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Abstract: In this paper, we consider an information bottleneck (IB) framework for semi-supervised
classification with several families of priors on latent space representation. We apply a variational
decomposition of mutual information terms of IB. Using this decomposition we perform an analysis
of several regularizers and practically demonstrate an impact of different components of variational
model on the classification accuracy. We propose a new formulation of semi-supervised IB with hand
crafted and learnable priors and link it to the previous methods such as semi-supervised versions of
VAE (M1 + M2), AAE, CatGAN, etc. We show that the resulting model allows better understand the
role of various previously proposed regularizers in semi-supervised classification task in the light of
IB framework. The proposed IB semi-supervised model with hand-crafted and learnable priors is
experimentally validated on MNIST under different amount of labeled data.

Keywords: information bottleneck principle; deep networks; semi-supervised classification;
latent space representation; hand crafted priors; learnable priors; regularization

Notations

We will denote a joint generative distribution as pθ(x, z) = pθ(z)pθ(x|z), whereas marginal
pθ(z) is interpreted as a targeted distribution of latent space and marginal pθ(x) = Epθ(z) [pθ(x|z)] =∫

z pθ(x|z)pθ(z)dz as a generated data distribution with a generative model described by pθ(x|z),
where E stands for the expected value. A joint data distribution qφ(x, z) = pD(x)qφ(z|x), where pD(x)
denotes an empirical data distribution and qφ(z|x) is an inference or encoding model and marginal
qφ(z) denotes a “true” or “aggregated” distribution of latent space data. We will denote parameters
of encoders as φa and φz, and those of decoders as θc and θx. The discriminators corresponding to
Kullback–Leibler divergences are denoted as Dx where the subscript indicates the space to which
this discriminator is applied to. The cross-entropy metrics are denoted as Dxx̂, where the subscript
indicates the corresponding vectors. X denotes random vector, while the corresponding realization is
denoted as x.

1. Introduction

The deep supervised classifiers demonstrate an impressive performance when the amount of
labeled data is large. However, their performance significantly deteriorates with the decrease of
labeled samples. Recently, semi-supervised classifiers based on deep generative models such as VAE
(M1 + M2) [1], AAE [2], CatGAN [3], etc., along with several other approaches based on multi-view
and contrastive metrics just to mention the most recent ones [4,5], are considered to be a solution to
the above problem. Besides the remarkable reported results, the information theoretic analysis of
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semi-supervised classifiers based on generative models and the role of different priors aiming to fulfil
the gap in the lack of labeled data remain little studied. Therefore, in this paper we will try to address
these issues using IB principle [6] and practically compare different priors on the same architecture
of classifier.

Instead of considering the latent space of generative models such as VAE (M1 + M2) [1] and
AAE [2] trained in the unsupervised way as suitable features for the classification, we will depart from
the IB formulation of supervised classification, where we consider an encoder-decoder formulation
of classifier and impose priors on its latent space. Thus, we study an approach to semi-supervised
classification based on an IB formulation with a variational decomposition of IB compression and
classification mutual information terms. To deeper understand the role and impact of different elements
of variational IB on the classification accuracy, we consider two types of priors on the latent space of
classifier: (i) hand-crafted and (ii) learnable priors. Hand-crafted latent space priors impose constraints
on a distribution of latent space by fitting it to some targeted distribution according to the variational
decomposition of the compression term of the IB. This type of latent space priors is well known as an
information dropout [7]. One can also apply the same variational decomposition to the classification
term of the IB, where the distribution of labels is supposed to follow some targeted class distribution
to maximize the mutual information between inferred labels and targeted ones. This type of class label
space regularization reflects an adversarial classification used in AAE [2] and CatGAN [3]. In contrast,
learnable latent space priors aim at minimizing the need in human expertise in imposing priors on the
latent space. Instead, the learnable priors are learned directly from unlabeled data using auto-encoding
(AE) principle. In this way, the learnable priors are supposed to compensate the lack of labeled data
in the semi-supervised learning yet minimizing the need in the hand-crafted control of the latent
space distribution.

We demonstrate that several state-of-the-art models such as AAE [2], CatGAN [3], VAE (M1 +
M2) [1], etc., can be considered to be instances of the variational IB with the learnable priors. At the
same time, the role of different regularizers in the hand-crafted semi-supervised learning is generalized
and linked to known frameworks such as information dropout [7].

We evaluate our model using standard dataset MNIST on both hand-crafted and learnable features.
Besides revealing the impact of different components of variational IB factorization, we demonstrate
that the proposed model outperforms prior works on this dataset.

Our main contribution is three-fold: (i) We propose a new formulation of IB for the semi-supervised
classification and use a variational decomposition to convert it into a practically tractable setup with
learnable parameters. (ii) We develop the variational IB for two classes of hand-crafted and learnable
priors on the latent space of classifier and show its link to the state-of-the-art semi-supervised methods.
(iii) We investigate the role of these priors and different regularizers in the classification, latent and
reconstruction spaces for the same fixed architecture under the different amount of training data.

2. Related Work

Regularization techniques in semi-supervised learning: Semi-supervised learning tries to find
a way to benefit from a large number of unlabeled samples available for training. The most common
way to leverage unlabeled data is to add a special regularization term or some mechanism to
better generalize to unseen data. The recent work [8] identifies three ways to construct such a
regularization: (i) entropy minimization, (ii) consistency regularization and (iii) generic regularization.
The entropy minimization [9,10] encourages the model to output confident predictions on unlabeled
data. In addition, more recent work [3] extends this concept to adversarially generated samples or
fakes for which the entropy of class label distribution was suggested to be maximized. Finally, the
adversarial regularization of label space was considered in [2], where the discriminator was trained
to ensure the labels produced by the classifier follow a prior distribution, which was defined to be
a categorical one. The consistency regularization [11,12] encourages the model to produce the same
output distribution when its inputs are perturbed. Finally, the generic regularization encourages the
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model to generalize well and avoid overfitting the training data. It can be achieved by imposing
regularizers and corresponding priors on the model parameters or feature vectors.

In this work, we implicitly use the concepts of all three forms of considered regularization
frameworks. However, instead of adding additional regularizers to the baseline classifier as suggested
by the framework in [8], we will try to derive the corresponding counterparts from a semi-supervised
IB framework. In this way, we will try to justify their origin and investigate their impact on overall
classification accuracy for the same system architecture.

Information bottleneck: In the recent years, the IB framework [6] is considered to be a theoretical
framework for analysis and explanation of supervised deep learning systems. However, as shown
in [13], the original IB framework faces several practical issues: (i) for the deterministic deep networks,
either the IB functional is infinite for network parameters, that leads to the ill-posed optimization
problem, or it is piecewise constant, hence not admitting gradient-based optimization methods, and
(ii) the invariance of the IB functional under bijections prevents it from capturing properties of the
learned representation that are desirable for classification. In the same work, the authors demonstrate
that these issues can be partly resolved for stochastic deep networks, networks that include a (hard or
soft) decision rule, or by replacing the IB functional with related, but more well-behaved cost functions.
It is important to mention that the same authors also note that rather than trying to repair the inherent
problems in the IB functional, a better approach may be to design regularizers on latent representation
enforcing the desired properties directly.

In our work, we extend these ideas using variational approximation approach suggested in [14]
and that was also applied to unsupervised models in the previous work [15,16]. More particularly,
we extend the IB framework to the semi-supervised classification and as discussed above we will
consider two different ways of regularization of the latent space of classifier, i.e., either using traditional
hand-crafted priors or suggested learnable priors. Although we do not consider the semi-supervised
clustering and conditional generation in this work, the proposed findings can be extended to these
problems in a way similar to prior works such as AAE [2], ADGM [17] and SeGMA [18].

The closest works: The proposed framework is closely related to several families of
semi-supervised classifiers based on generative models. VAE (M1 + M2) [1] combines latent-feature
discriminative model M1 and generative semi-supervised model M2. A new latent representation
is learned using the generative model from M1 and subsequently a generative semi-supervised
model M2 is trained using embeddings from the first latent representation instead of the raw data.
Semi-supervised AAE classifier [2] is based on the AE architecture, where the encoder of AE outputs
two latent representations: one representing class and another style. The latent class representation is
regularized by an adversarial loss forcing it to follow categorical distribution. It is claimed that it plays
an essential role for the overall classification performance. The latent style representation is regularized
to follow Gaussian distribution. In both cases of VAE and AAE, the mean square error (MSE) metric
is used for the reconstruction space loss. CatGAN [3] is an extension of GAN and is based on an
objective function that trades-off mutual information between observed examples and their predicted
categorical class distribution, against robustness of the classifier to an adversarial generative model.

In contrast to the above approaches and following the IB framework, we formulate the
semi-supervised classification problem as a training of classifier that aims at compressing the input x
to some latent data a via an encoding that is supposed to retain only class relevant information that
is controlled by a decoder as shown in Figure 1. If the amount of labeled data is sufficiently large,
the supervised classifier can achieve this goal. However, when the amount of labeled examples is
small such an encoder-decoder pair representing an IB-driven classifier is regularized by a latent space
and adversarial label space regularizers to fill the gap in training data. The adversarial label space
regularization was already used in AAE and CatGAN. The latent space regularization in the scope
of IB framework was reported in [7]. In this paper, we demonstrate that both label and latent space
regularizations are instances of the generalized IB formulation developed in Section 3. At the same
time, in contrast to the hypothesis that the considered label space and latent space regularizations
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are the driving factors behind the success of semi-supervised classifiers, we demonstrate that the
hand-crafted priors considered in these models cannot completely fulfil the lack of labelled data
and lead to relatively poor performance in comparison to a fully supervised system based on a sole
cross-entropy metric. For these reasons, we analyze another mechanism of regularization of latent
space based on learnable priors as shown in Figure 2 and developed in Section 4. Along this line,
we provide an IB formulation of AAE and explain the driving mechanisms behind its success as an
instance of IB with learnable priors. Finally, we present several extensions that explain the IB origin
and role of adversarial regularization in the reconstruction space.
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Figure 1. Classification with the hand-crafted latent space regularization.
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Figure 2. Classification with the learnable latent space regularization.

