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Abstract: Increased data acquisition by uncalibrated, heterogeneous digital sensor systems such
as smartphones present new challenges. Binary metrics are proposed for the quantification of
cyber-physical signal characteristics and features, and a standardized constant-Q variation of the
Gabor atom is developed for use with wavelet transforms. Two different continuous wavelet transform
(CWT) reconstruction formulas are presented and tested under different signal to noise ratio (SNR)
conditions. A sparse superposition of Nth order Gabor atoms worked well against a synthetic blast
transient using the wavelet entropy and an entropy-like parametrization of the SNR as the CWT
coefficient-weighting functions. The proposed methods should be well suited for sparse feature
extraction and dictionary-based machine learning across multiple sensor modalities.

Keywords: Gabor atoms; wavelet entropy; binary metrics; acoustics; quantum wavelet

1. Introduction

This paper applies the constant-Q standardized Infrasonic Energy, Nth Octave (Inferno) framework [1]
to the Gabor wavelet [2] and proposes binary metrics for signature characterization. One of the primary
motivations of this work is to facilitate the fusion of multi-modal data streams in sensor systems that
collect information at different temporal and spatial granularities. Consider a cyber-physical sensor
system that converts observables into digital time series data consisting of signals and noise. Signals of
interest can be hypothetically described by sparse representations that define their signature. If the
signature characteristics are sufficiently unique and recognizable from those of ambient coherent and
incoherent noise, they can be used to identify and classify an object or process.

The transformation of diverse digital measurements into robust, scalable, and transportable
representations is a prerequisite for signal detection, source localization, and machine learning
applications for signature classification. The challenge at hand is to construct sparse signal
representations that contain sufficient information for classification. Unambiguous classification
can be elusive; measurement artifacts, unexpected signal variability, and non-stationary noise often
conspire to add uncertainty to our classifiers. As will be discussed in this paper, information and
uncertainty quantification can be substantially simplified when using standardized wavelets and
binary metrics.

1.1. Binary Representations of Time and Frequency

Oscillatory processes often exhibit spatial and temporal scalability and self-similarity. Although
some physical processes scale linearly, many exhibit recurrent patterns that scale logarithmically and are
well represented by power laws. Both linear and logarithmic scales can coexist. For example, overtones
in harmonic acoustic systems are often linearly spaced in frequency, yet our sense of tone similarity is
close to base 2 logarithmic (binary) octave scales. The term octave comes from the eight major notes in
12-tone musical notation, where every note frequency closely repeats with factors of two. This paper
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uses the term octave and binary interchangeably to denote the base 2 geometric scaling of frequency
and time. The mapping between frequency (or pitch) and time (period) is direct for continuous tones,
such as musical notes, or statistically stationary oscillations like the orbits of planets. Discrete Fourier
transform methods are exceptionally well suited for the interpretation of steady tonal signals with
linearly spaced harmonics. The Fourier transform deconstructs oscillations with distinct recurrent
time periods into a spectral representation consisting of a set of discrete frequencies. The spectral
transformation can be sparse because it removes time as a variable, facilitating the reconstruction of
stable oscillations from a subset of coefficients in the Fourier spectrum.

Stable oscillators can be even more succinctly represented by a fundamental frequency or period
(exclusive or, as they are not independent). For many physical systems, a map can be constructed
between the fundamental frequency and its harmonics. Signals where the fundamental and its
harmonics (when they exist) are statistically stationary and easily discernible above noise can be
referred to as the easy continuous wave (CW) problem, or the zeroth (trivial) class of CW problems.
The trivial CW problem is well understood and should routinely be used as a speed and performance
benchmark for detection and classification algorithms.

The plot thickens when temporal variability is introduced in the signal or the noise. In the first class
of CW problems, temporal variability is due to non-stationary broadband or band-limited noise. This is
a chronic condition in infrasonic signal processing, where ambient noise can be coherent or incoherent
across a dense sensor network [3] or an array aperture [4]. The first class of CW problems is also well
understood when noise is predictable (e.g., normally distributed) over a time duration that is much
longer or much shorter than the signal period in the detection band. However, this class of problems is
not as well characterized when noise is not evenly distributed across the signal detection bandpass
and can be particularly inconvenient when noise overwhelms the fundamental frequency band.

In the second class of CW problems, temporal variability is introduced by a change in the temporal,
spectral, and/or statistical properties of the signal. These changes can be due to aging, failure, motion,
communication, or any other change in state. In a simple two-state problem, one may quantify the
properties of the first state, the transition period between states, and the properties on the final state.
In a multiple-state problem, such as with communication systems, speech, or music, the Short-Time
Fourier Transform (STFT) is often used to characterize spectral variability.

If the transition period between states is faster that the characteristic time scale of the initial
state, the STFT does not always provide an accurate representation of this transient. For some signals,
the details of the transient are not relevant and only the steady states are important. But a new class of
signals emerges when the detection of transient anomalies is prioritized.

The zeroth class of transient problems consist of delta functions with their integrals and derivatives.
Such instantaneous spikes do not exist in the natural world but can be readily constructed digitally to
evaluate the impulse response of a system or represent a neuromorphic network [5,6]. The first class of
transient problems would consist of realistic variants of the delta function that may be observed in the
wild when a rapid change of state becomes the signal of interest. Just like a single-tone sinusoid may
be regarded as the prototype end member for the trivial CW problem, an explosive detonation could be
considered as a prototype transient signal source [7]. A time series corresponding to a blast would vary
from ambient noise to a brief blast transient that fades back to a possibly perturbed background noise
state. The transition from noise to signal can be devastatingly fast. In general, poorly-conditioned
STFTs provides inadequate representations of brief, rapidly changing signals because the signatures
no longer resemble a CW and are not optimally represented by sinusoids. However, since a STFT is
a windowed sinusoid, a well-conditioned STFT window at the peak frequency of a signal turns the
waveform in the STFT window into a wavelet that is well-tuned for the main signal bandpass.

The concept of a windowed sinusoid to represent a transient signal was introduced by Gabor [2]
in 1946, and later mathematically formalized by others as wavelets. Variants of the Gabor wavelet are
presented in the main text and the Appendices A-F.

The second class of transient problems overlaps with the second class of CW problems.
It corresponds to transients of significant durations which could be addressed with STFTs, wavelets,
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or their combination. Very often a transient is imbedded in a noise field with band-limited harmonic
structure. Or the transient itself is a sweep, characterized by a substantial frequency change in the
fundamental frequency and its harmonic structure.

The primary differences between STFTs and wavelet transform approaches are that the STFT
uses a linear period mapping and a constant time window duration, while wavelets uses geometric
pseudo-period mapping and time window durations that scales with the pseudo-period. Whereas
in the Fourier framework there is a one-to-one mapping between time and frequency, the wavelet
mapping between time scale and frequency can be less evident and depends on the selected wavelet.

This paper concentrates on developing highly standardized Gabor atoms [2] for the design
and evaluation of transportable, sensor-agnostic transient signal detection, sparse feature extraction,
and classification algorithms.

1.2. Binary Representations of Enerqy and Information in Cyber-Physical Systems

A Cyber-Physical System (CPS) is an algorithm-controlled computer system with physical inputs
and outputs. A typical example of a mobile CPS is a smartphone with a microphone input (sound
activation) that outputs a response (speech, music, or signal recognition) to a screen. Cyber-physical
Measurement and Signature Intelligence (MASINT) is an emerging discipline that concentrates
on phenomena transmitted through cyber-physical devices and their interconnected data networks.
For smartphones and other multi-sensor mobile platforms connected to wireless networks, this includes
digital noise, bit errors, and latencies internal to the device and its communication channels [8-10].

Data processed by the cyber part of CPSs are digital and represented as binary digits (bits).
Although the precision of the data would be initially defined by its their allocated integer word size (16,
24 bit, etc.), the original data may be converted into floating point equivalents when an algorithms acts
on them. For example, consider sound recorded by a smartphone at the standard rate of 48,000 samples
per second. A typical sound record may have 16-bit resolution, so that its dynamic range in bits is 271
to 215 — 1. However, one may only be interested in the lower frequency components of the raw data,
so one would implement a lowpass anti-aliasing filter before decimation. Such filters often require
floating point arithmetic in double precision (52 bit mantissa re IEEE 754 at the time of this writing)
to reduce instability. Therefore, the precision of the resulting lowpass filtered data would exceed the
specification of the original 16-bit integral input. However, the theoretical dynamic range of the system
would not exceed the specification of the integer 16 physical input. Furthermore, data compression
can be more efficient on floats than integers, which leads us to the topic of fractional bits as a measure
of CPS amplitude, power, and information.

Many of the metrics we used in traditional physical and geophysical systems are inherited from
the analog era. The base 10 decibel scale is a measure of power relative to a reference level, and is
used extensively in telecommunications, acoustics, and electrical engineering. Let us estimate the
hypothetical dynamic range of a 16-bit microphone record of a sinusoid at full scale. The peak rms
amplitude would be 016

Prms signal = ﬁ .

All systems have quantization and system noise, and the noise can have a positive or negative

)

bias. This is not a noise paper; for the sake of illustration, I model the system noise as oscillating
around a mean of zero and alternating between —1 and 1,

21
Prms noise = E .

The theoretical dynamic range of the system in dB for a sinusoid recorded with a 16-bit microphone
and sound card combination with a one-bit noise floor could be characterized by the ratio of the power

@

Prms signal

2
10+ logw[ ] =20+ log10[215] ~ 90 dB 6)

Prms noise
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where a digital response is converted to the legacy base 10 logarithmic system. One advantage of the
decibel approach is that it can be compared to the response of the human ear and other analog systems.
However, analog comparisons are not necessary for many cyber physical applications. A more natural
unit for CPS is the binary logarithm

logz[M] = log2[215] ~ 15.0 fbits 4)
Prms noise

where the unit fbits corresponds to floating point representation of bits. For example, in 24-bit systems,
present-day quantization error is ~3 bits, leading to an effective dynamic range of ~21 fbits. Likewise,
a 24-bit integer cast into a 32-bit symbol can have 8 + 3 bits of noise, and may be converted to a float
that still has ~21 fbits of dynamic range.

