,π1

k ). Finally, an example is given to support the theoretical results.

Keywords: reinforcement learning; cooperation markov decision process; multi-agent; optimal pair
of strategies

1. Introduction

Artificial intelligence technology has become one of the most important technologies, nowadays.
AlphaGo, unmanned driving, voice recognition, face recognition and other well-known technologies
involve artificial intelligence. Artificial intelligence technology has been widely used in economic
construction, education, medical treatment, social life and other fields. Many industries have also
begin to evolve to artificial intelligence, intelligence has become an important direction of industrial
development. Machine learning generally includes supervised learning, unsupervised learning and
reinforcement learning [1]. Among them, reinforcement learning is an important research field.
Reinforcement learning is learned by interacting with a dynamic environment through trial and error,
is an important branch in the field of machine learning and artificial intelligence. It is leap to control
the behavior of agents through rewards and punishments. Reinforcement learning is widely used in
many fields, such as: electronic game [2], board games [3], maze game, recommendation system [4],
and so forth.

The important basis of reinforcement learning [5] is Markov Decision Process (MDP) system [6].
From the evolution process of the computational model, Markov Process (MP) system is the basic
model, which introduces reward function and execution behavior, and introduces a mapping from
state set to behavior set as a strategy to solve Markov decision problem. Under the given policy π,
the Markov decision process system degenerates into a Markov process system with a reward function
MDP π . Once the policy is given, the main task of the Markov process system with the reward function
is to evolve and generate the expected reward values collected in each state. The main objective of
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the Markov decision system is to find an optimal strategy [7,8] π∗, so that the expected reward value
collected on the Markov chain can be maximized under this strategy.

In the usual Markov decision process system, only an agent is learning and evolving. However,
in real problems, the decision-making ability of an agent is far from enough, and many problems can
be solved by using a multi-agent [9–11]. Therefore, we encounter two kinds of problems: one is that
multi-agent restrict each other to accomplish their target tasks in the same environment. Such systems
are called antagonistic systems [12] or game systems [13]. In this kind of system, all the intelligent agent
executes the strategy behavior alone, according to mutually restricts or plays games with each other
intelligent agent to finishes its own target task. The optimal strategy is represented as agent strategy
vector group and the reward value is reflected as the reward value of its own execution. Littman [12]
proposed minimax-q algorithm for multi-agent competitive reinforcement learning based on Markov
decision framework based on zero-sum game in 1994. The other is that multi-agent work together to
accomplish a target task in the same environment. Such systems are called collaborative systems [14]
or cooperative [15]. In this kind of system, all the intelligence agent executes the strategy behavior
alone, according to cooperates with each other to completes one target task jointly. The optimal
strategy is the vector set of agent strategy, and the reward value is the social comprehensive value of
combinatorial execution. Littman [16] also proposed a collaborative team q-learning algorithm in 2001.
The multi-agent cooperative algorithm is used to solve problem about traffic signal signal coordination
control [17], multi-agent path planning [18], multi-satellite collaborative task planning [19], and so
forth. In the case of multi-agent, the state shift is the result of all agents acting together, so the rewards
for agents also depend on the joint strategy. Iwata K et al. [6]analyzed the statistical properties of
multi-agent learning based on Markov decision process. However, the multiple agents in this paper are
independent, and the joint action will make the state transfer and reward value of the whole system,
but only migrates the Markov decision process of a single agent to multi-agent. Zhang W et al. [20]
has began to introduce the communication mechanism into the multi-agent system. Although agents
begin to communicate with each other, the consumption of memory was enlarged, and agents could
not predict the impact of their actions on the action execution of other agents.

This paper only considers the Cooperation Markov Decision Process (CMDP) system of two
agents, which is suitable for the evolutionary learning system of cooperative decision between two
agents. Two-agent games for multi-agent reinforcement learning are similar to perceptrons for neural
networks.In this kind of learning model, agents alternately execute behaviors, seek optimal criteria
based on social value, seek optimal strategies (π0

k , π1
k) , and jointly complete the target task. This paper

introduces a cooperation Markov decision process system in the form of definition, two trade agent
(Alice and Bob) on the basis of its strategy to perform an action. that is, after Bob observes that Alice
performs an action, Bob is deciding which action to perform, and further Bob’s execution of the action
will also affect the execution of Alice’s next action. The Markov system learns evolutionally through
a given strategy pair and looking for a pair of optimal strategy (π0

k , π1
k) , form an evolution system

CMDP(π0
k ,π1

k ) , and gives the algorithm [21,22] to search for the optimal strategy pair. In this paper,
the convergence property of the value function of the MDP system with the participation of a single
agent is given, the convergence phenomenon of the value function in the cooperation Markov decision
process system proposed in this paper is further explored, and the correctness of the property is proved
from both the experimental and theoretical perspectives.

2. Markov Reward Process System

A finite Markov process system is constituted by two tuples < S, P > , S = {s1, . . . . . . , sn} is a
set of finite states (containing n states), define a probability distribution P over S, P(s, s′) represents
the probability of transition from state s to state s′, what’s more, ∀s ∈ S : Σs′∈SP(s, s′) = 1. Markov
Reward Process is a kind of Markov chain with value, which consisted of four tuples < S, P, R, γ >.
Introduced a reward function, R : S× S→ R+ (R+ means non-negative real number set). So R(s, s′)
is the reward value obtained by transferring from state s to state s′; 0 < γ < 1 is the attenuation factor,
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also known as the discount factor. Recursively defines an expected reward value (value function)
collected by Markov process system:

V(s) = Σs′∈SP(s, s′)[R(s, s′) + γ ·V(s′)] . (1)

Equation (1) recorded the reward value obtained on the Markov chain X0, X1, X2, . . . , Xt, Xt+1, . . .
with the state s as the initial state. The term R(s, s′) + γ ·V(s′) indicated that: starting from the state s,
the reward value obtained by one-step transition to s′ and plus the discount of the expected reward
value collected from the state s′. Equivalently, writen (1) as the following iterative formula:

Vk+1

→
(s) = diag(PRT) + γ · PVk

→
(s) . (2)

Among them, RT represents the transpose of the matrix R and diag(A) represents the column
vector formed by the diagonal elements of the matrix A.