Summary: The considered methods of semi-supervised learning can be differentiated based on:
(i) the targeted tasks (auto-encoding, clustering, generation or classification that can be accomplished
depending on available labeled data); (ii) the architecture in terms of the latent space representation (with
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a single representation vector or with multiple representation vectors); (iii) the usage of IB or other
underlying frameworks (methods derived from the IB directly or using regularization techniques); (iv) the
label space regularization (based on available unlabeled data, augmented labeled data, synthetically
generated labeled and unlabeled data, especially designed adversarial examples); (v) the latent space
regularization (hand-crafted regularizers and priors or learnable priors under the reconstruction
and constrastive setups) and (vi) the reconstruction space regularization in case of reconstruction setup
(based on unlabeled and labeled data, augmented data under certain perturbations, synthetically
generated examples).

In this work, our main focus is the latent space regularization for the hand-crafted and learnable
priors under the reconstruction setup within the IB framework. Our main task is the semi-supervised
classification. We will not consider any augmentation and adversarial techniques besides a simple
stochastic encoding based on the addition of data independent noise at the system input or even
deterministic encoding without any form of augmentation. The regularization of the label space
and reconstruction space is solely based on the terms derived from the IB framework and only
includes available labeled and unlabeled data without any form of augmentation. In this way,
we want to investigate the role and impact of the latent space regularization as such in the IB-based
semi-supervised classification. The usage of the above mentioned techniques of augmentation should
be further investigated and will likely provide an additional performance improvement.

3. IB with Hand-Crafted Priors (HCP)

We assume that a semi-supervised classifier has an access to {xm, cm}N
m=1 training labeled samples,

where xm ∈ RD denotes mth data sample and cm corresponding encoded class label from the set
{1, 2, · · · , Mc}, generated from the joint distribution p(c, x), and non-labeled data samples

{
xj
}J

j=1
with J � N. To integrate the knowledge about the labeled and non-labeled data at training, one can
formulate the IB as:

LHCP(φa) = Iφa
(X; A)− βc Iφa

(A; C), (1)

where a denotes the latent representation, βc is a Lagrangian multiplier and the IB terms are defined

as Iφa
(X; A) = Eqφa (x,a)

[
log

qφa (a|x)
qφa (a)

]
and Iφa

(A; C) = Ep(c,x)

[
Eqφa (a|x)

[
log

qφa (c|a)
p(c)

]]
.

According to the above IB formulation the encoder qφa
(a|x) is trained to minimize the mutual

information between X and A while ensuring that the decoder qφa
(c|a) can reliably decide on labels C

from the compressed representation A. The trade-off between the compression and recognition terms
is controlled by βc. Thus, it is assumed that the information retained in the latent representation A
represents the sufficient statistics for the class labels C.

However, since optimal qφa
(c|a) is unknown, the second term Iφa

(A; C) is lower bounded by
Iφa,θc(A; C) using a variational approximation pθc(c|a):

Iφa
(A; C) , Ep(c,x)

[
Eqφa (a|x)

[
log

qφa
(c|a)

p(c)

]]
= Ep(c,x)

[
Eqφa (a|x)

[
log

qφa
(c|a)

p(c)
pθc(c|a)
pθc(c|a)

]]
= Ep(c,x)

[
Eqφa (a|x)

[
log

pθc(c|a)
p(c)

]]
+Ep(c,x)

[
Eqφa (a|x)

[
log

qφa
(c|a)

pθc(c|a)

]]
= Ep(c,x)

[
Eqφa (a|x)

[
log

pθc(c|a)
p(c)

]]
+Ep(c,x)

[
DKL(qφa

(c|a)||pθc(c|a))
]

≥ Ep(c,x)

[
Eqφa (a|x)

[
log

pθc(c|a)
p(c)

]]
,

(2)

where DKL(qφa
(c|a)||pθc(c|a)) = Eqφa (a|x)

[
log

qφa (c|a)
pθc (c|a)

]
and the inequality follows from the fact that

DKL(qφa
(c|a)||pθc(c|a)) ≥ 0. We denote the term Iφa,θc(A; C) = Ep(c,x)

[
Eqφa (a|x)

[
log pθc (c|a)

p(c)

]]
. Thus,
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Iφa
(A; C) ≥ Iφa,θc(A; C).

Thus, the IB (1) can be reformulated as:

LHCPL(φa, θc) = Iφa
(X; A)− βc Iφa,θc(A; C). (3)

The considered IB is schematically shown in Figure 1 and we will proceed next with the detailed
development of each component of the IB formulation.

3.1. Decomposition of the First Term: Hand-Crafted Regularization

The first mutual information term Iφa
(X; A) in (3) can be decomposed using a factorization by a

parametric marginal distribution pθa(a) that represents a prior on the latent representation a:

Iφa
(X; A) = Eqφa (x,a)

[
log

qφa
(x, a)

qφa
(a)pD(x)

]
= Eqφa (x,a)

[
log

qφa
(a|x)

qφa
(a)

pθa(a)
pθa(a)

]
= EpD(x)

[
DKL

(
qφa

(a|X = x)‖pθa(a)
)]︸ ︷︷ ︸

Da|x

−DKL
(
qφa

(a)‖pθa(a)
)︸ ︷︷ ︸

Da

,
(4)

where the first term denotes the KL-divergence Da|x , DKL
(
qφa

(a|X = x)‖pθa(a)
)

=

Eqφa (a|x)

[
log

qφa (a|x)
pθa (a)

]
and the term denotes the KL-divergence Da , DKL

(
qφa

(a)‖pθa(a)
)

=

Eqφa (a)

[
log

qφa (a)
pθa (a)

]
.

It should be pointed out that the encoding qφa
(a|x) can be both stochastic or deterministic.

Stochastic encoding qφa
(a|x) can be implemented via: (a) multiplicative encoding applied to the input x

as a = fφa
(x� ε) or in the latent space a = fφa

(x)� ε, where fφa
(x) is the output of the encoder, �

denotes the element-wise product and ε follows some data independent or data dependent distribution
as in information dropout [7]; (b) additive encoding applied to the input x as a = fφa

(x + ε) with the
data independent perturbations, e.g., such as in PixelGAN [19], or in the latent space with generally
data-dependent perturbations of form a = fφa

(x) + σφa
(x)� ε, where fφa

(x) and σφa
(x) are outputs

of the encoder and ε is assumed to be a zero mean unit variance vector such as in VAE [1] or
(c) concatenative/mixing encoding a = fφa

([x, ε]) that is generally applied at the input of encoder.
Deterministic encoding is based on the mapping a = fφa

(x), i.e., no randomization is introduced, e.g.,
such as one of encoding modalities of AAE [2].

3.2. Decomposition of the Second Term

In this section, we factorize the second term in (3) to address the semi-supervised training, i.e., to
integrate the knowledge of both non-labeled and labeled data available at training:

Iφa,θc(A; C) , Ep(c,x)

[
Eqφa(a|x)

[
log

pθc(c|a)
p(c)

pθc(c)
pθc(c)

]]
= −Ep(c) [log pθc(c)]−Ep(c)

[
log

p(c)
pθc(c)

]
+Ep(c,x)

[
Eqφa (a|x)

[log pθc(c|a)]
]

= H(p(c); pθc(c))− DKL (p(c)‖pθc(c))− Hθc,φa
(C|A),

(5)

with H(p(c); pθ(c)) = −Ep(c) [log pθc(c)] denoting a cross-entropy between p(c) and pθc(c), and

Dc , DKL (p(c)‖pθc(c)) = Ep(c)

[
log p(c)

pθc (c)

]
to be a KL-divergence between the prior class label

distribution p(c) and the estimated one pθc(c). One can assume different forms of labels’ c encoding
but one of the most often used forms is one-hot-label encoding that leads to the categorical distribution
p(c) = cat(c).
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Finally, the conditional entropy is defined as Dcĉ , Hθc,φa
(C|A) =

−Ep(c,x)

[
Eqφa (a|x)

[log pθc(c|a)]
]
.

Since H(p(c); pθc(c)) ≥ 0, one can lower bound (5) as Iφa,θc(A; C) ≥ IL
φa,θc

(A; C) where:

IL
φa,θc

(A; C) , −DKL (p(c)‖pθc(c))︸ ︷︷ ︸
Dc

−Hθc,φa
(C|A)︸ ︷︷ ︸
Dcĉ

.
(6)

3.3. Supervised and Semi-Supervised Models with/without Hand-Crafted Priors

Summarizing the above variational decomposition of (3) with the terms (4) and (6), we will
proceed with four practical scenarios.
Supervised training without latent space regularization (baseline): is based on term Dcĉ in (6)

LHCP
S−NoReg(θc, φa) = Dcĉ. (7)

Semi-supervised training without latent space regularization is based on terms Dcĉ and Dc in (6):

LHCP
SS−NoReg(θc, φa) = Dcĉ +Dc. (8)

Supervised training with latent space regularization is based on term Dcĉ in (6) and either term Da|x or Da

or jointly Da|x and Da in (4):

LHCP
S−Reg(θc, φa) = EpD(x)

[
Da|x

]
+Da + βcDcĉ. (9)

Semi-supervised training with latent space regularization deploys all terms in (4) and (6):

LHCP
SS−Reg(θc, φa) = EpD(x)

[
Da|x

]
+Da + βcDcĉ + βcDc. (10)

The empirical evaluation of these setups on MNIST dataset is given in Section 5. The same architecture
of encoder and decoder was used to establish the impact of each term in a function of available
labeled data.

4. IB with Learnable Priors (LP)

In this section, we extend the results obtained for the hand-crafted priors to the learnable priors.
Instead of applying the hand-crafted regularization of the latent representation a as suggested by the
IB (3) and shown in Figure 1, we will assume that the latent representation a is regularized by an
especially designed AE as shown in Figure 2. The AE-based regularization has two components: (i) the
latent space z regularization and (ii) the observation space regularization. The design and training of
this latent space regularizer in a form of the AE is guided by its own IB. In the general case, all elements
of AE, i.e., its encoder-decoder pair, latent and observation space regularizers are conditioned by
the learned class label c. The resulting Lagrangian with the learnable prior is (formally one should
consider Iφa,φz,θc(X; Z|C) for the term A. However, since Iφa,φz,θc(X; Z|C) ≤ Iφa,φz,θc(A; Z|C) due to
the Markovianity of considered architecture, we consider the decomposition starting from A [20],
Data Processing Inequality, Theorem 2.8.1):

LLP(φa, φz, θc, θx) = Iφa,φz,θc(A; Z|C)︸ ︷︷ ︸
A

−βx Iφa,φz,θc,θx(X; Z|C)︸ ︷︷ ︸
B

−βc IL
φa,θc

(A; C)︸ ︷︷ ︸
C

, (11)

where βx is a Lagrangian multiplier controlling the reconstruction of x at the decoder and βc is the
same as in (1).
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The terms A and B, conditioned by the class c, play a role of the latent space regularizer by
imposing the learnable constrains on the vector a. These two terms correspond to the hand-crafted
counterpart Iφa

(X; A) in (3). The term C in the learnable IB formulation corresponds to the classification
part of hand-crafted IB in (3) and can be factorized along the same lines as in (6). Therefore, we will
proceed with the factorization of terms A and B.