Another unit that is often specified is the 1/2 power point of the frequency response of a filter,
which defines the quality factor of that filter. This is often referred to as the -3 dB point, since
10+log19(2) ~ 3 dB. However, accurate filter bank reproductions require a clear specification of the
1/2 power point, and conversion from base 10 to base 2 specification can lead to computational errors.
Plotting filter responses in floating point bits can be informative as it reveals the precision of the
computation. Because it is awkward and there is already a precedent in information theory for using
bits outside of their original definition as a binary digit, from here onwards in this paper the word bits
will be used to represent either the floating point equivalent of bits or as a metric for information.

Consider the communication channel capacity introduced by Shannon [11], which in its simplest

Sg+ Ns
Ns

form can be expressed as

Ch = Wlogz( (5)

where Ch is a measure of the differential entropy of a signal in the presence of noise, W is a measure
of the bandwidth, Sg is representative of the power of a signal, and Ns is representative of the noise
power. The units of the channel capacity are in shannons per second, or bits per second, and represent
the theoretical upper bound of the rate of information transfer in a communication channel. Since it is
often impossible to separate noise embedded in a signal but it is often possible to construct a noise
model, we can think the ratio (5S¢ + Ns)/Ns as a practical measure of the signal to noise ratio (SNR) of
an observed signal that has been carried through a cyber-physical system or a medium.

The effective SNR and therefore the detectability of a compressed pulse (such as a wavelet) is the
product of the bandwidth, the signal to noise ratio, and the time duration of a signal [12]. When using
constant-Q Gabor wavelet with fractional octave (binary) bands n of order N and center frequency f,

to process a signal in the presence of noise, the next section shows that for
Ns, + Sgn S¢n

the signal detectability per band can be represented by

1
bSNR, = 5 log> (SNR;,) (7)
and the upper limit on rate of information in bits per second for a band-limited pulse with center
frequency f, can be estimated from I
Chy = 3 DSNRy . ®)

Energy and Shannon entropies using the binary log are constructed for both the wavelet coefficients
and SNR in Section 2.5.

2. Methods

This is an algorithmic paper providing foundational methods to construct standardized Gabor
wavelets within a binary framework. No materials are included or required; all the algorithms
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required to reproduce the results are presented, with recommendations for specific existing functions
in open-source software frameworks.

Although the methods are intended to be sensor-agnostic and transportable across diverse
domains, the selection of the Gabor mother wavelet does define the optimal applicability of the
algorithms: the methods in this paper will work best with a transient, or a portion of a transient,
that can be well represented by a superposition of Gabor wavelets. Fortunately, this covers a fairly
wide range of transient signature types. The fundamental principles in this work are expandable to
other wavelets as well as to four-dimensional spatiotemporal representations.

2.1. Transforming Time and Frequency to Scale

A digital time series is constructed by collecting digital measurements at discrete times separated
by a nominal sample interval At;. One may estimate a standard deviation from nominal o, associated
with the sample interval; when this error is a very small percent of the sample interval (e.g., parts per
million) it is generally treated as a constant. Some variability in the sample rate should be expected in
cyber-physical sensing systems under different conditions (temperature, battery level, power load,
data throughput, etc.) even when the systems have the same hardware configurations. This can have
an impact when attempting high-accuracy time synchronization. If adequate performance metrics
are collected, the sample rate error can be quantified and potentially compensated by an additional
time-varying correction to the clock drift.

In many scientific domains, such as astronomy and climatology, the sample interval may be
greater than one second. Domains where the phenomena of interest change more rapidly use the
equivalent metric of samples per second, referred to as the sample rate and often expressed in units of
Hertz. The relationship between the sample interval A7, and its standard deviation o, and the sample
rate f; and its associated error can be expressed as

1 1 o, )—1 ( 01, ) 01,
—_— = —1 ~ fo|l1- f 1. 9
AT 4 0, ATS( * Aty £ AT ! Aty < ©)

Although time is the primary discrete sampling parameter, system requirements are often
provided as frequency specifications within the context of Fourier transforms. The nominal sample
rate sets the maximum upper edge of the bandpass of the system; there should be negligible energy
at the Nyquist frequency, which is half of the sample rate. The actual bandpass of a system is set
by the low- and high- frequency cutoffs of a cyber-physical system, which may include the sensor
response, hardware specifications, firmware and software modifications (such as anti-aliasing filtering),
and data compression.

The mapping between frequency and period is simple for a continuous wave tone; the tone period
is the inverse of the tone frequency. It is not so clear for transients. Following [7], a transient with
a single spectral peak at a center frequency f, may be associated with a pseudo-period 7, = 1/ f;.
This mapping is important as the scale of wavelet representations is linearly proportional to the
pseudo-period, which is also referred to as the scale period. A high-level overview of the Appendix A,
Appendix B, Appendix C, Appendix D, Appendix E, and Appendix F is provided in this section for
ease of reference.

Constant quality factor (Q) bands with constant proportional bandwidth are traditionally defined
as [1] Af 1 0
i 0 o
where Af is the bandwidth centered on f,. The Q is a measure of the number of cycles needed to reach
the 1/2 power point at the bandwidth edges. Appendix A shows that the bandwidth edges are well
defined in fractional octave band representations of order N so that the quality factor can be evaluated
precisely as,

Qn = [ﬁ - Tﬁ]_l. (11)



Entropy 2020, 22, 936 6 of 35

From [1], and as shown in Appendices B and C, the characteristic time duration of the Gabor atom
can be represented as
Ty = Mn T (12)

where My is a measure of the number of oscillations in the characteristic time duration of a wavelet.
For efficient computation all physical times are nondimensionalized and converted to equivalent
sample points by multiplying by the sample rate. If f is the time in seconds, the nondimensionalized
time m is

m=fst. (13)

The approach is wavelet-agnostic up to this stage. Direct application of the 1/2 power points of the
spectrum of Gabor-Morlet wavelet (Appendix B) at the band edges (Appendix C) yields

My = 2VIn2 Qu ~2V2In2 N (14)

where My controls the duration of the wavelet to match the order’s Q. This last step can be
tailored to other wavelet types to produce constant-Q variants. Adherence to the specifications
in Equations (10)—(14) yield standardized and well-constrained quantized Gabor atoms.

2.2. Binary Quantized Constant-Q Gabor Atoms

Gabor [2] extended the Heisenberg principle to define the time-frequency uncertainty principle,
and further proposed deconstructing signals into elementary waveforms referred to as time-frequency
atoms [2,13]. These atoms provide the optimum compromise between time and frequency resolution
and thus maximize information density. The Morlet wavelet [14,15], functional kin to the Gabor atom,
was developed for seismic applications and is much beloved by mathematicians. Much has been said
and written over the last 75 years about the merits, and limitations, e.g., [16], of the Gabor atom in
diverse fields of applied science ranging including quantum mechanics, e.g., [17], neurophysiology,
e.g., [18] and radar target recognition, e.g., [19].

Consider the translation and dilation of the familiar Gabor-Morlet mother wavelet

1 m? .
Yn(m) = e~ exp(iMnm) (15)
b
with dictionary [13]
1 m—m'
Y, m-m'] = Y 16

which can be fully expressed as

2
N 11 1(m—-m ) m—m'
Yy(m—m') = — —%exp{—i[ 5 ] }exp{lMN . ]} (17)

where the mapping between the nondimensional scale $,, and the band period is

M
Sy = 2—71;] ﬁTH . (18)

The constant-Q Gabor atoms are constrained to the discrete set of values

My

n
8, = 802N R
n 0 o

£i102N, My =2VIn2 Qy (19)

with quality factor
-1
Qu=|2% - 27| = VN (20)
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defined by the 1/2 power points of the Fourier spectrum, quantized order N. For this functional form,
the wavelet admissibility condition can be represented as

M >1. (21)

By quantizing constant-Q bands and the resulting wavelet scales it is possible to also discretize the
uncertainty in time and frequency of the resulting analyses. Gaussian pulses in general [12] and Gabor
atoms in particular are well-known to have the lowest time-frequency uncertainty [2,13], making them
natural building blocks for uncertainty quantification. The Gabor atom has the minimal value of
the Heisenberg-Gabor uncertainty (Appendix D), where the nondimensionalized temporal standard
deviation o; and angular frequency standard deviation o, over all time and frequency satisfy

1 1 My
Oft 7B = 0y, \/QZnT" (22)
1 _
w/ fs ﬁ‘snl (23)
1
010y = > (24)

which quantify time and frequency uncertainty discretely, minimally, and unambiguously.
Converting to physical time with m = f; t yields a more familiar Morlet representation

(- 1) = @exp{-é[ﬂ]z}exp{izﬁf” te-11) 25)

"SVI s

where the scale 8, may be readily recognized as the standard deviation of a Gaussian envelope
with integration variable m = fst. This is very similar to the original form proposed by Gabor [2],
and makes intuitive sense as the oscillatory term is clearly exposed. However, the additional factor of
fs required to nondimensionalize the numerator of the Gaussian envelope for numerical computation
has indubitably been an initial source of confusion amongst some physical scientists, author included.