Now we make an experiment, experiment 1: take probability matrix P , reward function R,
and discount factor γ as follows. Observe the convergence of the value function V through an example.

P =


1 0 0 0 0

1/3 0 1/3 0 1/3
0 0 0 1/3 2/3

1/2 0 0 1/2 0
0 1/4 0 3/4 0

 R =


2 0 0 0 0
2 0 2 0 3
0 0 0 1 2
1 0 0 2 0
0 1 0 2 0

 γ = 0.85

Initially, initial vector is set as V0 = [0, 0, 0, 0, 0]T , the convergence of the value function is shown
in the following Figure 1:

Figure 1. V-function convergence diagram.

According to Figure 1, we can observed that starting from the initial state, the value function
(V-function) will eventually converge as the number of iterations steps. We further speculate that the
final convergence value has nothing to do with the initial value setting.

Theorem 1. Under any initial state V0
→
(s) , randomly walk on the Markov reward process system, the value

function Vk

→
(s) finally obtain converges.

Proof. From the iterative Formula (2), it is easy to obtain that,
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Vk

→
(s) = diag(PRT) + γ · PVk−1

→
(s); Vk−1

→
(s) = diag(PRT) + γ · PVk−2

→
(s);

V2
→
(s) = diag(PRT) + γ · PV1

→
(s); V1

→
(s) = diag(PRT) + γ · PV0

→
(s);

(3)

simplify Equation (3) to calculate the difference in value function between (k + 1)-step and k-step,

Vk+1

→
(s)−Vk

→
(s) = γ · P

(
Vk

→
(s)−Vk−1

→
(s)
)

= γ2 · P2
(

Vk−1

→
(s)−Vk−2

→
(s)
)

=γ3 · P3
(

Vk−2

→
(s)−Vk−3

→
(s)
)
=γk · Pk

(
V1

→
(s)−V0

→
(s)
)

=γk · Pk · diag(PRT) + γk · Pk · (γ · P− E)V0
→
(s) .

(4)

Let P is the probability transfer matrix, R is the reward value matrix, the discount factor satisfy
0 < γ < 1. We have[

R1
min · · · Rn

min

]T
− (Vmax − γ ·Vmin)

[
1 · · · 1

]T
≤ diag(PRT)− (E− γ · P)V0

→
(s)

≤
[

R1
max R2

max · · · Rn
max

]T
− (Vmin − γ ·Vmax)

[
1 1 · · · 1

]T
,

(5)

where Ri
min and Ri

max record the minimum and maximum value of the reward value in the i-th

row of the reward matrix R, respectively. V0
→
(s) represent the value of the initial moment: V0

→
(s) =[

V01 V02 · · · V0n

]T
, the minimum and maximum value of V are Vmin = min{V0

→
(s)} and Vmax =

max{V0
→
(s)} , respectively. Reduce the left side of the inequality (2.5) and enlarge the right side.

Then we conclude,

γk · (R∗min −Vmax+γ ·Vmin)
[

1 1 · · · 1
]T
≤ Vk+1

→
(s)−Vk

→
(s)

Vk+1

→
(s)−Vk

→
(s) ≤ γk · (R∗max −Vmin+γ ·Vmax)

[
1 1 · · · 1

]T
,

where R∗min and R∗max record the minimum and maximum value in the reward matrix R, respectively.
Finally, because of the discount factor 0 < γ < 1, with the constant increase of k, the value of γk

approaches zero infinitely, so the influence of R∗min, R∗max, Vmax and Vmin are much smaller than γk

under general constants number, therefore 0 ≤ Vk+1

→
(s)−Vk

→
(s) ≤ 0. Obviously, when the value of k is

large, Vk+1

→
(s) = Vk

→
(s), that is to say the value of the final value function converges.

Theorem 2. The choice of initial value V0
→
(s) does not affect the convergence value of the final value

function Vk

→
(s).

Proof. Simplifying Equation (3):

Vk

→
(s) = diag(PRT) + γ · PVk−1

→
(s) = diag(PRT) + γ · P ·

(
diag(PRT) + γ · PVk−2

→
(s)
)

= diag(PRT) + γ · P ·
(

diag(PRT) + γ · P ·
(

diag(PRT) + γ · PVk−3

→
(s)
))

=
(

E + γ · P + (γ · P)2 + (γ · P)3 + ... + (γ · P)k−1
)
· diag(PRT) + (γ · P)k ·V0

→
(s) .

(6)

Because P is a probability transition matrix, then Pk is a probability transition matrix also. Then we
can get,
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R∗min
R∗min

...
R∗min

 ≤


R1
min

R2
min
...

Rn
min

 ≤ pi · diag(PRT) ≤


R1

max
R2

max
...