One can also consider the following IB formulation with the learnable priors with no conditioning
on c in term A in (11) leading to an unconditional counterpart D below that can be viewed as an IB
generalization of semi-supervised AAE [2]:

LLP
AAE(φa, φz, θc, θx) = Iφa,φz

(A; Z)︸ ︷︷ ︸
D

−βx Iφa,φz,θc,θx(X; Z|C)︸ ︷︷ ︸
B

−βc IL
φa,θc

(A; C)︸ ︷︷ ︸
C

. (12)

4.1. Decomposition of Latent Space Regularizer

We will denote pφa,φz,θc(x, a, c, z) = pD(x)qφa
(a|x)pθc(c|a)qφz

(z|a, c) and decompose the term A
in (11) using variational factorization as:

Iφa,φz,θc(A, Z|C) = Epφa,φz,θc (x,a,c,z)

[
log

qφz
(z|a, c)

qφz
(z|c)

pθz(z)
pθz(z)

]
= EpD(x)

[
Eqφa (a|x)

[
Epθc (c|a)

[
DKL

(
qφz

(z|A = a, C = c)‖pθz(z)
)]︸ ︷︷ ︸

Dz|a,c

]]
,

−EpD(x)

[
Eqφa (a|x)

[
Epθc (c|a)

[
DKL

(
qφz

(z|C = c)‖pθz(z)
)]︸ ︷︷ ︸

Dz|c

]]
,

(13)

where Dz|a,c , DKL
(
qφz

(z|a, c)‖pθz(z)
)

= Eqφz (z|a,c)

[
log

qφz (z|a,c)
pθz (z)

]
and Dz|c ,

DKL
(
qφz

(z|c)‖pθz(z)
)

= Eqφz (z|c)

[
log

qφz (z|c)
pθz (z)

]
denote the KL-divergence terms and qφz

(z|c) =

EpD(x)

[
Eqφa (a|x)

[
qφz

(z|a, c))
]]

.

4.2. Decomposition of Reconstruction Space Regularizer

Denoting pφa,φz,θc,θx(x, a, c, z) = pD(x)qφa
(a|x)pθc(c|a)qφz

(z|a, c)pθx(x|z, c), we decompose the
term B in (11) as:

Iφa,φz,θc,θx(X; Z|C) = Epφa,φz,θc,θc (x,a,c,z)

[
log

pθx(x|z, c)
pD(x|c)

pθx(x)
pθx(x)

]
= Epθc (c)

[H(pD(x|c); pθx(x))]

−Epθc (c)
[DKL (pD(x|C = c)‖pθx(x))]︸ ︷︷ ︸

Dx|c

−Hφa,φz,θc,θx(X|Z, C)︸ ︷︷ ︸
Dxx̂

,
(14)

where pθc(c) = EpD(x)

[
Eqφa (a|x)

[pθc(c|a)]
]
. The terms are defined as H(pD(x|c); pθx(x)) =

−EpD(x|c) [log pθx(x)], Dx|c , DKL (pD(x|C = c)‖pθx(x)) = EpD(x|c)

[
log pD(x|c)

pθx (x)

]
and

Dxx̂ , Hφa,φz,θc,θx(X|Z, C) = −EpD(x)

[
Eqφa (a|x)

[
Epθc (c|a)

[
Eqφz (z|a,c) [log pθx(x|z, c)]

]]]
. Since

Epθc (c)
[H(pD(x|c); pθx(x))] ≥ 0, we can lower bound Iφa,φz,θc,θx(X; Z|C) ≥ IL

φa,φz,θc,θx
(X; Z|C) ,

−Dx|c −Dxx̂.
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4.3. Semi-Supervised Models with Learnable Priors

Summarizing the above variational decomposition of (11) with the terms (13) and (14), we will
consider semi-supervised training with latent space regularization as:

LLP
SS−Reg(θc, θx, φa, φz) = EpD(x)

[
Eqφa (a|x)

[
Epθc (c|a)

[
Dz|a,c

]]]
+EpD(x)

[
Eqφa (a|x)

[
Epθc (c|a)

[
Dz|c

]]]
+ βxDxx̂ + βxEpθc (c)

[
Dx|c

]
+ βcDcĉ + βcDc.

(15)
To create a link to the semi-supervised AAE [2], we also consider (12), where all latent and
reconstruction space regularizers are independent of c, i.e., do not contain conditioning on c.

Semi-supervised training with latent space regularization and MSE reconstruction based on (12):

LLP
SS−AAE(θc, θx, φa, φz) = Dz + βxDxx̂ + βcDcĉ + βcDc, (16)

where Dz , DKL
(
qφz

(z)‖pθz(z)
)
= Eqφz (z)

[
log

qφz (z)
pθz (z)

]
.

Semi-supervised training with latent space regularization and with MSE and adversarial reconstruction
based on (12) deploys all terms:

LLP
SS−AAEcomplete

(θc, θx, φa, φz) = Dz + βxDxx̂ + βxDx + βcDcĉ + βcDc, (17)

where Dx , DKL (pD(x)‖pθx(x)) = EpD(x)

[
log pD(x)

pθx (x)

]
.

4.4. Links to State-Of-The-Art Models

The considered HCP and LP models can be linked with several state-of-the-art unsupervised
models such VAE [21,22], β-VAE [23], AAE [2] and BIB-AE [15] and semi-supervised models such as
AAE [2], CatGAN [3], VAE (M1 + M2) [1] and SeGMA [18].

4.4.1. Links to Unsupervised Models

The proposed LP model (11) generalizes unsupervised models without the categorical latent
representation. In addition, the unsupervised models in a form of the auto-encoder are used as a latent
space regularizer in the LP setup. For these reasons, we will briefly consider four models of interest,
namely VAE, β-VAE, AAE, and BIB-AE.

Before we proceed with the analysis, we will define an unsupervised IB for these models. We will
assume the fused encoders qφa

(a|x) and qφz
(z|a) without conditioning on c in the inference model

according to Figure 2. We also assume no conditionally on c in the generative model.
The Lagrangian of unsupervised IB is defined according to [15]:

LUL(θx, φz) = Iφz
(X; Z)− βx Iφz,θx(Z; X), (18)

where similarly to the supervised counterpart (4), we define the first term as:

Iφz
(X; Z) = Eqφz (x,z)

[
log

qφz
(x, z)

qφz
(z)pD(x)

]
= Eqφz (x,z)

[
log

qφz
(z|x)

qφz
(z)

pθz(z)
pθz(z)

]
= EpD(x)

[
DKL

(
qφz

(z|X = x)‖pθz(z)
)]︸ ︷︷ ︸

Dz|x

−DKL
(
qφz

(z)‖pθz(z)
)︸ ︷︷ ︸

Dz

,
(19)

and similarly to (14) the second term is defined as:
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Iφz,θx(Z; X) = EpD(x)

[
Eqφz (z|x)

[
log

pθx(x|z)
pD(x)

pθx(x)
pθx(x)

]]
= H(pD(x|c); pθx(x))− DKL (pD(x)‖pθx(x))︸ ︷︷ ︸

Dx

−Hφz,θx(X|Z)︸ ︷︷ ︸
Dxx̂

, (20)

where the definition of all terms should follow from the above equations. Since H(pD(x|c); pθx(x)) ≥ 0,
we can lower bound Iφz,θx(Z; X) ≥ −Dx −Dxx̂.

Having defined the unsupervised IB variational bounded decomposition, we can proceed with an
analysis of the related state-of-the-art methods along the lines of analysis introduced in Summary part
of Section 2.

VAE [21,22] and β-VAE [23]:

1. The targeted tasks: auto-encoding and generation.
2. The architecture in terms of the latent space representation: the encoder outputs two vectors

representing the mean and standard deviation vectors that control a new latent representation
z = fφz

(x) + σφz
(x)� ε, where fφz

(x) and σφz
(x) are outputs of the encoder and ε is assumed

to be a zero mean unit variance Gaussian vector.
3. The usage of IB or other underlying frameworks: both VAE and β-VAE use evidence lower bound

(ELBO) and are not derived from the IB framework. However, it can be shown [15] that the
Lagrangian (18) can be reformulated for VAE and β−VAE as:

Lβ−VAE(θx, φz) = EpD(x)

[
Dz|x

]
+ βxDxx̂, (21)

where βx = 1 for VAE. It can be noted that the VAE and β-VAE are based on an upper bound on

the mutual information term Iφz
(X; Z) ≤ EpD(x)

[
Dz|x

]
, since DKL

(
qφz

(z)‖pθz(z)
)
≥ 0. Similar

considerations apply to the second term since DKL (pD(x)‖pθx(x)) ≥ 0.
4. The label space regularization: does not apply here due to the unsupervised setting.
5. The latent space regularization: is based on the hand-crafted prior with Gaussian pdf.
6. The reconstruction space regularization in case of reconstruction loss: is based on the mean square

error (MSE) counterpart of Dxx̂ that corresponds to the Guassian likelihood assumption.

Unsupervised AAE [2]:

1. The targeted tasks: auto-encoding and generation.
2. The architecture in terms of the latent space representation: the encoder outputs one vector in stochastic

or deterministic way as z = fφz
(x).

3. The usage of IB or other underlying frameworks: AAE is not derived from the IB framework. As shown
in [15], the AAE equivalent Lagrangian (18) can be linked with the IB formulation and defined as:

LAAE(θx, φz) = Dz + βxDxx̂, (22)

where βx = 1 in the original AAE formulation. It should be pointed out that the IB formulation
of AAE contains the term Dxx̂, whose origin can be explained in the same way as for the VAE.
Despite the fact that the term Dz indeed appears in (22) with the opposite sign, it cannot be
interpreted either as an upper bound on Iφz

(X; Z) similarly to the VAE or as a lower bound.
The goal of AAE is to minimize the reconstruction loss or to maximize the log-likelihood by
ensuring that the latent space marginal distribution qφz

(z) matches the prior pθz(z). The latter
corresponds to the minimization of DKL

(
qφz

(z)‖pθz(z)
)
, i.e., Dz term.