2.3. Quantum Order

The recommended quanta for the Gabor atoms are positive integer band numbers n and the
preferred orders N as in [1]

n=0,12..., N=1,3,6,12,24... (26)

though the special orders N = 0.75 and 1.5 are considered. The mother wavelet is uniquely defined
(and can be quantized) by the order N, although it is often specified by the more accessible variable
Mpy. The mother wavelet is scale invariant. Each discrete atom in its dictionary is defined by its
order N, its band number n, and a refence scale at n = 0. If the Gabor atoms remain within their
quanta, there is only one degree of freedom: the reference scale. The reference scale can be set by the
data acquisition system (e.g., the Nyquist frequency) or a standard reference frequency. The scale
schema can also be set by a signal tuning frequency; the theoretical peak acoustic frequency for the
detonation of one metric ton of TNT is used in Section 3. When integrating multi-sensor time series
with different evenly and unevenly sampled data, it would be preferrable to either use a standard
reference frequency or time scale (e.g., 1 kHz for audio, 1 Hz for infrasound [1]) or a shared target
frequency. The resulting frequency bands will be evenly spaced logarithmically to standardize and
facilitate multi-sensor cross-correlations and data fusion. It is important to reinforce that the mapping
from physical time scale to nondimensional scale depends on the sample rate. Specifying a nominal
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sample rate f; or sample interval At; = 1/ fs as in Equation (9) permits conversion to physical time ¢
and scale pseudo-period 7, from the wavelet parameters,

m 21 8,

t=—, Th=+———F, 27
[ Vi (27)
and map to the physical scale center frequencies
1
fn = —, Wy = ann . (28)
Tn

It may be useful to think of the binary (base 2) order N as the quantized time and bandwidth
stretch factor of the Gabor atom; as the order increases, the wavelet stretches in time and narrows
in bandwidth, with each frequency band occupying a constant proportional frequency bandwidth
that produces Qy oscillations at the band frequency in the time domain. Although in theory it is
possible to use any integer band indexes 7, for computational implementation it is practical to use
only nonnegative integers to represent temporal scales [Equation (26)], with 7( corresponding to the
smallest scale and fj to the highest center frequency below the Nyquist frequency.

This paper recommends atom quantization using the well-established fixed order N and quality
factor Qn values of standard geometric binary intervals referred to as fractional octave bands in
acoustic and infrasound applications (Table 1).

Table 1. Quality factor Q and My for standard fractional octave bands of order N 1.

N On My
1 1.4142 2.3548
3 4.3185 7.1907

6 8.6514 14.4055
12 17.3099 28.8229
24 34.6235 57.6519
48 69.2488 115.3067
96 138.4984  230.6150

! Dyadic base, G = 2.

Appendix A develops a useful approximation for the quality factor Qn of order N,
Onv~ V2N~ 1414 N, My =2VIn2Qyn~2V2Iln2 N ~ 2.355 N (29)
with exact equivalence for octave bands at N = 1 (Table 2).

Table 2. Exact and approximate quality factor Q for standard fractional octave bands of order N 1.

N Oy Qnv~V2N
1 1.4142 1.4142
3 4.3185 4.2426
6 8.6514 8.4853
12 17.3099 16.9706
24 34.6235 33.9411
48 69.2488 67.8823

96 138.4984 135.7645
! Dyadic base, G = 2.

These relations are seldom made explicit for constant-Q wavelet representations, which often
leads to inadvertently creative interpretations and implementations. In traditional fractional octave
bands, N is an integer with preferred numbers 1, 3, 6, 12, 24 and its half-power (-3 dB) band edges and
center frequencies are well established so their Q can be readily computed (Tables 1 and 2). The band
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spectrum will overlap at the half-power point band edges to reduce (or at least regulate) spectral
leakage and improve energy estimation. Dyadic wavelets use order N = 1 and are weakly admissible
(M2N ~ 5.54); carefully handled they do lead to very sparse and fast computational implementations
(e.g., [13]).

The estimate for Qy in terms of the order N is useful for practical application where we wish
to specify the number of oscillations Qu in a window. If one abandons the bounds of the preferred
bands, one can estimate the order for a wavelet that has any number of oscillations in its support
window. Once N is estimated, exact values for the center frequencies and band edges can be computed
from the expressions in Appendix A. These bespoke constant-Q bands will not meet binary (factor
of two) center frequency recursions with 1/2 power band edge overlap, but may be useful for highly
customized tuning. Examples are provided in Table 3.

Table 3. Approximate quality factor Q and My for non-integer order N 1.

Qv N=Q\/V2 Mn

1 0.7071 1.6651
2 1.4142 3.3302
4 2.8284 6.6604
8 5.6569 13.3209

16 11.3137 26.6417
32 22.6274 53.2835
64 45.2548 106.5670
128 90.5097 213.1340

1 Dyadic base, G = 2.

Consider the curious case of a single oscillation in the window, where

N = 2 =0.75, Quzs = 1.04, Moy7ss =2VIn2 Qyss ~ 1.73 (30)
and Q is evaluated more precisely from the order N. Although intuitive and compact, the resulting
wavelets are marginally admissible ( M%.75 ~ 3) and produce oddly spaced, but legitimate, constant-Q
frequency bands that grow rapidly and hit only every fourth standard octave every three bands.
The window duration will be only 1.74 periods long and the spectral resolution of the Fourier transform
will be exceedingly sparse. Adding another oscillation per window (increasing the quality factor to

approximately two), would correspond to

N = % =15, Qi5=214, M;s5=2VIn2 Q5 ~ 3.56. (31)
The resulting wavelets that are more admissible ( M%S ~ 13) but also produce oddly spaced constant-Q
frequency bands that land on every second standard octave every three bands. Third order bands hit
exact powers of two every third band and have around four oscillations per window (Appendix C).
Although it is possible to force center frequency scales, if best practices for band overlap are ignored
one will have a set of wavelet filter banks with substantial spectral leakage or gaps between adjacent
bands, and the possibility for excessively overdetermined or underdetermined results. This is what
usually happens with default parameters on most continuous or discrete wavelet transform algorithms.
This paper standardizes and regulates band spacing by asserting the relationship between order,
bandwidth, and duration. Since it is both silly and mathematically inadvisable (even inadmissible)
to construct a wavelet with less than one oscillation in its window, it is recommended that Q > 1.
This suggests a minimum order number (quantum) of N = 3/4 for stable Gabor atoms, with N =1
yielding value exact power of two (binary) bands.
It is possible to estimate the smallest possible universal binary scale from the Planck time,
the smallest measurable time scale

ATpanee = 1078 s ~ 27142 g, (32)
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Since the Planck time would be the smallest possible sample interval, the smallest oscillation that
could be observed would be at the universal Nyquist period

Tmin = 2DTpianck ~ 27s, (33)
At the other end of the timeline, the age of the universe is estimated to be 13.8 billion years, or
Tmax ~ 2% S, (34)

so that all time scales in the known universe can be encompassed within ~200 temporal octave bands.
Computationally speaking, this is a small range of octaves that can be spanned by 200 Gabor atoms.
Earth is estimated to be ~4.6 billion years old, covering around about 57 of those temporal binary
bands. The oldest bones associated with Homo Sapiens-Sapiens are ~200,000 years old and within the
last 42 temporal sub-bands since Earth’s inception. The human voice for average individuals ranges
between one and two octaves, and five octaves species-wide. The nondimensionalized scale $nyyist Of
the binary (N = 1) Gabor atom at the Nyquist frequency is always the same whether one uses the Plank
scale or a sample rate of 48 kHz

M1 fs - M1 Twin 2 V21n2
Tt

27 fNyquist 270 ATpiapck

SNyquist = ~ 0.75. (36)
However, it is inadvisable make observations at the Nyquist limit, and it would be preferable to
consider the starting center scale at one quarter of the sample rate, or four times the sample period.
It would be possible to construct universal time scales with 7o = 27140 5, whereas all timescales would
occupy temporal sub-bands. The corresponding sensor-agnostic nondimensionalized scale would be
2‘5Nyquist-

A third order representation (N = 3) of all the times scales in the universe can be represented
by 600 temporal Gabor atoms. The beauty of the third order representation is that it is very close
to the decimal representation, with every ten 1/3 octaves producing a decade (210/ 5~ 10), and thus
provide a geometrically elegant compromise between ten-digit humans and binary digit machines.
In addition to better meeting the admissibility condition, third order bands will contain over 99% of
the information within their octave (Appendix D), making them compact temporal carriers. If the
third order representation is used as the base order (N = 3), the preferred numbers are binary multiples
(N =3, 6,12, 24 in Table 1), with a proportional elongation in the wavelet support and increase in
spectral resolution.

Many software packages readily produce a Gabor-Morlet wavelet with default parameters
(Appendix E). One of the most common values is My = 5, which is close to order N = 2 (Table 4).
Other common values of the wavelet support correspond to My = 4, N = 1.7 and the more reasonable
My = 8 which is close to preferred order N = 3.

Table 4. Approximate quality factor Q and order N L for integer values of M

My ~On N
1 0.600561204 0.4246609
2 1.201122409 0.8493218
4 2.402244818 1.698643601
5 3.002806022 2.123304501
6 3.603367226  2.547965401
8 4.804489635 3.397287201

! Dyadic base, G = 2.

Because none of these specifications correspond to standard orders, the resulting wavelets will
tend to either overestimate (due to spectral leakage) or underestimate (due to spectral gaps between
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bands) the energy within adjacent constant-Q bands if binary center frequencies are forced, or will
produce non-standard center frequencies.