Rn
max

 ≤


R∗max
R∗max

...
R∗max

 , i ∈ {1, 2, · · · , k}, (7)

[
Vmin Vmin · · · Vmin

]T
≤ Pk ·V0

→
(s) ≤

[
Vmax Vmax · · · Vmax

]T
, (8)

applying (7), (8) and simplifying gives

Vk

→
(s) ≥ (1+γ + γ2+ · · ·+γk−1) · R∗min + γk ·Vmin, (9)

Vk

→
(s) ≤ (1+γ + γ2+ · · ·+γk−1) · R∗max + γk ·Vmax, (10)

expand the inequality (9),

(1+γ + γ2+ · · ·+γk−1) · R∗min + γk ·Vmin = ( 1
γk +

1
γk−1 + · · ·+ 1

γ ) · γk · R∗min + γk ·Vmin

= γk[( 1
γk +

1
γk−1 + · · ·+ 1

γ ) · R∗min + Vmin] ≈ γk[( 1
γk +

1
γk−1 + · · ·+ 1

γ ) · R∗min];
(11)

expand the inequality (10),

(1+γ + γ2+ · · ·+γk−1) · R∗max + γk ·Vmax = ( 1
γk +

1
γk−1 + · · ·+ 1

γ ) · γk · R∗max + γk ·Vmax

= γk[( 1
γk +

1
γk−1 + · · ·+ 1

γ ) · R∗max + Vmax] ≈ γk[( 1
γk +

1
γk−1 + · · ·+ 1

γ ) · R∗max].
(12)

It is found that, because of the discount factor 0 < γ < 1, the value of 1
γk continuously approaches

infinity as the value of k increases, so 1
γk +

1
γk−1 + · · ·+ 1

γ � 1 and monotonically increase on the

Formulas (11) and (12). Therefore, the effects of Vmin and Vmax in the initial value function V0
→
(s)

can be ignore for the final value function Vk

→
(s). so the choice of the initial V0

→
(s) does not affect the

convergence value of the final value function Vk

→
(s) . It further proves that our conjecture is correct.

3. Markov Decision Process System

Markov decision process system introduces the behavior in Markov reward process system and
modifies the reward function to the behavior execution step. MDP system is a random process on
state, reward, action sequences, and consists of five-tuples < S, A, P, R, γ >. A = {a1, ..., am} is a set
of finite action, P(s, a, s′) represents the probability of transition from state s to state s′ by performing
action a. P : S × A × S → [0, 1], P(s, a, s′) = P(st+1 = s′|st = s′, at = a), where for each pair of
"state-behavior" (s, a), Σs′∈SP(s, a, s′) = 1. The reward function R define with, R : S× A× S → R,
where R(s, a, s′) = E(Rt+1|st = s, at = a). Similarly, γ is the attention factor also called discount factor,
satisfy 0 < γ < 1. π is a strategy of MDP system, π : S → A. Such as, π(s) = a represents the
execution of action a in state s. So, let Vπ(s) is the value of s under a given policy π, we can include

Vπ(s) = Σs′∈SP(s, π(s), s′)[R(s, π(s), s′) + γ ·Vπ(s′)] . (13)

Equation (13) is called the Bellman recursive equation. In the function Vπ , if see behavior as a
variable, we can induce a state-action value function, that is, a Q-function, Q : S× A→ R

Qπ(s, a) = Σs′∈SP(s, a, s′)[R(s, a, s′) + γ ·Vπ(s′)] . (14)
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Qπ(s, a) is understood as follows: starting from state s, after executing action a and following
executing strategy π , the expected reward value is collected. The goal for any given Markov decision
process is to find an optimal strategy, that is, to obtain the most reward strategy.

Policy function π : S→ A, determines the V-function and Q-function that indicate the expected
collection of reward values, and Qπ can be determined by Vπ . Therefore, our goal is to find a strategy
π that maximizes the function Vπ . A V-function is optional means if for any policy π, for any state
s ∈ S, satisfies V∗(s) ≥ Vπ(s). A policy is optimal indicates if for any policy π, for any state s ∈ S,
satisfies Vπ∗(s) ≥ Vπ(s). So, if Vπ∗ function is an optional V-function V∗, there is V∗(s) = Vπ∗(s),
for any state s ∈ S.

A natural problem is the existence of optimal strategy π∗. Second, if it exists, how should we to
calculate π∗ ?

According to Theorem 1 in Section 2, the value function of the Markov reward process system
will converge, and the value function of the Markov decision process system formed by introducing
behaviors on Markov reward process system must also converge. Theoretical results [23,24] show
that: an optimal strategy for a finite Markov decision process system < S, A, P, R, γ > exists, and the
optimal V-function V∗ and the optimal strategy π∗ have the following relationship:

(i) If the optimal function V∗ has been obtained, the optimal strategy π∗ can be obtained:

π∗(s) = arg max
a

Σs′∈SP(s, a, s′)[R(s, a, s′) + γ ·V∗(s′)] ; (15)

(ii) If the optimal policy π∗ has been obtained, the optimal function V∗ can be obtained:

V∗(s) = Vπ∗(s) = Σs′∈SP(s, π∗(s), s′)[R(s, π∗(s), s′) + γ ·Vπ∗(s′)] . (16)

Equations (15) and (16) give a cross-iterative solution process, and finally the optimal strategy π∗

and the optimal function V∗ are obtained.
The execution process of the MDP system is shown in the following Figure 2:

Figure 2. Optimal strategy solution algorithm framework.

4. Cooperation Markov Decision Process System

This section introduces a joint formal system that two agents run in the same Markov decision
process system, called the cooperation Markov decision process system.

Suppose A = (ai,j)n×n, B = (bi,j)m×m are two matrices, the tensor product of matrix A and B is
defined as: A⊗ B = (ai,jB) . If P1, P2 are two probability matrices but not necessarily the same number
of rows, so P1 ⊗ P2 is a probability matrix.