4. The label space regularization: does not apply here due to the unsupervised setting.
5. The latent space regularization: is based on the hand-crafted prior with zero mean unit variance

Gaussian pdf for each dimension.
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6. The reconstruction space regularization in case of reconstruction loss: is based on the MSE.

BIB-AE [15]:

1. The targeted tasks: auto-encoding and generation.
2. The architecture in terms of the latent space representation: the encoder outputs one vector using any

form of stochastic or deterministic encoding.
3. The usage of IB or other underlying frameworks: the BIB-AE is derived from the unsupervised IB (18)

and its Lagrangian is defined as:

LBIB−AE(θx, φz) = EpD(x)

[
Dz|x

]
−Dz + βxDx + βxDxx̂. (23)

4. The label space regularization: does not apply here due to the unsupervised setting.
5. The latent space regularization: is based on the hand-crafted prior with Gaussian pdf applied to

both conditional and unconditional terms. In fact, the prior for Dz can be any but Dz|x requires
analytical parametrisation.

6. The reconstruction space regularization in case of reconstruction loss: is based on the MSE counterpart
of Dxx̂ and the discriminator Dx. This is a disctintive feature in comparison to VAE and AAE.

In summary, BIB-AE includes VAE and AAE as two particular cases. In turns, it should be clear
that the regularizer of semi-supervised model considered in this paper resembles the BIB-AE model
and extends it to the conditional case that will be considered below.

4.4.2. Links to Semi-Supervised Models

The proposed LP model (11) is also related to several state-of-the-art semi-supervised models
used for the classification. As pointed out in the introduction, we only consider available labeled
and unlabeled samples in our analysis. The extension to the augmented samples, i.e., permutations,
syntehtically generated samples, i.e., fakes, and the adversarial examples for both latent space and
label space regularizations can be performed along the line of analysis but it goes beyond the scope
and focus of this paper.

Semi-supervised AAE [2]:

1. The targeted tasks: auto-encoding, clustering, (conditional) generation and classification.
2. The architecture in terms of the latent space representation: the encoder outputs two vectors

representing the discrete class and continuous type of style. The class distribution is assumed to
follow categorical distribution and style Gaussian one. Both constraints on the prior distributions
are ensured using adversarial framework with two corresponding discriminators. In its original
setting, AAE does not use any augmented samples or adversarial examples.

Remark: It should be pointed out that in our architecture we consider the latent space to be
represented by the vector a, which is fed to the classifier and regularizer that gives a natural
consideration of IB and corresponding regularization and priors. In the case of semi-supervised
AAE, the latent space is considered by the class and style representations directly. Therefore,
to make it coherent with our case, one should assume that the class vector of semi-supervised
AAE corresponds to the vector c and the style vector to the vector z.

3. The usage of IB or other underlying frameworks: AAE is not derived from the IB framework. However,
as shown in our analysis the semi-supervised AAE represents the learnable prior case in part
of latent space regularization. The corresponding Lagrangian of semi-supervised AAE is given
by (16) and considered in Section 4.3.

4. The label space regularization: is based on the adversarial discriminator in assumption that the class
labels follow categorical distribution. This is applied to both labeled and unlabeled samples.

5. The latent space regularization: is based on the learnable prior with Gaussian pdf of AE.
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6. The reconstruction space regularization in case of reconstruction loss: is only based on the MSE.

CatGAN [3]: is based on an extension of classical GAN binary discriminator designed to
distinguish between the original images and fake images generated from the latent space distribution to
a multi-class discriminator. The author assumes the one-hot-vector encoding of class labels. The system
is considered for the unsupervised and semi-supervised modes. For both modes the one-hot-vector
encoding is used to encoded class labels. For the unsupervised mode, the system has an access only
to the unlabeled data and the output of the classifier is considered to be a clustering to a predefined
number of clusters/classes. The main idea behind the unsupervised training consists of a training of
the discriminator that any sample from the set of original images is assigned to one of the classes with
high fidelity whereas any fake or adversarial sample is assigned to all classes almost equiprobably.
This corresponds to the fake samples and the regularization in the label space is based on the considered
and extended framework of entropy minimization-based regularization. In the case of absence of
fakes, this regularization coincides with the semi-supervised AAE label space regularization under the
categorical distribution and adversarial discriminator that is equivalent to enforcing the minimum
entropy of label space. However, the encoding of fake samples is equivalent to a sort of rejection
option expressed via the activation of classes that have maximum entropy or uniform distribution over
the classes. Equivalently, the above types of encoding can be considered to be the maximization of
mutual information between the original data and encoded class labels and minimization of mutual
information between the fakes/adversarial samples and the class labels. Semi-supevised CatGAN
model adds a cross-entropy term computed for the true labeled samples.

Therefore, in summary:

1. The targeted tasks: auto-encoding, clustering, generation and classification.
2. The architecture in terms of the latent space representation: there is no encoder as such and instead the

system has a generator/decoder that generates samples from a random latent space a following
some hand-crafted prior. The second element of architecture is a classifier with the min/max
entropy optimization for the original and fake samples. The encoding of classes is assumed to be
a one-hot-vector encoding.

3. The usage of IB or other underlying frameworks: CatGAN is not derived from the IB framework.
However, as shown in [15], one can apply the IB formulation to the adversarial generative models
as in the case of CatGAN assuming that the term Iφa

(X; A) = 0 in (3) due to the absence of
encoder as such. The minimization problem (3) reduces to the maximization of the second term
Iφa,θc(A; C) expressed via its lower bound of variational decomposition (6). The first term Dc

enforces that the class labels of unlabeled samples follow the defined prior distribution p(c) with
the above property of entropy minimization under one-hot-vector encoding whereas the second
term Dcĉ reflects the supervised part for labeled samples. In the original CatGAN formulation,
the author does not use the expression for the mutual information for the decoder/generator
training as it is shown above but instead uses the decomposition of mutual information via the
difference of corresponding entropies (see, first two terms in (9) in [3]). As we have pointed
out, we do not include in our analysis the term corresponding to the fake samples as in original
CatGAN. However, we do believe that this form of regularization does play an important role for
the semi-supervised classification. The impact of this terms requires additional studies.

4. The label space regularization: is based on the above assumptions for labeled samples, which
are included into the cross-entropy term, unlabeled samples included into the entropy
minimization term and fake samples included into the entropy maximization term in the original
CatGAN method.

5. The latent space regularization: is based on the hand-crafted prior.
6. The reconstruction space regularization in case of reconstruction loss: is based on the adversarial

discriminator only.
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SeGMA [18]: is a semi-supervised clustering and generative system with a single latent vector
representation auto-encoder similar in spirit to the unsupervised version of AAE that can be also
used for the classification. The latent space of SeGMA is assumed to follow a mixture of Gaussians.
Using a small labeled data set, classes are assigned to components of this mixture of Gaussians by
minimizing the cross-entropy loss induced by the class posterior distribution of a simple Gaussian
classifier. The resulting mixture describes the distribution of the whole data, and representatives of
individual classes are generated by sampling from its components. In the classification setup, SeGMA
uses the latent space clustering scheme for the classification.

Therefore, in summary:

1. The targeted tasks: auto-encoding, clustering, generation and classification.
2. The architecture in terms of the latent space representation: a single vector representation following

mixture of Gaussians distribution.
3. The usage of IB or other underlying frameworks: SeGMA is not derived from the IB framework

but a link to the regularized ELBO an other related auto-encoders with interpretable latent
space is demonstrated. However, as in previous methods it can be linked to the considered IB
interpretation of the semi-supervised methods with hand-crafted priors (16). An equivalent
Lagrangian of SeGMA is:

LSeGMA(θc, θx, φz) = Dz + βxDxx̂ + βcDcĉ, (24)

where the latent space discriminatorDz is assumed to be the maximum mean discrepancy (MMD)
penalty that is analytically defined for the mixture of Gaussians pdf, Dxx̂ is represented by the
MSE and Dcĉ represents the cross-entropy for the labeled data defined over class labels deduced
from the latent space representation.

4. The label space regularization: is based on the above assumptions for labeled samples, which are
included into the cross-entropy term as discussed above.

5. The latent space regularization: is based on the hand-crafted mixture of Gaussians pdf.
6. The reconstruction space regularization in case of reconstruction loss: is based on the MSE.

VAE (M1 + M2) [1]: is based on the combination of several models. The model M1 represents a
vanilla VAE considered in Section 4.4.1. Therefore, model M1 is a particular case of considered
unsupervised IB. The model M2 is a combination of encoder producing a continuous latent
representation and following Gaussian distribution and a classifier that takes as an input original data
in parallel to the model M1. The class labels are encoded using the one-hot-vector representations and
follow categorical distribution with a hyper-parameter following the symmetric Dirichlet distribution.
The decoder of model M2 takes as an input the continuous latent representation and output of classifier.
The decoder is trained under the MSE distortion metric. It is important to point out that the classifier
works with the input data directly but not with the common latent space such as in the considered
LP model. For this reason, it is an obvious analogy with the considered LP model (11) under the
assumption that a = x and all performed IB analysis directly applies to. However, as pointed by the
authors, the performance of model M2 in the semi-supervised classification for the limited number of
labeled samples is relatively poor. That is why the third hybrid model M1 + M2 is considered when
the models M1 and M2 and used in a stacked way. At the first stage, the model M1 is learned as
the usual VAE. Then the latent space of model M1 is used as an input to the model M2 trained in
a semi-supervised way. Such a two-stage approach closely resembles the learnable prior architecture
presented in Figure 2. However, our model is end-to-end trained with the explainable common latent
space and IB origin, while the model M1 + M2 is trained in two stages with the use of regularized
ELBO for the derivation of model M2.

1. The targeted tasks: auto-encoding, clustering, (conditional) generation and classification.
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2. The architecture in terms of the latent space representation: the stacked combination of models M1
and M2 is used as discussed above.

3. The usage of IB or other underlying frameworks: VAE M1 + M2 is not derived from the IB
framework but it is linked to the regularized ELBO with the cross-entropy for the labeled samples.
The corresponding IB Lagrangian of semi-supervised VAE M1 + M2 under the assumption of
end-to-end training can be defined as:

LLP
SS−VAE M1+M2(θc, θx, φa, φz) = EpD(x)

[
Dz|x

]
+ βxDxx̂ + βcDcĉ + βcDc. (25)

4. The label space regularization: is based on the assumption of categorical distribution of labels.
5. The reconstruction space regularization in case of reconstruction loss: is only based on the MSE.