Although it is possible to quantize the constant-Q Gabor atoms using the order N, the quality factor
Q, or the multiplier My, the order is the most logical way to define the quanta of the wavelet. Describing
the proposed wavelet dictionaries of preferred orders as the quantized constant-Q Gabor atoms with
binary bases and overlapping /2 power points is rather awkward, and this paper proposes referring
to these constructs as quantized wavelets, quantum wavelets of order N, or Nth order Gabor atoms.
Although N = 1 provides a sparse clean binary (with power of two steps in frequency) representation
with the tightest windows, the admissibility condition coupled with the better reconstruction capability
presented in the next section suggests that using N = 3 as the base order is preferable, with the added
advantage that all subsequent preferred orders in Table 1 are binary factors of base order 3.

2.4. Continuous Wavelet Transform Deconstruction and Reconstruction

The continuous wavelet transform (CWT) of a function g(x) is represented in [13]
(Equation (1.13)) as

Wi(g u,8)=gYun= j:: g(x)%‘?*(xgu)dx (37)

where the asterisk (*) represents the complex conjugate. The equivalent CWT for a discrete sequence

of observations (or a synthetic time series) g(m) is the convolution of ¢ with a scaled and translated
version of ¥ (m). Consider the nondimensional Quantum mother wavelet of order N,

1 m? .
Yn(m) = —nep| =5 exp(iMnm) (38)
T
¥, [m] = ——¥ (ﬁ) (39)
T e e
The discrete CWT can be expressed as
Mp-1
Z g(m')¥;,(m’ = m) = g@ ¥ [m] (40)

where the symbol ® denotes a convolution [13], often computed using the discrete Fourier transform.
This is comparable to the expression in [20], although their convolution has no amplitude scaling as
it is corrected afterwards. The CWT coefficients ‘W), , provide a measure of the degree of similarity
between the time series and the wavelet of scale index n while translating along the time index m.
While exact waveform reconstruction from the CWT is challenging (e.g., [21,22]), reference [20] provides
an approximate expression for the wavelet-filtered time series g(m’). The reconstruction filter from the
Nth order Gabor atoms becomes,

1 Np-1
o Z (41)

where Re{ } denotes the real part of the coefficients and the reconstruction factor Cs is scale independent

z|§w

and constant for wavelet function with fixed My. The reconstruction factor can be estimated by
comparing against known test functions. Reference [20] empirically computed a reconstruction
coefficient of Cs = 0.776 with My = 6, and [23] provides other estimates. Numerical evaluation shows
the product NCs ~ 2, and the reconstruction approximation for the analytic (Appendix F) quantum

wavelet of arbitrary order is 1
i Np-1 W, [m]

gem~=) 4 N

(42)
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It is important to note how substantially different this expression is to the inverse discrete Fourier
transform, where Np-1

8prr[m] = — Z prr[nlexp(j2mmn/Np) (43)
N, P w=0
and $prr([n] are the Fourier coefficients. Unlike the discrete Fourier transform, the standard wavelet
reconstruction does not require multiplication by the mother wavelet. For the special case where the
atoms are well matched to the signal of interest, consider the sparse set of coefficients corresponding
the complex time indexes m,, ¢ yqr Of the maximum energy, entropy, or SNR at each scale
1 Np-1
T4 Z Wilmy, ¢ max
2

y o Re{¥[m — 1y, ¢ yax]} (44)

gc [m] =

where the maximum coefficient indexes can be computed separately for real and imaginary components.
This has the form of a sum over the dominant Gabor atoms for each scale. Since one is only considering
the maxima in a given record window, this is a very sparse representation consisting of the coefficient
and the time offset corresponding to the peak energy or entropy estimate. Numerical evaluation shows
that this last expression can be used to estimate the full analytic function representation as long as
reconstruction uses the complex coefficients but only the real atom function since the time shifts in the
Hilbert transform already include the 77/2 time shift.

2.5. Wavelet Information and Entropy

One advantage of the constant Q wavelet representation is that it is possible to estimate the
information content and detectability of a signal in a band by applying the same set of wavelet
transforms to the signal and comparing them to the transform of a noise segment or model. Consider
the definition for Shannon’s channel capacity [11], with

Ny + S S
SNRHZ%:HNLS” (45)
n n
Chy = Wiloga(SNRy) (46)

where Sg is the wavelet-transformed signal power and Ns is the wavelet-transformed noise power
in a band. Consider two possible estimates for the bandwidth W (Shannon [11] left some room for
interpretation). The first estimate approximates W by the 1/2 power point bandwidth

f n 1 f n f n
Afy = +—~——==07071 . 47
1= e = 5N = 47)
The second estimates W using the Gabor box standard deviation for the angular frequency
1 Wy 1 Wy T f n fn
Op = — ~ — = — =~ 1.8867 — (48)
Y 2ZMy a2z N T 22 N N
so that o f
Ow n n
of = = — ~0.3003 — . (49)
F7 o T 4V N N
Taking the average of Af, and o provides a compromise between the two possible estimates, and a
returns a tidy factor of ~0.5 1f
Chy ~ EﬁnlogQ(SNRn) . (50)

The effective SNR and therefore the “detectability” of a bandwidth-limited compressed pulse [12]
can be represented by the product of the Gabor time-bandwidth product (Appendix C) and the signal
to noise ratio

SNRG = 0t 0 X SNR,; . (51)
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Since the time-bandwidth product for the Gaussian wavelet is constant

1
O0t0yw = E (52)

and the uncertainty of its Gabor box is at the minimum, the likelihood of the detection of a signal of
interest in a given band  is only proportional to its SNR.

Shannon’s definition of the channel capacity was intended to represent the highest theoretical
transfer rate of information through an analog line. Since SNR is given in power, which is typically the
square of the signal amplitude, an unscaled binary log is off by a factor of two from the original data in
bits. To reconcile this definition with the original collection of a time series signal in floating point bits
(fbits), I define the binary SNR to match the signal rms amplitude as well as Shannon’s units for the
information rate per band Chy , of the quantum compressed pulse as

bSNR,, = %logz(SNRn) = log>(V/SNR,,), fbits (53)
fu .
Chyp = N X bSNR,, shannons/s = fbits/s. (54)

The increase in higher information delivery rate with increasing frequency is intuitive as more cycles
are transferred per second. As the order number increases, the bandwidth narrows and so the potential
information rate decreases. Less obvious is the decrease in high-frequency information with increasing
distance in a lossy transmission channel. Assuming the noise power remains unchanged, the decrease
in SNR with increasing scaled distance r from the source origin on a lossy acoustic channel can be

represented as
exp(—)/ fzr)
ng :

SNR = SNR, (55)

where ng = 2 for spherical geometric spreading in free space and ng = 1 for cylindrical spreading in a
waveguide. The binary SNR can be represented as

n
SNR = |bSNR( - %Zogzr] — 21 (y logae). (56)

The term in parenthesis shows the expected reduction of one bit per doubling of distance for spherical
spreading (ng = 2). The last term suggests the frequency dependence of the channel capacity in a
lossy acoustic medium may have the general form

Chy, ~ a(logar) f—PB(r) f2 (57)

so that with increasing range the optimal information transmission frequency shifts to lower frequencies.
One may readily extend the binary SNR definition to the measure of relative power

S ) _ %logz(si), Fhits (58)

max max

bR = logz[

and the —3dB half-power point becomes the —1/2 bit power point.

The entropy of a signal of interest can be estimated by the wavelet coefficients. A practical
approach is described in [24]. The information content of each scale n at the time step m can be
estimated from the wavelet energy. First estimate the complex wavelet coefficient energy from
|2

Eu, n = [Re{ W nl|* + f |1m{ Wi} (59)

The total energy in a given record can be estimated from

E= YY) JEmuEpn- (60)
m n
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The complex probability of Wy, ,, in the record is

 Eun

Pmn = E (61)

Z Z PmpPun = 1 (62)
m n

The log energy entropy (lee) per coefficient can be defined by the binary logarithm

where

€lee = logZ(pgn,n) = 210g2 (Pm,n) (63)

where it should be noted that the factor of two scaling coefficient does not alter the relative weight of
each coefficient. The Shannon entropy (se) per CWT coefficient is defined as

€se = _Pm,nlogZ (pm,n) (64)

with corresponding complex versions that separate the real and imaginary components. These entropies
can be readily evaluated to construct noise models from the lowest entropy components. If a stable
noise model can be constructed from the record or from prior knowledge of the environment and
transmission channel, SNR estimates can be computed and the process repeated to evaluate the
dimensionless binary log of the SNR

bSNR = %logz(SNRm,n) (65)

and the product of the ratio and the binary ratio (RbR), an entropy-like nondimensional metric of
the SNR that can be readily evaluated to identify and extract the wavelet coefficients would be most
representative of a signal of interest,

RbRy = SNRy,u X bSNRyy - (66)

3. Discussion: Explosion Signature

The methods presented in this paper are foundational: the intention is to use the Gabor atoms as
fundamental building blocks with minimal time-frequency uncertainty and high information density.
These methods are illustrated and discussed in the context of a blast pressure pulse. Consider a
normalized transient wave function characteristic of an explosion. Suppose one wanted to construct
a sparse wavelet representation of a blast pulse with peak energy at 6.3 Hz, corresponding to the
detonation of one metric ton of TNT observed at 1 km. It is known [7] that at some distance from the
source this center frequency may drop by an octave (factor of two in frequency) or more, as well as
become stretched out (dispersed) in time due to propagation effects. A theoretical source pressure
function for the detonation of high explosives was developed in some detail in [7] with one kiloton as
the case study, and is used here to construct a representative synthetic waveform for a one (metric) ton
detonation. Define 7.