Assume S1 = {s1
1, . . . , s1

n}, S2 = {s2
1, . . . , s2

m} are two state sets, (S1, P1), (S2, P2) are two MDP
systems, state set S = S1 × S2, S’s state transition matrix is P = P1 ⊗ P2, then MDP system (S, P) is
the product system of MDP system (S1, P1) and MDP system (S2, P2).
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4.1. Cooperation Markov Decision Process System with Two Agents

We now consider that, in the same system, there are two agents A and B, each agent performing
their own action and completing the target task in a cooperative manner. For the “cooperative” type,
the two agents cooperate to accomplish the same goal. Formally, such a system is defined as the
following quintuple:

< S, A, {Agent0, Agent1}, {P0, P1}, {R0, R1} >

Among them, S is a finite state set, here represents the state pair of two agents; A is an action
set, here represents the action pair of two agents; Pi is the probability transfer function of Agenti,
i = (0, 1), define as Pi : S × S × A × S × A → [0, 1]. For any (s1, s2, a) ∈ S × S × A, there hold
that Σ(s′ ,a′)∈S×APi(s1, s2, a, s′, a′) = 1. In other words, for any fixed (s1, s2, a), the Pi(s1, s2, a, • , • )

specifies a probability distribution for S × A. Intuitively, P0(s1, s2, a, s′, a′) express that when
Agent0, Agent1 in state pair (s1, s2), when Agent0 after executes action a transitions to s′ state, and the
probability that collaborator Agent1 responds to execution of action a′. Ri is the reward function
of Agenti, i = (0, 1), defined as: Ri : S × S × A × S × A → R (real number set). Intuitively,
R0(s1, s2, a, s′, a′) express that when Agent0, Agent1 in state pair (s1, s2), Agent0 after executes action a
transitions to s′ state, and the reward value that collaborator Agent1 responds to execution of action a′.

Obviously, two agents Agent0, Agent1 correspond to two V-functions: Vi : S× S→ R (i = 0, 1),
in the joint form, we use the social value to describe the joint V-function V : S× S → R. Formally
defined as:

V(s, t) = αV0(s, t) + (1− α)V1(s, t), (0 < α < 1) . (17)

Among them, parameter α is called balance parameter.
Policy function defined as: πi : S× S→ A (i = 0, 1), πi(s, s′) = a understand as: when Agenti

is in s state and observe that when Agent1−i is in s′ state, Agenti executes action a. For a given strategy
pair (π0, π1) , the evolutionary cooperation Markov decision process system CMDP(π0,π1) obtains a
stable V-function whose iterative equation is:

V0
k+1(s, t) = Σs′∈SΣa∈AP0(s, t, π0(s, t), s′, a)[R0(s, t, π0(s, t), s′, a) + γ ·Vk(s′, t)]

V1
k+1(s, t) = Σt′∈SΣa∈AP1(s, t, π1(s, t), t′, a) [R1(s, t, π1(s, t), t′, a) + γ ·Vk(s, t′)]

Vk+1(s, t) = αV0
k+1(s, t) + (1− α)V1

k+1(s, t).
(18)

4.2. Convergence of the Social Value Function of CMDP System

Since the value function will eventually converge during Markov’s decision-making process,
we guess whether the value function also has the same properties in CMDP system. We first observe
by an experiment:

Suppose a CMDP system < S, A, {Agent0, Agent1}, {P0, P1}, {R0, R1} >, where the discount
factor γ=0.95, error coefficient setting ε=0.0001, a state set

S= {(s0,s0), (s0,s1), (s0,s2), (s1,s0), (s1,s1), (s1,s2), (s2,s0), (s2,s1), (s2,s2)},

an action set A= {(a0,a0), (a0,a1), (a1,a0), (a1,a1)}, the probability transition function P and the reward
function R are as follows:

P1(S, a0, S)=P0(S, a0, S) :

s0 s1 s2

s0 0.5 0 0.5
s1 0.7 0.1 0.2
s2 0.4 0 0.6

P1(S, a1, S)=P0(S, a1, S) :

s0 s1 s2

s0 0 0 1
s1 0 0.95 0.05
s2 0.3 0.3 0.4
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R1(S, a0, S)=R0(S, a0, S) :

s0 s1 s2

s0 1 0 1
s1 5 1 1
s2 1 0 1

R1(S, a1, S)=R0(S, a1, S) :

s0 s1 s2

s0 0 0 1
s1 0 1 1
s2 −1 1 1

There are 9 state groups in the CMDP system. Figure 3 depicts the change curve of the social

value function under the strategy of (π0, π1) =

(
s0 s1 s2

a0 a1 a1
,

s0 s1 s2

a1 a0 a1

)
. As can be seen from

the Figure 3, in the cooperation Markov decision process system introduced in this paper, as the
number of iterations increases, the social value of the system increases and finally converges to a
stable value.

Figure 3. Convergence diagram of the social value function of the Cooperation Markov Decision
Process (CMDP) system.

In the CMDP system, agent Agent0 has NS0 states and agent Agent1 has NS1 states,
where NS0 = NS1. The set of actions that two agents can perform are {1, 2, 3, . . . ,a} and each
agent has an action that can be performed. Let s denote the state of agent Agent0, and t denote the
state of agent Agent1, for a given strategy pair (π0, π1), let i = Pi0(s) denote the action performed
by Agent0 in the s state under the π0 strategy, let j = Pi0(t) denote the action perform by Agent1
in the t state under the π1 strategy, among them, i, j ∈ {1, 2, 3, . . . , a}. The cooperation Markov
decision process system with the participation of two agents performs iterative calculation according
to Formula (18).

Theorem 3. In a Cooperation Markov Decision Process system in which two agents participate, the two agents
perform coordinated actions on the CMDP system, and the social value function converges.