5. Experimental Results

5.1. Experimental Setup

The tested system is based on (i) the deterministic encoder and decoder, (ii) the stochastic
encoder of type a = fφa

(x + ε) with the data independent perturbations ε and deterministic decoder.
The density ratio estimator [24] is used to measure all KL-divergences. The results of semi-supervised
classification on the MNIST dataset are reported in Table 1, where symbol D indicates the deterministic
setup (i) and symbol S corresponds to the stochastic one (ii). To choose the optimal parameters of
systems, e.g., the Lagrangian multipliers in the considered models, we used 3-run cross-validation
with the randomly chosen labeled examples as shown in Appendices B–G. Once the model parameters
were chosen, we run 10 time cross-validation and the average results are shown in Table 1.

Additionally, we performed a 10-run cross-validation on the SVHN dataset [25]. We used the
same architecture as for MNIST with the same encoders, decoders and discriminators. In contrast to
VAE M1 + M2, we used normalized raw data without any pre-processing. Additionally, in contrast
to AAE, where an extra set of 531,131 unlabeled images was used for the semi-supervised training,
in our experiments only a train set of 73,257 images was used for training. Moreover, the experiments
were performed: (i) for the optimal parameters chosen after 3-run cross-validation for the MNIST
dataset with no special adaption to SVHN dataset and (ii) under the network architectures with exactly
the same number of used filters as given in Appendices B–G for the MNIST dataset. In summary,
our goal is to test the generalization capacity of the proposed approach but not just to achieve the best
performance by fine-tuning of network parameters. The obtained results are represented in Table 1.

We compare the considered architectures with several state-of-the-art semi-supervised methods
such as AAE [2], CatGAN [3], VAE (M1 + M2) [1], IB multiview [5], MV-InfoMax [5] and InfoMax [3]
with 100, 1000 and 60,000 training labeled samples. The expected training times for the considered
models are given in Table 2. The source code is available at https://github.com/taranO/IB-semi-
supervised-classification. The analysis of the latent space of trained models for the MNIST dataset is
given in Appendix A.

5.2. Discussion MNIST

The deterministic and stochastic systems based on the learnable priors clearly demonstrate the
state-of-the-art performance in comparison to the considered semi-supervised counterparts.

Baseline Neural Network (NN): the obtained results allow concluding that, if the amount of labeled
training data is large, as shown in “all” column (Table 1), the latent space regularization has no
practically significant impact on the classification performance for both hand crafted and learnable
priors. The deep classifier is capable of learning a latent representation retaining only sufficient
statistics in the latent space solely based on the cross-entropy component of IB classification term
decomposition as shown in Table A1, row Dcĉ and column “all”. The classes appear to be well
separable under this form of visualization. At the same time, the decrease of number of labeled

https://github.com/taranO/IB-semi-supervised-classification
https://github.com/taranO/IB-semi-supervised-classification


Entropy 2020, 22, 943 15 of 33

samples leads to the degradation of classification accuracy as show in Table 1 for columns “1000”
and “100”. This degradation is also clearly observed in Table A1, row Dcĉ and column “l00”, where
there is larger overlap between the classes compared to the column “all”. The stochastic encoding
via the addition of noise to the input samples does not enhance the performance with respect to the
deterministic decoding for the small amount of labeled examples. One can assume that the presence
of additive noise is not typical for the considered data, whereas the samples clearly differ in the
geometrical appearance. Therefore, we can only assume that random geometrical permutations would
be a more interesting alternative to the additive noise permutations/encoding.

Table 1. Semi-supervised classification performance (percentage error) for the optimal parameters
(Appendices B–G) defined on the MNIST (D—deterministic; S—stochastic).

MNIST (100) MIST (1000) MNIST (all) SVHN (1000)

NN Baseline (Dcĉ) [D] 26.31 (±0.91) 7.50 (±0.19) 0.68 (±0.05) 36.16 (±0.77)
[S] 26.78 (±1.66) 7.54 (±0.25) 0.70 (±0.05) 36.28 (±0.93)

InfoMax [3] [S] 33.41 21.5 15.86 -
VAE [5] [S] 14.26 8.71 5.02 -
MV-InfoMax [5] [S] 13.22 7.39 6.07 -
IB multiview [5] [S] 3.03 2.34 2.22 -
VAE (M1 + M2) [5] [S] 3.33 (±0.14) 2.40 (±0.02) 0.96 36.02 (±0.10)
CatGAN [S] 1.91 (±0.10) 1.73 (±0.18) 0.91 -
AAE [D] 1.90 (±0.10) 1.60 (±0.08) 0.85 (±0.02) 17.70 (±0.30)

No priors on latent space

Dcĉ +Dc
[D] 20.72 (±1.58) 4.99 (±0.28) 0.69 (±0.04) 25.78 (±0.90)
[S] 19.60 (±1.37) 4.49 (±0.25) 0.67 (±0.05) 26.34 (±0.80)

Hand crafted latent space priors

βcDcĉ +Da
[D] 27.44 (±1.40) 6.77 (±0.34) 0.91 (±0.05) 35.94 (±1.08)
[S] 27.48 (±1.07) 6.91 (±0.45) 0.88 (±0.05) 35.80 (±1.21)

βcDcĉ +Da + βcDc
[D] 12.04 (±4.46) 2.43 (±0.12) 0.81 (±0.05) 24.70 (±0.46)
[S] 11.80 (±3.82) 2.40 (±0.10) 0.82 (±0.04) 24.62 (±0.54)

Learnable latent space priors

βcDcĉ + βcDc +Dz + βxDxx̂
[D] 1.55 (±0.21) 1.25 (±0.10) 0.74 (±0.04) 20.07 (±0.36)
[S] 1.49 (±0.18) 1.43 (±0.06) 0.78 (±0.04) 20.00 (±0.31)

βcDcĉ + βcDc +Dz + βxDxx̂ + βxDx
[D] 1.38 (±0.09) 1.21 (±0.10) 0.77 (±0.06) 19.75 (±0.52)
[S] 1.42 (±0.10) 1.16 (±0.09) 0.79 (±0.02) 19.71 (±0.26)

No priors on latent space: to investigate the impact of unlabeled data, we add the adversarial
regularizer Dc to the baseline classifier based on Dcĉ. The term Dc enforces the distribution of class
labels for the unlabeled samples to follow the categorical distribution. At this stage, no regularization
of latent space is applied. The addition of the adversarial regularizer Dc, see “100” column (Table 1),
allows reducing the classification error in comparison to the baseline classifier. Moreover, the stochastic
encoder slightly outperforms the deterministic one for all numbers of labeled samples. However, the
achieved classification error is far away from the performance of baseline classifier trained on the
whole labeled data set. Thus, the cross-entropy and adversarial classification terms alone can hardly
cope with the lack of labeled data, and proper regularization of the latent space is the main mechanism
capable of retaining the most relevant representation.

Hand crafted latent space priors: along this line we investigate the impact of hand-crafted regularization
in the form of the added discriminator Da imposing Gaussian prior on the latent representation
a. The sole regularization of latent space with the hand-crafted prior on the Gaussianity does not
reflect the complex nature of latent space of real data. As a result the performance of the regularized
classifier βcDcĉ +Da does not lead to a remarkable improvement in comparison to the non-regularized
counterpart Dcĉ for both stochastic and deterministic types of encoding. When in addition the label
space regularization Dc is added to the final classifier βcDcĉ +Da + βcDc, it leads to the factor of 2
classification error reduction over the cross-entropy baseline classifier but it is still far away from the
fully supervised baseline classifier trained on the fully labeled data set. At the same time, there is no
significant difference between the stochastic and deterministic types of encoding.
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Learnable latent space priors: along this line we will investigate the impact of learnable priors by
adding the corresponding regularizations of the latent space of auto-encoder and data reconstruction.
We investigate the role of reconstruction space regularization based on the MSE expressed via Dxx̂ and
joint Dxx̂ and Dx. The addition of discriminator Dx slightly enhances the classification but requires
almost doubled training time as shown in Table 2. The stochastic encoding does not show any obvious
advantage over the deterministic one in this setup. The separability of classes shown in Table A1,
row βcDcĉ + βcDc +Dz + βxDxx̂ + βxDx and column ”l00”, is very close to those of column “all” and
rowDcĉ, i.e., the semi-supervised system with 100 labeled examples is capable of closely approximating
the fully supervised one. We show the t-sne only for this setup since it practically coincides with
βcDcĉ + βcDc + Dz + βxDxx̂. However, it should be pointed out that the learnable priors ensures
the reconstruction of data from the compressed latent space and the learned representation is the
sufficient statistics for the data reconstruction task but not for the classification one. Since the entropy
of the classification task is significantly lower to those of reconstruction, such a learned representation
contains more information than actually needed for the classification task. A fraction of retained
information is irrelevant to the classification problem and might be a potential source of classification
errors. This likely explains a gap in performance between the considered semi-supervised system and
fully supervised one.

Table 2. Execution time (hours) per 100 epochs on one NVIDIA GPU. For the SVHN the models with
the learnable latent space priors were trained with a learning rate 0.0001 that explains the longer time
but without optimization of Lagrangians, i.e., the Lagrangians were re-used from pre-trained MNIST
model. All the others models were trained with a learning rate 0.001.

MNIST SVHN

NN Baseline (Dcĉ) 0.47–0.65 0.85–0.92

No priors on latent space
Dcĉ +Dc 0.47–0.65 0.85–0.92

Hand crafted latent space priors
βcDcĉ +Da 0.47–0.65 1–1.05
βcDcĉ +Da + βcDc 0.97–1.18 1.5–1.6

Learnable latent space priors
βcDcĉ + βcDc +Dz + βxDxx̂ 1.23–1.6 2.25–2.3
βcDcĉ + βcDc +Dz + βxDxx̂ + βxDx 1.98–2.42 3.5–3.55

5.3. Discussion SVHN

In the SVHN test, we did not try to optimize the Lagrangian coefficients as it was done for MNIST.
However, to compensate for a potential non-optimality, we perform the model training with the
reduced learning rate as indicated in Table 2. As a result, the training time on the SVHN dataset is
longer. Therefore, 10-run validation of the proposed framework on the SVHN dataset was done with
the optimal Lagrangian multipliers determined on the MNIST dataset. In this respect, one might
observe a small degradation of the obtained results compared to the state-of-the-art. Additionally,
we did not apply any pre-processing such as PCA that was used in VAE M1 + M2 and we did not use
the extended unlabeled dataset as it was done in case of AAE. One can clearly observe the same behavior
of semi-supervised classifiers as for MNIST data set discussed in Section 5.2. Therefore, we can clearly
confirm the role of learnable priors in the overall performance observed for both datasets.