Te =47, fo=—, wc=21f (67)

1
Tc

as the pseudo-period of a blast pulse corresponding to the peak spectral energy at the frequency f. and
angular frequency w,, where 1, is the time duration of the initial positive phase traditionally used in

blast physics. The nondimensionalized time scale is

f=—=4—. (68)
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The form of the amplitude-normalized source pressure function for an explosive blast [7] can be
represented as
gt)y=01-1), 0<t<1 (69)

g(%):%(l—%)(ux/é—%)z, 1<t<1+ V6. (70)

This pulse has an associated analytic function gc (%) discussed in Appendix F. Since the
theoretical Hilbert transform has some unresolved issues, the numerical Hilbert transform [25]
is used for comparison.

Note that the amplitude is not used in this exercise because in some cyber-physical systems,
such as smartphones, the amplitude response of on-board sensors may not be known. However, sensor
dynamic range is usually specified and available (e.g., int16, float32) and can be used for signal scaling
relative to the full range or the noise.

The normalized pulse has zero mean (conservation of momentum) and its theoretical variance is

ng dtf095— (71)

The complex Fourier transform §(j®) of this pulse is

o n [1-jo-ei® o jo+Vo) i 2
3(jo) = r [ = + 30 {]w Vo 43+ e]‘”‘/g[3w2 + jo2 Ve - 3]} (72)
where ® = 7 & = F = Tpw and the peak in the spectrum is at @ = w,. Note there are at least two

pseudoperiods of importance evident in the main blast pulse: the main spectral pseudoperiod 7, and
the positive phase pseudoperiod of 27,. Near the source the positive phase pseudoperiod will dominate
as it has the highest energy and bandwidth. With increasing distance and high-frequency attenuation
the main pseudoperiod becomes more prominent and may also be downshifted in frequency [7].
However, additional scales can be introduced by reflection and refraction in the transmission channel
that can induce phase shifts often modeled with Hilbert transforms (Appendix F).

The power spectra of real digital signals are usually expressed using only the positive frequencies
up to the Nyquist frequency, where the unilateral spectral density Pg(®) is defined as

2 =2 2(j0)g (o). (73)

Pg(@) = 2|8(jo)
Since the target signature corresponds to a one tonne (1000 kg) detonation, the analysis concentrates
on a target frequency of 6.3 Hz [7]. The general procedure for constructing target-tuned fractional

binary bands of order N is to define a set of base 2 scales around the center or reference frequency

fo=63Hz, f=fo¥. (74)

The upper limit is set by the Nyquist frequency, which means that the center frequency and its band
edges should be below the Nyquist and the 1/2 power point of the anti-aliasing filter. A conservative
estimate is

j max

fj max — ftgz N

5 fs
<5 = jmax< floor(Nlogz[zftg]) . (75)

The lower limit is set by the largest data window duration T

j min 2 2
fimin = fig2 ¥ > 7= jmin > cezl(Nlogz[Tft ]) (76)
8
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so that the center frequencies are defined by

fi= fcz%, j € [jmin, jmax] (77)

which will be sufficient information to compute the Morlet scale $,,. If one must convert to a sorted,
monotonically increasing pseudoperiod, let

=7, 0= min(T]') (78)

and restart the counter for the period
Ty = 102N, n € [O, j max — jmin = length (f])} . (79)

This re-indexing is much easier to do numerically than to describe algorithmically. For the
purposes of illustration and demonstration, let us choose a signal frequency that exactly matches the
target frequency; if this example fails there is no purpose in continuing. A sample rate of 200 Hz will
be more than sufficient for this example. Gaussian noise with a standard deviation that is one bit
below the signal standard deviation (factor of 1/2) is superposed, and then anti-alias filtered for all
frequencies below Nyquist. The analytic function is computed numerically from the real pulse for later
comparisons with the wavelet-reconstructed signal.

The CWT scalogram is computed using the complex nondimensional mother quantum wavelet
of order N. The complex Gabor-Morlet wavelet in SciPy [25] is represented by the function
scipy.signal.morlet2, and has the desired canonical form,

¥y (m) = ilexp(—’”;) exp(iMym) (80)
ok

Y, () = \/Z_ﬂYH(m‘; “) (81)

oy = a2l = [Mi e ok M—gi (52)

T, = [My1o |28 = A}If (83)

My = 2VIn2 Qy (84)

On = [ﬁ - Tﬁ]_l. (85)

The only free variables are the order N, the smallest time scale 7o, and the sample rate f;. Although
the nondimensionalized scale will change with the sample rate, the final results can always be returned
to the physical domain frequencies f,. The nominal number of points per window can be estimated
from f;T;,. The complex wavelet coefficients can be readily computed from the real part of the discrete
version of the blast source-time function p(m)

Mp-1
Walm] = Y pn')¥;,(m' —m) = p©¥;,[m] (86)
m’=0

After minor conditioning, the SciPy CWT function [25] promptly invokes the convolution function.
This is computationally expensive: we have turned a time series with Mp points into a complex
2[Mp x Nbands] array of band-passed waveforms. The terms wavelets and wavelet filter banks are
often used interchangeably in the context of the CWT.
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The wavelet-filtered reconstructed complex analytical signal can be approximated from

1
e W [my = my]
gcijlmeml~ — ) ——— (87)

where the i, j indexes indicate that one may choose selected scales for the reconstruction over selected
time indexes my. : m; corresponding to the wavelet coefficients that best represent a signal of interest
during the time interval of relevance. The wavelet CWT coefficients for the binary band decomposition
are shown in Figure 1; the CWT coefficients are scaled by the reconstruction coefficients. A comparison
of the input synthetic analytic record and the analytic signal reconstruction (summed over all scales)
for the octave band representation is shown in Figure 2.

8,OO-N\/\/\/\’\_\__’NW\ -W\/\/\/\’\—\——W
4.00 1 E
>
$'2.00 .
(O]
& 1.001 /\/\/
g
5 0.50- %:\—
9
§ 0.25;\,\/\/\/

0.001

—— Input, Real —— Input, Imag
-1.0 -0.5 0.0 0.5 1.0 -1.0 -05 0.0 0.5 1.0
Scaled time Scaled time
(a) (b)

Figure 1. Analytic signal from mathematical equation, computation with SciPy Hilbert, and the
continuous wavelet transfer (CWT) reconstruction. (a) Real part; (b) imaginary part. The wavelets
were evaluated in binary bands (N = 1) and constructed around the target frequency of 6.3 Hz, which
scales frequency and time. The real input waveform and its computed Hilbert transform are displayed
in blue at the zero frequency.

The reconstruction process recovers the original dimensionality of the time series but returns
its Hilbert transform, so the total dimensionality may be doubled (2Mp sample points). If only the
original real signal is desired, then the dimensionality is unchanged.

The next steps estimate entropy and SNR, and consider sparse signal representation. Although
binary bands are adequate for characterizing this signal, and are routinely used in the discrete wavelet
transform, I take advantage of the flexibility offered by the CWT and use third order bands (N = 3) for
the examples that follow. One of the benefits of third order bands is that the admissibility condition
is better met and scales are recursive in powers of 2 and 10 ([1]). As presented in Appendix D,
third order bands will contain over 99% of the Gabor box variance within an octave and within 80%
of the full window T}, reducing spectral leakage. If, in addition, one wants a factor of two accuracy
in explosive yield estimates, 1/3 octave resolution is a minimum requirement. A third order band
wavelet reconstruction is shown in Figure 3 and corresponds to the CWT decomposition presented
in Figure 4. The wire mesh representation is the equivalent of the scalograms usually represented as
color mesh plots, and illustrates the simplicity of the CWT decomposition. The primary difference
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between Figures 4 and 5 is that the first scales the raw CWT coefficients by the reconstruction scaling,
whereas Figure 5 shows the raw coefficients.

1.00 . 1.00 .
—e— Equation —e— Equation
—— SciPy Hilbert —— SciPy Hilbert
0.751 —— CWT Reconstruction 0.75 —— CWT Reconstruction
0.50 0.50 1
0.251 0.25
0.00 == 0.00
—0.251 —0.251
—0.50 —0.501
—0.75 —0.751
-1.00 - - - -1.00 - ; .
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
Scaled time Scaled time
(a) (b)

Figure 2. Wavelet reconstruction with binary bands. (a) Real part; (b) imaginary part. The Equation
waveform has no noise and is not filtered, whereas Hilbert has Gaussian noise and has been
anti-aliased filtered.

1.00 - 1.00 -
—e— Equation —e— Equation
—— SciPy Hilbert —— SciPy Hilbert
0.751 1 —— CWT Reconstruction 0.75 1 —— CWT Reconstruction
0.50 0.50 1
0.25- 0.251
0.00- 0.00-
-0.25- -0.251
—0.50- —0.501
-0.751 -0.75
—-1.00 T - T —-1.00 . ; .
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
Scaled time Scaled time
(a) (b)

Figure 3. Wavelet reconstruction with 1/3 octave bands. (a) Real part; (b) imaginary part.
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Figure 4. Wavelet decomposition with 1/3 octave bands, with CWT amplitudes scaled by the

reconstruction coefficients. (a) Real part; (b) imaginary part. As with Figure 1, the input waveform is
displayed at the zero frequency.
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Figure 5. Wavelet decomposition in order 3 binary bands, raw CWT amplitudes. (a) Real part;

2,00

COO0000000OHEFNNW
ORNNWAUIONONUIOUTH
SO UIHFOOWOOMOONN

(b) imaginary part.