Proof. According to the iterative evolution process in Equation (18), we can get the calculation idea
as follows:
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→
V0

1 = A1 + r · P1 ·
→
V0 ,

→
V1

1 = A2 + r · P2 ·
→
V0 ,

→
V1 = α

→
V0

1 +β
→
V1

1 ;
→
V0

2 = A1 + r · P1 ·
→
V1 ,

→
V1

2 = A2 + r · P2 ·
→
V1 ,

→
V2 = α

→
V0

2 +β
→
V1

2 ;
→
V0

3 = A1 + r · P1 ·
→
V2 ,

→
V1

3 = A2 + r · P2 ·
→
V2 ,

→
V3 = α

→
V0

3 +β
→
V1

3 ;
· · · · · ·
→
V0

k = A1 + r · P1 ·
→

Vk−1 ,
→
V1

k = A2 + r · P2 ·
→

Vk−1 ,
→
Vk = α

→
V0

k +β
→
V1

k ;
→

V0
k+1 = A1 + r · P1 ·

→
Vk ,

→
V1

k+1 = A2 + r · P2 ·
→
Vk ,

→
Vk+1 = α

→
V0

k+1 +β
→

V1
k+1 .

(19)

In Formula (19), A1 and P1 respectively represent the expected reward value matrices and
probability transition matrix obtained by Agent0 under a certain state and a known strategy pair
(π0, π1), among them, A1 = diag(P1 • R1

T) represents the probability of the state performing the
action multiplied by the reward value for performing the action. A2 and P2 respectively represent
the expected reward value matrix and probability transition matrix obtained by Agent0 under a
certain state and a known strategy pair (π0, π1), among them, A2 = diag(P2 • R2

T) represents the
probability of the state performing the action multiplied by the reward value for performing the action.
The dimensions of A1 and A2 are NS0 ∗ NS1 rows and 1 column, P and Q are square matrices of
NS0 ∗ NS1 dimension.

Step 1 Calculate
→
V1. Given any initial value function

→
V0 , it can be calculated using Equation (19),

→
V1 = α

→
V0

1 +β
→
V1

1 =α · (A1 + r · P1 ·
→
V0) + β · (A2 + r · P2 ·

→
V0)

= αA1 + βA2 + r(αP1 + βP2) ·
→
V0 .

(20)

Step 2 Find
→
V0

2 and
→
V1

2 according to
→
V1 in Equation (19)

→
V0

2 = A1 + r · P1 ·
→
V1 =A1 + r · P1 · (αA1 + βA2 + r · (αP1 + βP2) ·

→
V0)

= (1+rα · P1)A1 + (rβ · P1)A2 + (r2αP1
2 + r2β · P1 · P2)

→
V0,

(21)

→
V1

2 = A2 + r · P2 ·
→
V1 =A2 + r · P2 · (αA1 + βA2 + r · (αP1 + βP2) ·

→
V0)

= (rα · P2)A1 + (1 + rβ · P2)A2 + (r2αP2 · P1 + r2βP2
2) ·

→
V0 .

(22)

It can be known from Equation (19) that by substituting
→
V0

2 in Equation (21) and
→
V1

2 in Equation (22)

into
→
V2, the expression of

→
V3 can be derived as follows:

→
V2 = α

→
V0

2 +β
→
V1

2

= α · [(1+rα · P1)A1 + (rβ · P1)A2 + (r2αP1
2 + r2β · P1 · P2)

→
V0] +

β · [(rα · P2)A1 + (1 + rβ · P2)A2 + (r2αP2 · P1 + r2βP2
2) ·

→
V0]

= (α + rα2 · P1 + rαβ · P2)A1 + (β + αrβ · P1 + rβ2 · P2)A2+

(r2α2P1
2 + r2αβ · P1 · P2 + r2αβP2 · P1 + r2β2P2

2) ·
→
V0

= [α + rα(αP1 + βP2)A1] + [β + rβ(αP1 + βP2]A2 + r2(αP1 + βP2)
2 ·
→
V0 .

(23)

Step 3 According to equation (19),
→
V2 can be used to find

→
V0

3 and
→
V1

3
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→
V0

3 = A1 + r · P1 ·
→
V2

=A1 + rP1 ·
{

α + rα(αP1 + βP2)A1] + [β + rβ(αP1 + βP2]A2 + r2(αP1 + βP2)
2 ·
→
V0

}
= (1+rαP1 + r2α2 · P1

2 + r2αβP1 · P2)A1 + (rβP1 + αr2β · P1
2 + r2β2P1 · P2)A2

+r3 · P1 · (αP1 + βP2)
2 ·
→
V0,

(24)

→
V1

3 = A2 + r · P2 ·
→
V2

=A2 + r · P2 · [(α + rα2P1 + rαβP2)A1 + (β + αrβP1 + rβ2P2)A2 + r2(αP1 + βP2)
2 ·
→
V0]

= (rαP2 + r2α2P2 · P1 + r2αβ · P2
2)A1 + (1 + rβP2 + αr2βP2 · P1 + r2β2 · P2

2)A2)

+r3 · P2(αP1 + βP2)
2 ·
→
V0 .