6. Conclusions and Future Work

We have introduced a novel formulation of variational information bottleneck for semi-supervised
classification. To overcome the problem of original bottleneck and to compensate the lack of labeled
data in the semi-supervised setting, we considered two models of latent space regularization via
hand-crafted and learnable priors. On a toy example of MNIST dataset we investigated how the
parameters of proposed framework influence the performance of classifier. By end-to-end training,
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we demonstrate how the proposed framework compares to the state-of-the-art methods and approaches
the performance of fully supervised classifier.

The envisioned future work is along the lines of providing a stronger compression yet preserving
only classification task relevant information since retaining more task irrelevant information does not
provide distinguishable classification features, i.e., it only ensures reliable data reconstruction. In this
work, we have considered IB for the predictive latent space model. We think that the contrastive
multi-view IB formulation would be an interesting candidate for the regularization of latent space.
Additionally, we did not use the adversarially generated examples to impose the constraint on the
minimization of mutual information between them and class labels or equivalently to maximize
the entropy of class label distribution for these adversarial examples according to the framework
of entropy minimization. This line of “adversarial” regularization seems to be a very interesting
complement to the considered variational bottleneck. In this work, we considered a particular form of
stochastic encoding by the addition of data independent noise to the input with the preservation of the
same class labels. This also corresponds to the consistency regularization when samples can be more
generally permuted including the geometrical transformations. It is also interesting to point out that
the same form of generic permutations is used in the unsupervised constrastive loss-based multi-view
formulations for the continual latent space representation as opposed to the categorical one in the
consistency regularization. Finally, the conditional generation can be an interesting line of research
considering the generation from discrete labels and continuous latent space of the autoencoder.
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IB Information bottleneck
VAE Variational autoencode
AAE Adversarial autoencoder
CatGAN Categorical generative adversarial networks
KL-divergences Kullback–Leibler divergences
MSE Mean squared error
HCP IB with hand-crafted priors
LP IB with learnable priors
NN Neural Network
SS Semi-supervised
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Appendix A. Latent Space of Trained Models

MNIST (100) MIST (1000) MNIST (all)

Dcĉ

Dcĉ +
αcDc

Dcĉ +
αaDa

Dcĉ +
αaDa +
αcDc

Dcĉ +
Dc +
Dz +
Dxx̂ +
αxDx

Figure A1. Latent space a (of size 1024) of classifier.

MNIST (100) MIST (1000) MNIST (all)

Dcĉ +
Dc +
Dz +
Dxx̂ +
αxDx

Figure A2. Latent space z (of size 20) of auto-encoder.

In this section, we consider the properties of classifier’s latent space for both the hand-crafted and
learnable priors under different amount of training samples. Figures A1 and A2 show t-sne plots for
the perplexity 30 for 100, 1000 and 60,000 (“all”) training labels of the MNIST dataset.

The first raw of Figure A1 with the label “Dcĉ” corresponds to the classifier considered in
Appendix B. The latent space a of the classifier with “all” labels demonstrates the perfect separability
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of classes. The classes are far away from each other and there are practically no outliers leading to the
misclassification. The decrease of the number of labels in the supervised setup, see the columns 1000
and 100, leads to a visible degradation of separability between the classes.

The regularization of class label space by the regularizer Dc or by the hand-crafted latent space
regularizer Da shown in raws “Dcĉ + αcDc” considered in Appendix C and “Dcĉ + αaDa” considered
in Appendix D for the small number of training samples equal 100 does not significantly enhance the
class separability with respect to “Dcĉ”.

At the same time, the joint usage of the above regularizers according to the model “Dcĉ + αcDc +

αaDa” according to the model in Appendix E leads to the better separability of classes for 100 labels in
comparison with the previous cases. At the same time, the addition of these regularizers does not have
any impact on the latent space for “all” label case.

The introduction of learnable regularization of latent space along with the class label regularization
according to the model “Dcĉ +Dc +Dz +Dxx̂ + αxDx” considered in Appendix G enhances the class
separability in the latent space of classifier for 100 label case that is also very close to the fully
supervised case.

For the comparison reasons, we also visualize the latent space of the auto-encoder z for the above
model in Figure A2.

Appendix B. Supervised Training without Latent Space Regularization (Baseline)

The baseline architecture is based on the cross-entropy term Dcĉ (7) in the main part of paper and
depicted in Figure A3:

LHCP
S−NoReg(θc, φa) = Dcĉ. (A1)

The parameters of encoder and decoder are shown in Table A1. The performance of baseline
supervised classifier with and without batch normalization corresponds to the parameter αc = 0 in
Table A3 (deterministic scenario) and Table A4 (stochastic scenario).

Da x

qφa (a x) a qφa (a)

Latent space constraints

pθc(c a)
ĉ

I
φa,θc

L (A;C)

Classification space constraints

c ∼ p(c)

pθc(c)

Iφa (X;A)
a ∼ pθa (a)

Re
gu

la
riz

er

xm,cm{ }m=1
N

x j{ }
j=1

J

c ∼ p(c)

(x,c) ∼ p(x,c)
Da

Dcĉ

Dc

x ∼ pD(x)

Figure A3. Baseline classifier based on Dcĉ. The blue shadowed regions are not used.
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Table A1. The network parameters of baseline classifier trained on Dcĉ. The encoder is trained with
and without batch normalization (BN) after Conv2D layers.

Encoder

Size Layer

28 × 28 × 1 Input

14 × 14 × 32 Conv2D, LeakyReLU

7 × 7 × 64 Conv2D, LeakyReLU

4 × 4 × 128 Conv2D, LeakyReLU

2048 Flatten

1024 FC, ReLU

Decoder

Size Layer

1024 Input

500 FC, ReLU

10 FC, Softmax

Appendix C. Semi-Supervised Training without Latent Space Regularization and with Class
Label Regularizer

This model is based on terms Dcĉ and Dc in (8) in the main part of paper and schematically shown
in Figure A4:

LHCP
SS−NoReg(θc, φa) = Dcĉ + αcDc. (A2)

The parameters of encoder, decoder and discriminator are shown in Table A2. The KL-divergence
term Dc is implemented in a form of density ratio estimator (DRE). In the considered practical
implementation, the parameter αc controls the trade-off between the cross-entropy and class
discriminator terms. The discriminatorDc is trained in an adversarial way based on samples generated
by the decoder and from targeted distribution.

The performance of semi-supervised classifier with and without batch normalization is shown in
Table A3 (deterministic scenario) and Table A4 (stochastic scenario).

Da x

qφa (a x) a qφa (a)

Latent space constraints

pθc(c a)
ĉ

I
φa,θc

L (A;C)

Classification space constraints

c ∼ p(c)

pθc(c)

Iφa (X;A)
a ∼ pθa (a)

Re
gu

la
riz

er

xm,cm{ }m=1
N

x j{ }
j=1

J

c ∼ p(c)

(x,c) ∼ p(x,c)
Da

Dcĉ

Dc

x ∼ pD(x)

Figure A4. Semi-supervised classifier based on the cross-entropyDcĉ and categorical class discriminator
Dc. No latent space regularization is applied. The blue shadowed regions are not used.
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Table A2. The network parameters of semi-supervised classifier trained on Dcĉ and Dc. The encoder is
trained with and without batch normalization (BN) after Conv2D layers.

Encoder

Size Layer

28 × 28 × 1 Input

14 × 14 × 32 Conv2D, LeakyReLU

7 × 7 × 64 Conv2D, LeakyReLU

4 × 4 × 128 Conv2D, LeakyReLU

2048 Flatten

1024 FC, ReLU

Decoder

Size Layer

1024 Input

500 FC, ReLU

10 FC, Softmax

Dc

Size Layer

10 Input

500 FC, ReLU

500 FC, ReLU

1 FC, Sigmoid

Table A3. The performance (percentage error) of deterministic classifier based on Dcĉ + αcDc for
the encoder with and without batch normalization as a function of Lagrangian multiplier αc and the
number of labelled examples.

Encoder Model αc
Runs

Mean std
1 2 3

MNIST 100

without BN

0 26.56 26.24 28.04 26.95 0.96
0.005 20.44 21.93 18.98 20.45 1.48

0.0005 18.55 20.43 20.59 19.86 1.14
1 19.23 22.42 20.57 20.74 1.60

with BN

0 29.37 29.27 30.62 29.75 0.75
0.005 27.97 28.02 26.27 27.42 1.00

0.0005 25.99 23.70 24.47 24.72 1.17
1 27.78 31.98 35.88 31.88 4.05

MNIST 1000

without BN

0 7.74 6.99 6.97 7.23 0.44
0.005 5.62 6.06 5.60 5.76 0.26

0.0005 6.30 6.12 6.02 6.15 0.14
1 5.99 6.27 6.28 6.18 0.16

with BN

0 7.45 6.95 7.52 7.31 0.31
0.005 5.57 5.08 5.22 5.29 0.25

0.0005 5.60 6.05 6.22 5.96 0.32
1 6.05 6.41 5.82 6.09 0.30
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Table A3. Cont.

Encoder Model αc
Runs

Mean std
1 2 3

MNIST all

without BN

0 0.83 0.83 0.74 0.80 0.05
0.005 0.83 0.82 0.88 0.84 0.03
0.0005 0.86 0.92 0.82 0.87 0.05

1 0.72 0.85 0.87 0.81 0.08

with BN

0 0.73 0.67 0.79 0.73 0.06
0.005 0.72 0.73 0.70 0.72 0.02
0.0005 0.75 0.77 0.72 0.75 0.03

1 0.67 0.68 0.73 0.69 0.03

Table A4. The performance (percentage error) of stochastic classifier with supervised noisy data
(noise std = 0.1, # noise realisation = 3) based on Dcĉ + αcDc for the encoder with and without batch
normalization as a function of Lagrangian multiplier αc and the number of labelled examples.