The energy probability distribution is constructed from the wavelet coefficients to estimate entropy,

as discussed in the previous section. The log energy entropy looks like any other scalogram and does

not

add much value, but the Shannon entropy plot is interesting and well scaled (Figure 6). The peak

entropy is at the scaled blast center frequency of unity, as expected.
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Figure 6. Shannon entropy in order 3 bands from raw CWT amplitudes. (a) Real part; (b) imaginary part.

Next a noise model is constructed to build the SNR and to establish criteria for standardized
and reproducible sparse signal representation. Many are the ways to characterize noise, and few
of them accurately characterize non-stationary noise over brief observation windows. An incorrect
noise model can penalize the signal passband and degrade the signal SNR. For the white noise
model with variance that is one bit below the signal variance, the CWT of the noise (Figure 7) shows
how the high-frequency oscillations are adequately sampled whereas the low-frequency oscillations
are undersampled. This leads to instability if the noise is only estimated over a brief observation
record. In principle, one may build a noise model over a substantial time period to improve statistical
significance under the assumption that the noise is statistically stationary. This can be a tenuous
assumption in some circumstances. Noise studies are beyond the scope of this paper; the noise spectrum
is flattened by using the mean of the noise coefficients to estimate the band-averaged noise level.
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Figure 7. Raw CWT of noise in 1/3 octave bands. (a) Real part; (b) imaginary part.
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As anticipated, the binary SNR appears much like the log energy entropy since they are both
scaled by a constant value, with the former over the band-averaged noise and the latter over the
total energy. The SNR RbR, as described in the previous section, should also look very much like the
entropy, except it would be zero for SNR of unity and positive for SNR > 1. The SNR RbR is shown in
Figure 8 and indeed matches the Shannon entropy plot. This is encouraging; the entropy plot requires
constructing an energy distribution that scales with the record, whereas the SNR requires constructing
a noise model that is mostly independent of the record and should have more stability—as long as the
ambient noise is approximately stationary or can at least be adequately modeled. If one is curating data
for machine learning training, the entropy would be a good metric for picking and annotating possible
signals as well as for refining noise models. If one is trying to trigger or detect signals operationally,
the SNR may be a preferable metric since it makes no assumptions about the total energy in a record
and only scales relative to a (preferably) stable noise representation.
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-3 -2 -1 0 1 2 33 -2 -1 0 1 2 3
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Figure 8. SNR RbR in 1/3 octave bands. (a) Real part; (b) imaginary part.

One may use the CWT coefficient energy, the Shannon entropy, or the SNR RbR to test the
feasibility of the sparse Gabor atom superposition. Suppose we use any of these Np scales X Mpoint
time matrices to identify the peak contributions over the record, and define the complex time indexes
as Mg max- The quantum wavelet superposition would be expressed as

8 ij [my 2 my] —————Re{Wn[my : my = my, ¢ o]} (83)

|
N|

j
Z Wn my (C max

where the dimensionality of the representation is reduced to the complex coefficients and time indexes.
Since the wavelet function can be reproduced for any time index, the time array need not be stored.
In other words, if there are 20 scales, there will be 20 real coefficients and time offsets and 20 imaginary
coefficients and time offsets, with total dimensionality of 4 X 20 = 80 parameters. If there is sufficient
SNR and the signal is band limited it is possible to further reduce dimensionality by removing any
coefficients below a specified threshold that may be fitting to noise (e.g., overfitting). Figure 9 shows
the result of reconstruction from the superposition of all the top atoms of the 20 scales, and Figure 10
shows reconstruction from a sparser set of 12 scales with the highest SNR RbR. Similar results were
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obtained using the Shannon entropy. The Gaussian noise standard deviation for these two runs was
one bit below the signal standard deviation.

1.00 r 1.00 r
—e— Equation —e— Equation
—— SciPy Hilbert —— SciPy Hilbert
0.751 —— CWT, top 20 atoms 0.75 —— CWT, top 20 atoms
0.501 0.501
0.25- 0.251 ’
0.00 0.001
—0.251 —0.251
—0.501 —0.501
—0.751 —-0.751
—-1.00 : . : —1.00 ; ! }
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
Scaled time Scaled time
(a) (b)

Figure 9. Superposition of largest SNR entropy coefficients per band using all twenty 1/3 octave

bands. (a) Real part; (b) imaginary part. The noise standard deviation is one bit below the signal’s.

Dimensionality is reduced to the number of coefficients and their corresponding time shifts.

1.00 ; 1.00 :
—e— Equation —e— Equation
—— SciPy Hilbert —— SciPy Hilbert
0.751 —— CWT, top 12 atoms 0.75 1 —— CWT, top 12 atoms
0.501 0.50 1 //\
0.251 0.251
0.001 0.00 1
—0.251 —0.251
~0.50 ~0.50 ‘
—0.751 —0.75 1
—-1.00 - - - —1.00 - - -
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
Scaled time Scaled time
(a) (b)

Figure 10. Superposition of largest coefficients per band within 4 bits of the peak SNR entropy. (a) Real
part; (b) imaginary part. Dimensionality is further reduced by applying the cutoff.

Increasing the noise standard deviation by a factor of two (one bit) still permits reconstruction
from superposition (Figure 11), and increasing by another bit also allowed atomic reconstruction
(Figure 12).
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Figure 11. (a) Real part and (b) imaginary part of the original and reconstructed waveform. Increasing
the noise amplitude so that its variance is the same as the signal variance still permitted reconstruction
from the superposition of the largest atoms per band.
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Figure 12. (a) Real part and (b) imaginary part of the original and reconstructed waveform. Increasing
the noise standard deviation is one bit above the signal standard deviation also allowed reconstruction
from the quantum wavelet superposition.

There is no end to the number of sensitivity studies that can be performed; in addition to other
SNR tests, shifting the peak blast frequency away from the nominal target frequency still returned a
stable reconstruction. Increasing the order past N > 6 only worsened the fit to the target waveform,
increasing dimensionality and computational cost while decreasing reconstruction fidelity. This is
expected from using a wavelet that does not match the target signature.
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4. Concluding Remarks

This paper proposes a transition to binary metrics for digital data and introduces a standardized,
quantized variation of the Gabor atoms with binary bases, optimal time-frequency resolution, and clear
spectral energy containment. A binary entropy-like metric for the SNR is proposed and used to extract
the peak coefficients to evaluate the performance of the superposition of Gabor atoms against the more
traditional CWT reconstruction. Although the immediate application is the analysis of time series
data collected with cyber-physical systems such as smartphones, the methods presented in this paper
should be transportable to other types of digital records and can be extended to other wavelet families.

I used a synthetic pressure pulse corresponding to the detonation of one metric ton if TNT in
Gaussian noise as an example, and did not include the blast amplitude as a key parameter in order to
concentrate on the entropy and SNR, which are both dimensionless scaled quantities. Observations
collected close to an explosion should have brief durations and a high SNR; for short pulses it is
advisable to use Gabor atoms of small order (N = 1-6). Due to cube root yield scaling, the third order
bands will provide a yield resolution—and uncertainty—of a factor of two, and one-sixth order bands
will return square root of two yield resolution. In other words, the uncertainty of yield estimates
obtained with the quantum wavelet would be inversely proportional to the cube root of the band order.
Acceptable signal reconstructions were obtained from the CWT coefficients as well as the superposition
of the peak third order Gabor atoms for the blast signature. At increasing distance from the source,
the peak frequency is expected to drop [7] and the pulse disperses over time. This opens up the
possibility for stable 6 and 12 order analyses with a corresponding improvement in yield resolution.
Future work will concentrate on such dispersed signatures as well as consider other types of CW
signatures that would be well matched to higher-order Gabor atoms.

The methods developed have the goal of providing a tunable, standardized framework for
signature feature extraction that can be used for signal classification and which should be well suited
for dictionary learning [13].
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Appendix A. Generalized Constant Q Bands

This work builds on the Infrasonic Energy, Nth Octave (Inferno) framework [1], which has been
implemented in infrasound array processing algorithms for nuclear monitoring applications [3,4]
Logarithmic constant-bandwidth, also referred to as proportional frequency or constant quality factor
(Q) bands, are traditionally defined by their scaled bandwidth
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Af fu-f 1 (A1)

foo Q

where f, is the center frequency of band number # and fy and f;, are referred to as the upper and

lower band edge frequency, respectively. Defining the center, upper, and lower band edge periods
Tn, TH, and 1y, as

1 1 1
Tw=—, TH= —, 1L, = —, A2
WS g WS S (A2)
the
EZ_TH_TL_A_f_A_w_l_ (A3)

Tn Tn B fn B Wnp B Q

In this section we generalize the constant-Q framework to the logarithmic discretization of

evaluation intervals relative to a given reference scale and base. For a given reference scale 7o,

which could be time, frequency, spatial length, wavenumber, or any other useful metric, we define a

logarithmic scale base G > 1 and center scale 7, as
n

1 _G
70

Zl=

(A4)

where 1 is the band number and N is the band order, subject to the constraints n € Z, N > 1.

The natural base for both contemporary and quantum computers is base 2, and analysis windows
with powers of two are recommended for complex computations at large scales. Many efficient
algorithms are based on binary (base two) filter banks. Selecting G = 2 yields

Dok, TH oy, L _ gk, THIL g (A5)
T0 Tn Tn T%l
1 117!
On = [zm - z—m] . (A6)

Note that center and band edge scales attached to a given band n change with the order N,
reference scale 7, and the reference base G. If the reference scale and base are standardized, all bands
are invariant. For example, the concert A pitch standard is fixed at 440 Hz and may be used to tune
other instruments anywhere and at any time.