(25)

We can known from Equation (19) that by substituting
→
V0

3 in Equation (24) and
→
V1

3 in Equation (25)

into
→
V3, the expression of

→
V3 can be further obtained

→
V3 = α

→
V0

3 +β
→
V1

3
=α[(1+rαP1 + r2α2 · P1

2 + r2αβP1 · P2)A1 + (rβP1 + αr2β · P1
2 + r2β2P1 · P2)A2+

r3 · P1 · (αP1 + βP2)
2 ·
→
V0] + β[(rαP2 + r2α2P2 · P1 + r2αβ · P2

2)A1+

(1 + rβP2 + αr2βP2 · P1 + r2β2 · P2
2)A2) + r3 · P2(αP1 + βP2)

2 ·
→
V0]

= (α+rα2P1 + r2α3 · P1
2 + r2α2βP1 · P2 + rαβP2 + r2α2βP2 · P1 + r2αβ2 · P2

2)A1+

(rαβP1 + α2r2β · P1
2 + r2αβ2P1 · P2 + β + rβ2P2 + αr2β2P2 · P1 + r2β3 · P2

2)A2+

[αr3 · P1 · (αP1 + βP2)
2 + βr3 · P2(αP1 + βP2)

2] ·
→
V0

= [α + rα(αP1 + βP2) + r2α(αP1 + βP2)
2]A1 + [β + rβ(αP1 + βP2) + r2β(αP1 + βP2)

2]·
A2 + r3(αP1 + βP2)

3 ·
→
V0 .

(26)

Finally, from the expressions of
→
V1 ,

→
V2 and

→
V3, it is not difficult to find the laws through

observation. The value function
→
Vk at time k and the value function

→
Vk+1 at time k + 1 can be deduced

by the following Formulas (27) and (28) as shown.

→
Vk = α

→
V0

k +β
→
V1

k
= [α + rα(αP1 + βP2) + r2α(αP1 + βP2)

2 + · · ·+ rk−1α(αP1 + βP2)
k−1]A1+

[β + rβ(αP1 + βP2) + r2β(αP1 + βP2)
2+ · · ·+ rk−1β(αP1 + βP2)

k−1]A2+

rk(αP1 + βP2)
k ·
→
V0,

(27)

→
Vk+1 = α

→
V0

k+1 +β
→

V1
k+1

= [α + rα(αP1 + βP2) + · · ·+ rk−1α(αP1 + βP2)
k−1 + rkα(αP1 + βP2)

k]A1+

[β + rβ(αP1 + βP2) + + · · ·+ rk−1β(αP1 + βP2)
k−1 + rkβ(αP1 + βP2)

k]A2+

rk+1(αP1 + βP2)
k+1 ·

→
V0 .

(28)

Subtract the two equations to calculate the value function difference between time k and k + 1 :
→

Vk+1−
→
Vk

= [rkα(αP1 + βP2)
k]A1 + rkβ(αP1 + βP2)

k]A2 + rk+1(αP1 + βP2)
k+1 ·

→
V0−rk(αP1 + βP2)

k ·
→
V0

= [rkα(αP1 + βP2)
k]A1 + rkβ(αP1 + βP2)

k]A2 + [rk(αP1 + βP2)
k · (r(αP1 + βP2)− E)] ·

→
V0

=rk(αP1 + βP2)
k ·
{

αA1 + βA2 + [r(αP1 + βP2)− E] ·
→
V0

}
.
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P1 and P2 are two probability transition matrices, α + β = 1, thus, αP1 + βP2 is a probability
transition matrix and the k-th power of the probability transition matrix is still the probability matrix,
so (αP1 + βP2)

k is a probability transition matrix. Because of discount factor 0 < r < 1, then rk

decreases monotonically with the increase of k. When k is large enough, rk → 0 . That is to say:

lim
k→∞

→
(Vk+1−

→
Vk) = lim

k→∞
rk(αP1 + βP2)

k · {αA1 + βA2 + [r(αP1 + βP2)− E] ·
→
V0} = 0.

So, for any given strategy pair (π0, π1),
→

Vk+1 =
→
Vk , in the CMDP system introduced in this paper,

the final value function V will converge. If the discount factor is larger, the convergence speed is
slower, the smaller the discount factor is, the faster the convergence speed is.

Theorem 4. In the Cooperation Markov Decision Process system, the final value
→
Vk of the value function is

independent of the initial value of
→
V0.

Proof. From Theorem 3, the value function at time can be expressed, and the expression (27) can be
further simplified to obtain:

→
Vk = α

→
V0

k +β
→
V1

k
= [α + rα(αP1 + βP2) + r2α(αP1 + βP2)

2 + · · ·+ rk−1α(αP1 + βP2)
k−1]A1+

[β + rβ(αP1 + βP2) + r2β(αP1 + βP2)
2+ · · ·+ rk−1β(αP1 + βP2)

k−1]A2 + rk(αP1 + βP2)
k ·
→
V0

= (αA1 + βA2) + [r(αP1 + βP2) · (αA1 + βA2)] + [r2(αP1 + βP2)
2 · (αA1 + βA2)]+

+ · · ·+[rk−1(αP1 + βP2)
k−1 · (αA1 + βA2)] + rk(αP1 + βP2)

k ·
→
V0

= [E + r(αP1 + βP2) + r2(αP1 + βP2)
2 + · · ·+ rk−1(αP1 + βP2)

k−1] · (αA1 + βA2)+

rk(αP1 + βP2)
k ·
→
V0 .

Obviously, P1 and P2 are two probability transition matrices, α + β = 1 , thus (αP1 + βP2) is a
probability transition matrix, ∀k ∈ N, (αP1 + βP2)

k is a probability transition matrix. r is the discount
factor and 0 < r < 1, then with the increase of k, the rk decreases monotonically. When k is large

enough, rk → 0, that lim
k→∞

rk = 0, so lim
k→∞

rk(αP1 + βP2)
k ·
→
V0 =

→
0 , we can conclude,

lim
k→∞

→
Vk = lim

k→∞
[E + r(αP1 + βP2) + r2(αP1 + βP2)

2 + · · ·+ rk−1(αP1 + βP2)
k−1] · (αA1 + βA2)+

rk(αP1 + βP2)
k ·
→
V0

= lim
k→∞

[E + r(αP1 + βP2) + r2(αP1 + βP2)
2 + · · ·+ rk−1(αP1 + βP2)

k−1] · (αA1 + βA2).