Encoder Model αc
Runs

Mean std
1 2 3

MNIST 100

without BN

0 25.75 26.61 26.59 26.32 0.49
0.005 23.34 21.38 24.37 23.03 1.52

0.0005 19.92 15.83 16.03 17.26 2.31
1 22.51 20.48 21.28 21.42 1.02

with BN

0 30.26 31.24 29.3 30.27 0.97
0.005 21.17 24.41 24.75 23.44 1.98

0.0005 22.97 26.38 24.44 24.60 1.71
1 26.62 30.43 28.44 28.50 1.91

MNIST 1000

without BN

0 7.68 7.30 7.23 7.4 0.24
0.005 5.59 5.16 5.80 5.52 0.33

0.0005 5.59 6 5.84 5.81 0.21
1 6.66 6.8 7.62 7.03 0.52

with BN

0 6.97 7.06 7.66 7.23 0.38
0.005 4.42 4.54 4.08 4.35 0.24

0.0005 5.28 5.56 5.14 5.33 0.21
1 5.77 5.88 5.72 5.79 0.08

MNIST all

without BN

0 0.8 0.91 0.87 0.86 0.06
0.005 0.77 0.82 0.88 0.82 0.06

0.0005 0.86 0.81 0.87 0.85 0.03
1 0.93 0.85 0.92 0.90 0.04

with BN

0 0.65 0.67 0.71 0.68 0.03
0.005 0.69 0.77 0.68 0.71 0.05

0.0005 0.78 0.71 0.74 0.74 0.04
1 0.71 0.64 0.62 0.66 0.05

Appendix D. Supervised Training with Hand Crafted Latent Space Regularization

This model is based on the cross-entropy term Dcĉ and either term Da|x or Da or jointly Da|x and
Da as defined by (9) in the main part of paper. In our implementation, we consider the regularization
based on the adversarial term Da similar to AAE due to the flexibility of imposing different priors
on the latent space distribution. The implemented system is shown in Figure A5 and the training is
based on:

LHCP
S−Reg(θc, φa) = Dcĉ + αaDa, (A3)
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where αa is a regularization parameter controlling a trade-off between the cross-entropy term and
latent space regularization term. We have replaced the Lagrangians above with respect to (9) in the
main part of paper and used it in front of Da in contrast to the original formulation (9). It is done to
keep the term Dcĉ without a multiplier as the reference to the baseline classifier.

The parameters of encoder, decoder and discriminator are summarized in Table A5.
The performance of this classifier without and with batch normalization is shown in Table A6
(deterministic scenario) and Table A7 (stochastic scenario).

Da x

qφa (a x) a qφa (a)

Latent space constraints

pθc(c a)
ĉ

I
φa,θc

L (A;C)

Classification space constraints

c ∼ p(c)

pθc(c)

Iφa (X;A)a ∼ pθa (a)

Re
gu

la
riz

er

xm,cm{ }m=1
N

x j{ }
j=1

J

c ∼ p(c)

(x,c) ∼ p(x,c)
Da

Dcĉ

Dc

x ∼ pD(x)

Figure A5. Supervised classifier based on the cross-entropy Dcĉ and hand crafted latent space
regularization Da. The blue shadowed parts are not used.

Table A5. The network parameters of supervised classifier trained on Dcĉ and Da. The encoder
is trained with and without batch normalization (BN) after Conv2D layers. Da is trained in the
adversarial way.

Encoder

Size Layer

28 × 28 × 1 Input

14 × 14 × 32 Conv2D, LeakyReLU

7 × 7 × 64 Conv2D, LeakyReLU

4 × 4 × 128 Conv2D, LeakyReLU

2048 Flatten

1024 FC

Decoder

Size Layer

1024 Input

500 FC, ReLU

10 FC, Softmax

Da

Size Layer

1024 Input

500 FC, ReLU

500 FC, ReLU

1 FC, Sigmoid
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Table A6. The performance (percentage error) of deterministic classifier based on Dcĉ + αaDa for the
encoder with and without batch normalization as a function of Lagrangian multiplier.

Encoder Model αa
Runs

Mean std
1 2 3

MNIST 100

without BN

0 26.79 27.26 27.39 27.15 0.32
0.005 28.05 25.95 30.72 28.24 2.39
0.0005 26.67 27.69 28.46 27.61 0.89

1 33.42 33.05 34.81 33.76 0.92

with BN

0 30.37 29.32 29.82 29.83 0.52
0.005 28.02 31.49 30.80 30.11 1.84
0.0005 34.54 31.92 29.82 31.09 2.36

1 34.43 44.35 44.25 41.01 5.70

MNIST 1000

without BN

0 7.16 8.12 7.55 7.61 0.48
0.005 7.02 6.34 6.59 6.65 0.34
0.0005 6.73 6.34 6.82 6.63 0.26

1 9.49 9.93 10.56 9.99 0.54

with BN

0 7.39 7.83 7.92 7.72 0.28
0.005 7.94 7.15 8.53 7.88 0.69
0.0005 8.00 9.62 9.51 9.05 0.91

1 15.79 14.88 13.71 14.79 1.04

MNIST all

without BN

0 0.76 0.70 0.81 0.76 0.06
0.005 1.07 1.03 1.13 1.08 0.05
0.0005 0.84 0.78 0.89 0.84 0.06

1 4.78 7.24 4.71 5.58 1.44

with BN

0 0.68 0.68 0.69 0.68 0.01
0.005 0.90 0.81 1.12 0.94 0.16
0.0005 0.87 0.80 0.89 0.85 0.05

1 2.37 3.61 4.35 3.44 1.00

Table A7. The performance (percentage error) of stochastic classifier with supervised noisy data
(noise std = 0.1, # noise realisation = 3) based on Dcĉ + αaDa for the encoder with and without batch
normalization as a function of Lagrangian multiplier.

Encoder Model αa
Runs

Mean std
1 2 3

MNIST 100

without BN
0.005 28.13 25.16 29.9 27.73 2.40
0.0005 28.05 30.03 28.11 28.73 1.13

1 32.33 34.09 33.73 33.38 0.93

with BN
0.005 32.25 33.47 26.01 30.58 4.00
0.0005 33.37 36.15 35.65 35.06 1.48

1 33.37 42.37 32.46 36.07 5.48

MNIST 1000

without BN
0.005 7.37 7.17 6.65 7.06 0.37
0.0005 7.48 6.68 6.67 6.94 0.46

1 9.48 9.94 11.61 10.34 1.12

with BN
0.005 7.82 7.97 7.81 7.87 0.09
0.0005 9.5 8.68 9.37 9.18 0.44

1 12.99 10.52 9.98 11.16 1.60

MNIST all

without BN
0.005 1.19 1.09 1.06 1.11 0.07
0.0005 0.79 0.88 0.82 0.83 0.05

1 6.22 4.81 5 5.34 0.77

with BN
0.005 0.94 1.07 1.04 1.02 0.07
0.0005 0.78 0.81 0.78 0.79 0.02

1 4.49 3.35 2.18 3.34 1.16

Appendix E. Semi-Supervised Training with Hand Crafted Latent Space and Class
Label Regularizations

This model is based on the cross-entropy term Dcĉ and either term Da|x or Da or jointly Da|x
and Da and the label class regularizer Dc as defined by (10) in the main part of paper. In our
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implementation, we consider the regularization based on the adversarial term Da only as shown in
Figure A6. The training is based on:

LHCP
S−Reg(θc, φa) = Dcĉ + αcDc + αaDa. (A4)

The parameters of encoder, decoder and both discriminators are shown in Table A8. The performance
of this classifier without and with batch normalization is shown in Table A9 (deterministic scenario)
and Table A10 (stochastic scenario).

Table A8. The network parameters of semi-supervised classifier trained on Dcĉ, Da and Dc. The encoder
is trained with and without batch normalization (BN) after Conv2D layers. Da and Dc are trained in
the adversarial way.

Encoder

Size Layer

28 × 28 × 1 Input

14 × 14 × 32 Conv2D, LeakyReLU

7 × 7 × 64 Conv2D, LeakyReLU

4 × 4 × 128 Conv2D, LeakyReLU

2048 Flatten

1024 FC

Decoder

Size Layer

1024 Input

500 FC, ReLU

10 FC, Softmax

Dc

Size Layer

10 Input

500 FC, ReLU

500 FC, ReLU

1 FC, Sigmoid

Da

Size Layer

1024 Input

500 FC, ReLU

500 FC, ReLU

1 FC, Sigmoid
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Figure A6. Semi-supervised classifier based on the cross-entropy Dcĉ and hand crafted latent space
regularization Da. The blue shadowed parts are not used.

Table A9. The performance (percentage error) of deterministic classifier based on Dcĉ + αaDa + αcDc

for the encoder with and without batch normalization.

Encoder Model αa αc
Runs

Mean std
1 2 3

MNIST 100

without BN

0.005 0.005 21.39 18.12 18.34 19.28 1.83
0.0005 0.0005 15.33 22.36 13.80 17.16 4.56
0.005 0.0005 25.66 26.25 28.81 26.91 1.67

0.0005 0.005 9.82 13.44 13.06 12.11 1.99

with BN

0.005 0.005 23.45 21.19 28.87 24.50 3.94
0.0005 0.0005 28.57 19.06 26.37 24.67 4.98
0.005 0.0005 26.18 26.18 25.49 25.95 0.40

0.0005 0.005 8.96 13.82 14.76 12.52 3.11

MNIST 1000

without BN

0.005 0.005 3.91 4.21 3.70 3.94 0.26
0.0005 0.0005 3.54 3.72 3.54 3.60 0.10
0.005 0.0005 6.19 5.80 7.31 6.43 0.78

0.0005 0.005 2.80 2.82 2.83 2.82 0.02

with BN

0.005 0.005 3.30 2.94 2.93 3.06 0.21
0.0005 0.0005 2.80 2.53 2.50 2.61 0.17
0.005 0.0005 3.51 3.75 4.12 3.79 0.31

0.0005 0.005 2.58 2.27 2.24 2.37 0.19

MNIST all

without BN

0.005 0.005 1.04 1.07 1.07 1.06 0.02
0.0005 0.0005 0.86 0.90 0.88 0.88 0.02
0.005 0.0005 1.08 0.92 1.09 1.03 0.10

0.0005 0.005 0.85 0.93 0.93 0.90 0.05

with BN

0.005 0.005 1.10 1.01 0.93 1.01 0.09
0.0005 0.0005 0.84 0.88 0.83 0.85 0.03
0.005 0.0005 1.10 1.12 0.93 1.05 0.10

0.0005 0.005 0.76 0.82 0.79 0.79 0.03
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Table A10. The performance (percentage error) of stochastic classifier with supervised noisy data
(noise std = 0.1, # noise realisation = 3) based on Dcĉ + αaDa + αcDc for the encoder with and without
batch normalization.