The next step substantially simplifies the estimation of constant-Q bands with a minimal
introduction of a 2% computational error. To the author’s knowledge, this is the first time this
expression is presented (and he would be most grateful to be informed otherwise). Numerical
evaluation shows that

G-1

. On .. 1 1\ AL 2\t
lim =X = hm(Gz -G 2)(G2N -G zN) *xN—— ~ (1.02)N~N (A7)
ND®Qr | N VGin(G)

(A8)

=

Qv =NQ1 =N [

The center frequencies and band edges, and thus the quality factor, of traditional fractional octave

bands are well known and can be readily computed for all the standard bands. The primary value

of the expression for Qy is that it provides a simple, explicit estimate of the relation between the

quality factor and the band order, which in turn permits an estimate of the support window duration

for a given wavelet in terms of the band order. Numerical inspection shows that for most practical
applications and for G =2 = 101 , even those when N is non integer, we can use the expression

_fe
Qv =% s V2N (A9)
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to estimate the relationship between the band order and the quality factor.

Although the center frequency is traditionally defined as the geometric mean of the band edges,
the 1/2 power spectral points at the band edges are only symmetric around the arithmetic mean of the
center frequency. The relation between the arithmetic mean f,,; = (fr + fi)/2 and the geometric mean
fug = \fLfu of the center frequency of fractional binary bands is

fnu 1 1
— = ‘/1 — =1 — A10
fng + 8N2 + 16N? ( )

where the approximation uses the binomial expansion. The arithmetic and geometric center frequencies
are close to each other, and for fractional octave bands (N>1) get ever tighter. However, the band edge
power levels at the half band width Af,, /2 should be considered to be relative to the arithmetic mean
rather than the geometric mean. In general practice it is easier to use the arithmetic frequency as f;,
with the understanding that the fractional octave specifications are defined by geometric scaling.

As an extension of the Inferno framework [1] the nominal duration of the Gabor atom window T},
may be defined as a multiple My of the scale as

Tn(N,n) & Myt = MyToGN (A11)

where the scale multiplier My is set by the half power points of the wavelet. Traditional constant-Q
frameworks in acoustics and music applications match the 12-tone equal temperament system (N = 12)
forG=2orG = 101% ~ 2 and are consistent with the Renard series recommended in ISO3 for N =1, 3,
6,12,24.

Appendix B. The Gabor Atom

Different disciplines call the same things different names; many of the challenges in present-day
data science are often due to divergent lexicon and the diversity of applications specific to each
field. The idea of using a windowed sinusoid as a basis function for signal representation was
developed in detail in Gabor’s [2] landmark paper, where he also introduced the time-frequency
uncertainty principle. Gabor’s atoms were further developed by Grossman and Morlet [14] and
P. Goupillaud et al. [15] (amongst others), who formalized and popularized what we now know as
wavelet transforms. Mallat [13] presents a lucid overview of the complementary nature of Fourier and
wavelet representations in his Wavelet Tour of Signal Processing; the serious student would be wise to
consider it required reading.

The Gabor wavelet is a special case of a wavelet-modulated window ([13] Equations (4.60)—(4.62))
and is representative of a bandwidth-limited compressed pulse [12]. For a physical scientist, its most

intuitive form is )

1 .
Y(x) = Wexp(—;?) exp(in, x), (A12)

representing a sinusoid with scaled time x = f;t and scaled angular frequency 1, (or linear space
and wavenumber) modulated by Gaussian window with standard deviation 0. Comparison with the

¥, (x) = Wexp{—%[j—nr}exp{i[z?z " ]x} (A13)

shows that the scaled angular frequency and standard deviation are

canonical expression

2
Mn = ﬂfn/ 0=438, on= MNL (A14)
fs :
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The Fourier transform of the mother wavelet is

2
() — 21!/ L, 2| _ 21/ 1oolf
¥(n) = [4m0?] exp{—ia (1= 1] }_ [4ms2] exp{—zMN 7”—1 , (A15)
has unit second moment -
f Y ()P (x)dx =1, (A16)
and it first moment vanishes in the limit
f Y(t)dt -0 for o*nl > 1. (A17)
Another important representation of the Gabor wavelet [26,27] is
-1
Y= (4mo?) 1 ¥ (A18)
x2 .
0(3) = —— exp{ -2 Lenplinen (19
[2m02]2 20
with the advantage that its Fourier transform
A 1 2 2 1 2 f 2
§n) = expl-50%n-n) = expl-3M3) -1 | (420)
2 2N fa

has a peak amplitude of unity and yields equal-amplitude filter banks.
The Inferno framework was developed with the introduction of multiresolution array processing
in the field of infrasound. The time duration of an analysis window at a specific period is represented as

T, = My Tn . (A21)

This time window generally sets the temporal resolution of the resulting data products. In the case
of the STFT, the fixed-duration analysis window can be referred to as the window of integration. In
other words, the integration window T}, is defined as a multiple My of the pseudo period. This window
immediately constrains the lowest frequency f;;, that can be represented and the resolution of a

spectral representation,

foin = 7 (A22)

n

The upper bandwidth of the analysis window can be set by the Nyquist frequency, which is half
of the sampling frequency of the digital time series. In practice the upper bandwidth is close to one
quarter of Nyquist. Although this representation is simple and tidy, it is not particularly informative.
A more useful representation of window duration is the number of wavelet oscillations in the window,
which can be estimated from the quality factor Qy of the wave function. As presented in Appendix C,
the relation between the scale multiplier My and the quality factor can be estimated by the 1/2 power
(=3 dB, or half bit) points on the power spectrum,

Mn =2VIn2 Qn . (A23)
The wavelet admissibility condition for the for this wavelet is equivalent to the zero mean, or

M >1 (A24)
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which is essentially met by the standard bands presented in Table 1. Although traditionally the Nth

octave frequencies are represented by the geometric mean of the band edge frequencies (Appendix A),

in the evaluation of spectral power losses it is important to use the arithmetic mean for f,;, which would

be centered in the bandwidth Af, in linear frequency space. Since the ratios of the arithmetic and

geometric means are constant and set by the band order N, the geometric scaling is still preserved.
The canonical form for computational evaluation is:

2
N 11 1[x—x . x—x
Yu(x—x") = — V—é_nexp{—i[ . ] }exp{lMN . ]} (A25)
The second b-type form has a different structure
Y
Un(x) = You(x)(4m) 2 8,7 (A26)
, 1o x—xT o fn ,
Yn(x—x") = (2n)"2 8, expd —= expq i2rn-—(x —x") (A27)
2| &, fs
applying
8y = By 2%, (A28)
yields
1 ’ 12 /
Up(x—a") = (71 250) [Sn] exp{ 253[ - ] }exp{z o [ 5 ]} (A29)
which has the form )
1 1% Mn
= expy ——— rexpyi— A30
YN (1) o P{ b} P{ o u} (A30)
1 _ ’
Yn(p) = ;w(” Sny ) (A31)
with f
_ B o1 _ sT0
Sn 5 2N, n>0, 8 =My o (A32)
fno
b=2682= [MN o ] . (A33)
Note that since
f 2
S
b= 81n2( Awo) (A34)

the “bandwidth” b is inversely proportional to the actual bandwidth of the highest frequency.

Appendix C. The Q of the Quantum Wavelet

The power spectral density of the Gabor wavelet is:

1/2 — fu 2
\ifzn(f)z[4m,%]/ exp{—Mi,[f fnf ] } (A35)
\?2%”( n * Afn/z) N MZ Afn 2 _ My 2 _ 1 A36
o b | R o | S
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where Y is the fractional power loss. There exist various definitions of the quality factor of a system.
This paper defines Qn by 1/2 of the spectral power relative to the peak spectral power, where Y = 2.
Therefore, for the Gabor wavelet,

My =2VIn2 Qy . (A37)
Consider the decay of the spectrum relative with distance 6 from the peak frequency
quu’n (Af;l * 08/u/2) = exp{—[éM—Nr} = exp{—[é M]z} =2 (A38)
Fun(f) 2N
The loss in dBs and binary bits can be expressed as
dB = 10+10g19(27"") = =610 +log,y(2) ~ —352 (A39)

—52
- -

There is a loss of 3 dB, 12 dB, 27 dB, and 48 dB, and a binary power loss of 1/2, 2, 4.5, and 8 fbits,
for integer multiples of the bandedge 6 = 1, 2, 3, 4, respectively.

It is worth considering an alternate definition for the quality factor of an oscillator. Consider the
time required for the amplitude to drop to 1/e of its peak value. In the case of the Quantum wavelet
this is set by the Gaussian envelope, and this particular definition is best suited for the real part of the
wavelet which is symmetric about the origin. By applying this definition,

2 2 2
e R S | R e R R I

e V2Tu 45T (A42)
n 2 2

Since the wavelet is symmetric, this states that the portion of the wavelet contained within 27, of
the window has an amplitude above 1/e of the peak. The quality factor associated with this type of

oscillator is wnTe My
Q. = = — A4
‘ 2 \/E ( 3)

and comparison with the half power point quality factor shows

Qe = V2In2 Qn~11774 Qu (A44)

bR = %logz(Z_éz) = (A40)

and they are sufficiently close to each other to be equivalent for descriptive purposes. The time duration
of the quantum wavelet is defined by

T,=Mny 1,=2VIn2 Qnty (A45)

where Qn = Q. can be interpreted as the number of oscillations in a little less than half of the total
window T, with amplitude above 1/e of the maximum amplitude. The remaining half of the window
is useful to allow the wavelet to settle down and meet the desirable condition of a vanishing first
moment.