Therefore, the choice of the initial function
→
Vk does not affect the convergence value of the final

value function
→
V0.

4.3. Algorithm for Optimal Strategy Pairs in Cooperation Type CMDP System

From the theoretical results in Section 4.2, it can be known that under the strategy pair (π0, π1),
the V-function generated by the iteration of Equation (18) is recorded as V(π0,π1) to form a stable
value. Similarly, according function V and improve (π0, π1) to obtain (π

′
0, π

′
1) by the following

greedy method.

π
′
0(s, t) = arg maxaΣ(s′ ,a′)∈S×AP0(s, t, a, s′, a′)[R0(s, t, a, s′, a′) + γ ·V(π0 , π1)(s′, t)]

π
′
1(s, t) = arg maxaΣ(t′ ,a′)∈S×AP1(s, t, a, t′, a′)[R1(s, t, a, t′, a′) + γ ·V(π0 , π1)(s, t′)] .

(29)
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In order to obtain the algorithm of the optimal strategy pair (π∗0 , π∗1 ) in the Cooperation Markov
Decision Process system. We modeled the optimal strategy of a single agent. Let Formula (18) be the
iterative calculation formula of the “evolution module” part of the algorithm, Formula (29) be the
strategy improvement method of the “strategy improvement module” in the algorithm. According the
method of solving the single-agent Markov decision process system’s optimal strategy, this section
presents the algorithm for solving the optimal strategy of the joint type cooperation Markov decision
process system, the optimal strategy pair is (π∗0 , π∗1 ).

The detail code of Algorithm 1 can see in Appendix A. The execution process of the above
algorithm is shown in the following Figure 4:

Figure 4. Optimal Strategy Solution Algorithm Framework of CMDP System.

Algorithm 1 The Optimal Strategy Pairs
Input: input CMDP quintuple < S, A, {Agent0, Agent1}, {T0, T1}, {R0, R1} >: error parameter ,

ε > 0 balance parameter 0 < α < 1, discount factor 0 < γ < 1.

Output: output Optimal strategy pair (π0
∗, π1

∗) = (π0
k , π1

k), optimal value function Vk+1 = V(π0
∗ ,π1
∗)

k+1 .

1. Initialization V-function V0
1 , V1

1 , take the initial value randomly. Such as V1
1(s) = 0 (s ∈ S);

suppose V1 = αV0
1 + (1− α)V1

1 ;

2. Use Equation (19) to greedy improvement strategy pair (π0
1, π1

1): (V
(π0

1 ,π1
1)

1 = V1);
3. Use the updated strategy pair (π0

1 , π1
1)in step 2 and Formula (18) to find the V-function V2 ;

4. Repeat steps 2, 3;

5. Step k + 1: assuming (π0
k , π1

k ), V
(π0

k , π1
k )

k has been obtained, at this step, do the following two
steps of calculation:

(a) Evolutionary calculation of CMDP system: find Vk+1 by (π0
k , π1

k ) and Formula (18),

when ||Vk+1 −Vk|| < ε, defined V
(π0

k , π1
k )

k+1 (s, t) = Vk(s, t) ((s, t) ∈ S× S).

(b) Greedy computing (π0
k+1, π1

k+1 ):

π0,k+1(s, t) = arg maxaΣ(s′ ,a′)∈S×AP0(s, t, a, s′, a′)[R0(s, t, a, s′, a′) + γ ·V(π0k , π1k)
0 (s′, t)] ,

π1,k+1(s, t) = arg maxaΣ(t′ ,a′)∈S×AP1(s, t, a, t′, a′)[R1(s, t, a, t′, a′) + γ ·V(π0k , π1k)
0 (s, t′)] .

6. If π0
k+1=π0

k , π1
k+1=π1

k , terminate calculation.
7. Return result.
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5. An Application Example of Cooperation Markov Decision Process System

Reinforcement learning is one of the most concerned topic in artificial intelligence after deep
learning. Reinforcement learning agents interact with the environment and take actions that receive
feedback similar to learning strategies in medicine. In fact, many applications of reinforcement learning
in health care have to do with finding the best treatment strategy. Many reading learning software
also use intensive learning to provide customized learning materials and content for the tutoring
system to meet the specific needs of students. The recommendation system of e-commerce changes the
recommendation strategy in real time according to the feedback of users (ignore, click and buy).

The core problem of multi-agent system research is to seek to establish an effective cooperation
mechanism, so that multi-agent with simple function and independent function can complete
complex target tasks or solve complex problems through negotiation, coordination and cooperation.
In the multi-agent system, each agent learns and improves its own strategy by interacting with the
environment to obtain the reward value, so as to obtain the optimal strategy under the environment is
the process of multi-agent reinforcement learning. The transfer of multi-agent state depends on the
actions of all agents, and the joint actions determine the transfer of the whole system. The return of
each agent is not only related to its own actions, but also the actions of other agents will affect the
return of the current agent. If multi-agent are involved, there are three types of cooperative game,
competition game and mixed game combined between agents in the same environment.

The proposed joint multi-agent in this paper only analyzes the relationship between two
agents, two agents take interactive actions and complete cooperation to achieve the goal together.
When intelligence agent B observed intelligence agent A take an action, intelligence agent B will
perform an action. At the same time, the next action of agent A also depends on the agent B’s action.
Repeat the process of perform action above, the behavior of the two agents influence each other and
evolve and learn in the CMDP system of a given strategy pair to find a pair of optimal strategies finally.