Encoder Model αa αc
Runs

Mean std
1 2 3

MNIST 100

without BN

0.005 0.005 12.4 18.05 16.73 15.73 2.96
0.0005 0.0005 15.01 11.16 14.74 13.64 2.15
0.005 0.0005 23.31 26.61 25.41 25.11 1.67

0.0005 0.005 9.21 9.02 10.12 9.45 0.59

with BN

0.005 0.005 13.55 22.48 14.72 16.92 4.85
0.0005 0.0005 8.37 15.01 26.92 16.77 9.40
0.005 0.0005 32.12 30.27 31.44 31.28 0.94

0.0005 0.005 5.46 17 11.54 11.33 5.77

MNIST 1000

without BN

0.005 0.005 3.9 4.25 4.02 4.06 0.18
0.0005 0.0005 3.64 3.82 4.11 3.86 0.24
0.005 0.0005 6.68 5.34 6.36 6.13 0.70

0.0005 0.005 3.03 2.88 2.66 2.86 0.19

with BN

0.005 0.005 2.96 3.37 2.98 3.10 0.23
0.0005 0.0005 2.87 3.10 2.73 2.90 0.19
0.005 0.0005 3.72 3.8 4.14 3.89 0.22

0.0005 0.005 2.57 2.39 2.28 2.41 0.15

MNIST all

without BN

0.005 0.005 1.05 1.09 1.1 1.08 0.33
0.0005 0.0005 0.94 0.96 0.9 0.93 0.03
0.005 0.0005 1.16 1.14 1.13 1.14 0.02

0.0005 0.005 0.88 0.92 0.91 0.90 0.02

with BN

0.005 0.005 0.98 0.84 0.94 0.92 0.07
0.0005 0.0005 0.79 0.96 0.82 0.86 0.09
0.005 0.0005 1.04 1.05 1.03 1.04 0.01

0.0005 0.005 0.74 0.78 0.84 0.79 0.05

Appendix F. Semi-Supervised Training with Learnable Latent Space Regularization

This model is based on the cross-entropy term Dcĉ, the MSE term representing Dxx̂, the label
class regularizer Dc and either term Dz|x or Dz or jointly Dz|x and Dz as defined by (16) in the main
part of paper. In our implementation, we consider the regularization of the latent space based on the
adversarial term Dz only to compare it with the vanila AAE as shown in Figure A7. The encoder is
also not conditioned on c as in the original semi-supervised AAE. Thus, the tested system is based on:

LLP
SS−AAE(θc, θx, φa, φz) = βcDcĉ + βcDc +Dz + βxDxx̂. (A5)

We set the parameters βx = βc = 1 to compare our system with the vanila AAE. However, these
parameters can be also optimized in practice.

The parameters of encoder and decoder are shown in Table A11. The performance of this classifier
without and with batch normalization is shown in Table A12 (deterministic scenario) and Table A13
(stochastic scenario).
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Table A11. The encoder and decoder of semi-supervised classifier trained based on Dcĉ, Dc and Dz.
The encoder is trained with and without batch normalization (BN) after Conv2D layers. Dc and Dz are
trained in the adversarial way.

Encoder

Size Layer

28 × 28 × 1 * Input

14 × 14 × 32 Conv2D, LeakyReLU

7 × 7 × 64 Conv2D, LeakyReLU

4 × 4 × 128 Conv2D, LeakyReLU

2048 Flatten

1024 FC, ReLU

10 10 FC, Softmax FC

Decoder

Size Layer

10 + 10 Input

7 × 7 × 128 FC, Reshape, BN, ReLU

14 × 14 × 128 Conv2DTrans, BN, ReLU

28 × 28 × 128 Conv2DTrans, BN, ReLU

28 × 28 × 64 Conv2DTrans, BN, ReLU

28 × 28 × 1 Conv2DTrans, Sigmoid

Dz

Size Layer

10 Input

500 FC, ReLU

500 FC, ReLU

1 FC, Sigmoid

Dc

Size Layer

10 Input

500 FC, ReLU

500 FC, ReLU

1 FC, Sigmoid

Table A12. The performance (percentage error) of deterministic classifier based on Dcĉ +Dc +Dz +

Dxx̂ for the encoder with and without batch normalization.

Encoder Model
Runs

Mean std
1 2 3

MNIST 100

without BN 2.15 2.05 1.78 1.99 0.19

with BN 1.57 1.56 1.92 1.68 0.21

MNIST 1000

without BN 1.55 1.47 1.53 1.52 0.04

with BN 1.37 1.34 1.73 1.48 0.22

MNIST all

without BN 0.78 0.7 0.82 0.77 0.06

with BN 0.79 0.77 0.76 0.77 0.02
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Table A13. The performance (percentage error) of stochastic classifier with supervised noisy data
(noise std = 0.1, # noise realisation = 3) based onDcĉ +Dc +Dz +Dxx̂ for the encoder with and without
batch normalization.

Encoder Model
Runs

Mean std
1 2 3

MNIST 100

without BN 1.55 3.19 2.11 2.28 0.83

with BN 1.4 1.33 1.72 1.48 0.21

MNIST 1000

without BN 1.73 1.53 1.6 1.62 0.10

with BN 1.28 1.43 1.2 1.30 0.12

MNIST all

without BN 0.94 0.86 0.86 0.89 0.05

with BN 0.77 0.65 0.84 0.75 0.10
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xm,cm{ }m=1
N

z ∼ pθz(z)
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Latent space constraints
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J
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Dcĉ

Classification space constraints
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Figure A7. Semi-supervised classifier with learnable priors: the cross-entropy Dcĉ, MSE Dxx̂, class
label Dc and latent space regularization Da. The blue shadowed parts are not used.

Appendix G. Semi-Supervised Training with Learnable Latent Space Regularization and
Adversarial Reconstruction

This model is similar to the previously considered model but in addition to the MSE reconstruction
term representing Dxx̂ it also contains the adversarial reconstruction term Dx as defined by (17) in the
main part of paper. In our implementation, we consider the regularization of the latent space based on
the adversarial term Dz as shown in Figure A8. The training is based on:

LLP
SS−AAE(θc, θx, φa, φz) = Dz +Dxx̂ +Dcĉ +Dc + αxDx. (A6)

The parameters of encoder and decoder are shown in Table A14. The performance of this classifier
without and with batch normalization is shown in Table A15 (deterministic scenario) and Table A16
(stochastic scenario).
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Figure A8. Semi-supervised classifier with learnable priors: the cross-entropy Dcĉ, MSE Dxx̂,
adversarial reconstruction Dx, class label Dc and latent space regularizer Dz. The blue shadowed parts
are not used.

Table A14. The network parameters of semi-supervised classifier trained based on Dcĉ, Dc and Dz.
The encoder is trained with and without batch normalization (BN) after Conv2D layers. Dc and Dz are
trained in the adversarial way.

Encoder

Size Layer

28 × 28 × 1 Input

14 × 14 × 32 Conv2D, LeakyReLU

7 × 7 × 64 Conv2D, LeakyReLU

4 × 4 × 128 Conv2D, LeakyReLU

2048 Flatten

1024 FC, ReLU

10 10 FC, Softmax FC

Dz

Size Layer

10 Input

500 FC, ReLU

500 FC, ReLU

1 FC, Sigmoid

Dc

Size Layer

10 Input

500 FC, ReLU

500 FC, ReLU

1 FC, Sigmoid

Decoder

Size Layer

10 + 10 Input

7 × 7 × 128 FC, Reshape, BN, ReLU

14 × 14 × 128 Conv2DTrans, BN, ReLU

28 × 28 × 128 Conv2DTrans, BN, ReLU

28 × 28 × 64 Conv2DTrans, BN, ReLU

28 × 28 × 1 Conv2DTrans, Sigmoid
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Table A14. Cont.

Dx

Size Layer

28 × 28 × 1 Input

14 × 14 × 64 Conv2D, LeakyReLU

7 × 7 × 64 Conv2D, LeakyReLU

4 × 4 × 128 Conv2D, LeakyReLU

4 × 4 × 256 Conv2D, LeakyReLU

4096 Flatten

1 FC, Sigmoid

Table A15. The performance (percentage error) of deterministic classifier based on Dcĉ +Dc +Dz +

Dxx̂ + αxDx for the encoder with and without batch normalization.

Encoder Model αx
Runs

Mean std
1 2 3

MNIST 100

without BN
0.005 2.85 3.36 2.77 2.99 0.32

0.0005 2.58 2.49 3.08 2.72 0.32
1 19.62 19.96 15.97 18.52 2.21

with BN
0.005 1.56 1.33 1.35 1.41 0.13

0.0005 1.68 1.66 2.02 1.79 0.20
1 20.85 13.6 21.67 18.71 4.44

MNIST 1000

without BN
0.005 2.29 2.35 2.11 2.25 0.12

0.0005 1.69 1.88 2.24 1.94 0.28
1 3.47 3.30 4.12 3.63 0.43

with BN
0.005 1.18 1.21 1.09 1.16 0.06

0.0005 1.44 1.28 1.29 1.34 0.09
1 4.14 2.94 2.48 3.19 0.86

MNIST all

without BN
0.005 0.97 1.01 1.04 1.01 0.04

0.0005 0.88 0.85 0.93 0.89 0.04
1 1.31 1.28 1.47 1.35 0.10

with BN
0.005 0.81 0.83 0.75 0.80 0.04

0.0005 0.73 0.78 0.75 0.75 0.03
1 0.88 0.86 1.27 1.00 0.23

Table A16. The performance (percentage error) of stochastic classifier with supervised noisy data
(noise std = 0.1, # noise realisation = 3) based on Dcĉ +Dc +Dz +Dxx̂ + αxDx for the encoder with
and without batch normalization.

Encoder Model αx
Runs

Mean std
1 2 3

MNIST 100

without BN 0.005 2.45 3.04 2.67 2.72 0.30
0.0005 2.63 2.3 2.45 2.46 0.17

with BN 0.005 1.34 1.21 6.4 2.98 2.96

0.0005 1.35 1.51 1.93 1.60 0.30

MNIST 1000

without BN 0.005 2.31 2.26 2.2 2.26 0.06
0.0005 1.71 2.16 1.86 1.91 0.23

with BN 0.005 1.23 1.31 1.10 1.21 0.11
0.0005 1.42 1.62 1.37 1.47 0.13

MNIST all

without BN 0.005 0.93 1.01 1.05 1.00 0.06
0.0005 0.92 0.83 0.88 0.88 0.05

with BN 0.005 0.88 0.86 0.91 0.88 0.03
0.0005 0.77 0.80 0.80 0.79 0.02
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