Practical implementations of Gabor wavelets and their variants often have to make some
compromises in the application of the wavelet duration T}, especially if the window is required to be
a power of two. Direct integration of the wavelet power over the window T, shows that it contains
99.999% of all the power. Integration over 27, will be insufficient (Appendix D). However, there exists
a third quality factor defined by

exp{—%[wﬂn ]2} = exp{-mn} (A46)
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where ot
Qu=—5— (A47)
Qn =V Q.~17724 Q. (A48)
2T, T,
= = 4/=2 ~0.79782 . A4
Te= VN T, ~> 0.7978 5 (A49)

In other words, 27,; encompasses ~80% of the window, and integration of the wavelet power over
27, returns 99.96% of the total power. Therefore 27; = 0.8T,, may be a reasonable lower bound for the
wavelet duration. This is further considered in Appendix D.

Appendix D. The Gabor Box

Gabor introduced the time-frequency uncertainty principle in his landmark paper [2]. It is not
possible to observe for all time and reach zero frequency. It is also impossible to sample infinitely fast
and reach infinite frequency. All observations require a restriction in the observation time and the
observation rate, and this places hard limits on the observable bandwidth of a process. The fundamental
discretization interval scale invokes the Gabor uncertainty principle, which states the time and period
of a signal cannot be known exactly but can be contained inside the box defined by the temporal and
frequency variance of the probability distribution of the wave function.

This section follows the generalized mathematical formalism of ([13], Section 2.3.2, Uncertainty
Principle). Asin [13] and [7] the Fourier Transform pair used in this work is

flo) = [ sttt (A50)

) = o= [ flwpeiaa, (as1)

where f(w) and f(t) may be complex, and t and w are nondimensionalized time Equation (13).
The Parseval-Plancherel identity asserts that

i = [ Iofar= o= [ Ifwfao= s-iAe (A52)

where 2 .
IfI" = ff (A53)
and the asterisk denotes complex conjugation. A related identity is routinely used in Fourier and
Wavelet analyses and the application of filter banks

[ rtog =5 [ flig @io. (A54)

The Gabor uncertainty principle constrains uncertainty to Gabor box defined by the variance in
time and frequency. Itis equivalent to the Heisenberg uncertainty principle for position and momentum
extended to time and frequency, or space and wavenumber. Let a one-dimensional signal of interest be
represented by a wave function f(t). The probability density that a signal can be localized in time at a
given time t is

2 2
t 27t|f (¢
|f( )2| = |Ji( )| (A55)
£ 117
and the probability density that its angular frequency is w is
A2 roN 2
w w
fo)f  fw) 56)

AR 2#llAR
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The variance in the time localization of the signal as
2 1 0 2 2
% = e (t—u) |f(1)] dt. (A57)

and the variance in the frequency localization of the signal as

2 _ 1 S 27 24
% = IR f_ Oo(w & |f(w)| do. (A58)

Reference [13] uses these expressions to rederive the Heisenberg-Gabor uncertainty principle,
which states that the temporal and angular frequency variance satisfy:

1
0202, > 1 (A59)
In the special case of the Gabor-Morlet wavelet and its Quantum spawn, where the wave function
is symmetric and centered around the time-shift # and the spectrum is symmetric relative to the peak
frequency wy, the variance for the time and frequency distribution of the signal wave function can be
readily evaluated.

1 0 2 1
02 = t—u)? t—u)| dt = =82 A60
T Lo( V lon(t-wl'dt = 34 (A60)
o2, = — f " (- on)? [Ps(@w - wn)[do = le2 (A61)
I|¢H“2 —00 2

and the Gabor box defined by the variance is minimal,
2 2 1

070, = 7 (A62)

which is another reason for this wavelet’s popularity. Equations (A60) and (A61) are converted to

physical time in Equation (22) of the main text.
Consider the standard deviation for time integrated over the scaled window €T},

€Ty

1 2 2 1 [MNP (", e
a?(e) = T j];_fgn (t—u)? |1/)H(t—u)| dt = ﬁ[ wnN] ﬁﬂxze dx (A63)

fa 2o dx = ?[erf(a) - ia e_”Z] . (A64)

3
Fore > 50

o2 (e) = %5% erf(emn) . (A65)

For e = [1.0, 0.8, 0.45]
1
oHe) = 542 (09999, 09996, 0.9544], (A66)

where € corresponds to integration over T,,, 2t = 0.8T,, and 2t. = 0.45T}, corresponding to the full
window, the decay time associated with Q;, and the e-folding time associated with Q,, respectively
(Appendix C).

Next, consider the standard deviation for time integrated over the scaled window €T},

8o - Vin2
1 f“n* 2 214 2 1 [MnT2 [® 2
2 2 —x
oo, (6) = —— w—w H(w—wy)| dw == —[ ] x“e ™t dx  (A67)
n(8) PR Jo, -2 (@=n)” [ulo - o) valon ! Jsvim
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)% 352 enf(5 VInD) - Z-(6v02) 2. (A69)

For 6 = [1,2,3,4]
1
o2 (8) = E/.-s,;2[0.291z, 0.8640, 0.9941, 0.9999] (A69)

where 6 corresponds to integration over Aw,, 2Awy, 3Awy,, and 4Aw,, respectively. These results
show that the Gabor box can be well approximated (>99% of the variance) by a window of duration
27 = 0.8T, and a bandwidth of 3Aw,;, and over 99.99% of the variance is contained by a Gabor box of
dimensions T);, 4Awy,. In other words, third octave bands will contain over 99% of the variance within
its octave and within 80% of the full window T,,.

Appendix E. The Gabor Family

A few variations of the Gabor-Morlet wavelet are available in present-day computing environments.
One of the more familiar forms of the mother wavelet used in modern computations [26,27] is

2 —
Y(u) = \/i—b exp{—%}exp{ihfb ) (A70)
Wy n(t) = Slw(“s_—”) (A71)

This form is found in the Matlab “cmor” function as well as the Python Pywavelets [28] “cmorB-C”
function with C = f,. The term b is referred to as the “bandwidth parameter” of the wavelet. The
Quantum wavelet has the equivalence

sp= 2N, n>0, (A72)
1
Tn = ToSp = JTOSH (A73)
2
b= Z[MN J;S;O] (A74)
7 _fo_ 1
C=Fi=%="- (A75)

where fy, the highest center frequency, is used as the starting point. The scaled wavelet duration is

MN% and can be rounded to approximate the number of points for each scale.
Foster [29] expresses the abbreviated Morlet wavelet as

i e? , 1
F(z) =% = exp{zcunt - Mw,%tz} (A76)
N
so that z = wyt and now ¢ = =L is inversely proportional to the Q of the wave function. The beauty of

2M3,
Foster’s approach is that it can be used for unevenly sampled data. A modernization of this algorithms
can be found at [30].

Appendix F. The Analytic Function of a Blast Pulse

The reconstruction coefficients of the complex Morlet CWT return the imaginary part of the
analytic signal. The complex analytic signal corresponding to the real signal g(%) is

8c(t) = g(1) +j Hlg(?)] (A77)
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where H denotes the Hilbert transform, a recurrent topic in wave propagation as reflection introduces
phase shifts that are often modeled as Hilbert transforms of the original signal [31]. For example, some
of the U-shaped infrasound waveforms associated with thermospheric returns resemble the Hilbert
transform of an explosion pulse [3]. The Hilbert transform is also useful for estimating instantaneous
frequency and in the computation of the Hilbert-Huang transform [32].

Let g(7) represent the Granstrom Triangular (GT) pulse [7],

g(t)=(01-1), 0<t<1 (A78)
1 2
g(t)=z(1-)(1+ Vo-2), 1<t<1+ V6. (A79)
The Hilbert transform of the canonical GT blast pulse is rather unwieldy, but can be evaluated from
a(?) = Hg(2)] = PL f t_ (AS0)

where the # in front of the integral denotes the Chaucy principal value. Multiple integration by parts
over the interval of the GT pulse yields

1

e (?) = ;[1 +(1-2)In(-1)-(1-2)In(1-7)], 0<t<1 (A81)
ga4( [ 2a+5) -1+ 6t2-3¢(1+3a)]
[% (- TZ]IM #)—In(1-%)], 1<t<a=1+ 6. (A82)
Since
lim x In(x) =0, lim x* In(x) =0 (A83)

x—0 x—0

the solutions are well behaved near the zero crossings. However, there are some issues in this solution.
First, there are the two troublesome implicitly complex terms. The first is

In(-%) =In(%) + jn, 0<7<1 (A84)
where In(%) tends to negative infinity at # = 0. The second tricky term is
m(1-1)=In(t-1)+jn, 1<t<1+ V6. (A85)

The complex terms are awkward; fortunately, multiplication and division by zero can be readily
avoided numerically by adding the smallest floating point value (float epsilon) to arguments in
logarithmic computations so it is possible to evaluate the real part of the solution. Another inconvenience
is the discontinuity in g¢; and its slope as © — 1. Rewriting the first term as

2pt(R)rag = %[1 +(1=2)In(2) = (1= D)in(1-2)] + j(1=7), 2 — 1 from below (A86)

(Tt —>1) = % . (A87)

Evaluating the second term yields

eu(t=1)= lﬁ = 1[1 - %], T — 1 from above. (A88)

T+3 ™

These deficiencies are suboptimal, and not altogether surprising given that the waveform did not
design integrability into the GT pulse [7]. Fortunately, these inadequacies are deemed computationally
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irrelevant by using the numerical convolution provided by the SciPy [25] signal.hilbert, which returns
the analytic function for a real input waveform. The comparison between the synthetic theoretical
analytic signals, the CWT reconstruction, and the numerical Hilbert transform are presented in the
figures in the main text.
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