Background: a couple found a gold bar not far from home at the same time, this gold bar needs
two people together, one carried one end to carry home, they want to carry the gold bar to home,
they need avoid the trap and then everyone arrives at the side of the gold bar, after lifting the gold
bar, they also have to bypass the obstacles in front of the home, finally, the gold bar is successfully
transported home.

The background is transformed into the environment as shown in the Figure 5, the simulation
is carried out on the figure. Two people are compared to two agents respectively. In addition,
the figure can only move up, down, or left, and each position can only accommodate one agent.
In this experiment, agents in the same environment, through mutual cooperation, the gold bars to the
designated location. The whole process is divided into the following three steps:

Step 1 Bypass the trap. When passing through the trap area, each position can only accommodate
one agent, two agents cannot be in the same position at the same time, so they need to interact
with each other which agent passe first. When agent B observes that agent A is going to pass
through the trap position, agent B cannot pass through the trap position.

Step 2 Reach the designated position. The two agents must reach the two ends of the gold bar to pick
up the gold bar, so the two agents can not reach the same place at the same time. When one of
the agents reaches one end of the gold bar, the other must walk to the other end of the gold bar
before the two agents can work together to pick up the gold bar.

Step 3 Delivery of gold bar. Because the gold bar has a certain length, in the process of transporting
the gold bar to the designated position, the two agents are at different positions. In the process
of transporting the gold bar, the two agents also need to consider how to bypass the obstacles
and the positions of the two agents. The two agents need to cooperate and interact to complete
the task.
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Figure 5. The environment of two agents in this example.

In the process of gold bar transportation, through continuous exploration and trial and error in
the environment, the two intelligence agent will find the best way to move. Finally, the two agents
cooperate through the trap to reach the two ends of the gold bar, and then bypass the obstacles to
successfully transport the gold bar home. In such an example, each agent can only move up, down,
left, and right to adjacent positions in the environment, and the sum of the probabilities of moving to
all adjacent positions is equal to 1. The agent obtains certain benefits by moving the position. In order
to avoid falling into traps and avoiding obstacles, the probability and benefits of moving to the vicinity
of traps and obstacles are also relatively small compared to other locations. The goal is that through
constant trial and error and learning in the environment, the two agents can take an optimal way of
movement to get the most benefit. We express the probability and reward value of moving adjacent
positions in this problem with a square matrix, and the probability and reward value of the joint action
of two agents are the tensor product of two probability matrices and two reward matrices. Using the
algorithm 1 in this article, given an initial strategy, the system will obtain a value function under this
strategy. Under the value function at this time, the agent performs all joint actions and selects the
joint action that enables the system to obtain the highest reward value. Use this to modify the initial
strategy, and then obtain a new value function under the modified strategy. According to this method,
iteratively modify the strategy and value function, and finally evolve to learn a strategy that can obtain
the maximum reward value. That is, the optimal strategy.

Conversely, if the two agents do not cooperate in any of the steps described in the appeal, it is
difficult to successfully transport the gold bar home. Firstly, there will be a conflict when they bypass
the trap, both agents cannot simultaneously adopt their own optimal way to pass the trap position.
Secondly, after passing through the trap, then something happens that the two agents are on the same
side of the bar. After that, the two agents may not move in the same direction, which will also cause the
task to fail. So in such an instance, the interaction between two agents becomes extremely important.

6. Conclusions

This paper first proves the convergence of the value function of the monomer Markov decision
process system. Furthermore, a cooperation Markov decision process system of two agents is
introduced, which is suitable for an evolutionary learning system of cooperative (or antagonistic)
decision between two agents. The main difference between cooperation and confrontation lies in the
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way the value function is defined and the way of combination (or restriction). In this paper, only CMDP
system of cooperative type is considered. In this kind of learning model, agents alternately execute
behaviors, seek the optimal criterion with social value, find the optimal strategy (π∗0 , π∗1 ), and jointly
complete the target task. This paper presents an algorithm for finding the optimal strategy pair
(π∗0 , π∗1 ), whose fundamental task is to find a pair of optimal strategies to form an evolutionary
system CMDP (π∗0 ,π∗1 ). Finally, the convergence of the value function in system CMDP is proved,
and the convergence value is not affected by the value of the initial value function. This paper only
introduces the cooperation Markov decision process system involving two agents, but many problems
in reality involve more agents. As the number of agents increases, the interaction between agents
in the system becomes more complex, and the difficulty of analysis also increases exponentially.
Based on the fact that deep learning has strong perceptual ability, but lacks certain decision-making
ability, while reinforcement learning has decision-making ability but short of doing anything about
perceptual problems. Therefore, combining the two and complementing each other’s advantages,
a new concept–deep reinforcement learning is proposed. so we will use the next deep reinforcement
learning method to study the properties of the cooperation Markov decision process system.

Author Contributions: Formal analysis, X.M.; Investigation, X.M. and D.X.; Methodology, X.M. and D.X.;
Software, X.M.; Writing—Original Draft, X.M.; Writing—Review & Editing, X.M., Z.F. and D.X. All authors
have read and agreed to the published version of the manuscript.

Funding: This research is funded by the National Natural Science Foundation of China under grant numbers Nos.
61762019, 61862051.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The algorithm in the simulation experiment in Section 4.2 of this paper is completely suitable for
solving the problem of two agents. The specific implementation of the algorithm, the data and code of
all the experiments in the article can be found in the following link: https://github.com/moxiaoling/
Cooperation-Markov-Decision-Process-System.
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