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Abstract: We consider a communication system whereby T-seconds time-limited codewords are
transmitted over a W-Hz band-limited additive white Gaussian noise channel. In the asymptotic
regime as WT → ∞, it is known that the maximal achievable rates with such a scheme converge to
Shannon’s capacity with the presence of 2WT degrees of freedom. In this work we study the degrees
of freedom and the achievable information rates for finite values of WT. We use prolate spheroidal
wave functions to obtain an information lossless equivalent discrete formulation and then we apply
Polyanskiy’s results on coding in the finite block-length regime. We derive upper and lower bounds
on the achievable rates and the corresponding degrees of freedom and we numerically evaluate them
for sample values of 2WT. The bounds are asymptotically tight and numerical computations show
the gap between them decreases as 2WT increases. Additionally, the possible decrease from 2WT in
the available degrees of freedom is upper-bounded by a logarithmic function of 2WT.

Keywords: information rates; degrees of freedom; band-limited; time-limited; prolate spheroidal
wave functions

1. Introduction

Wireless communication technologies that use radio waves impose tight requirements on the
used spectrum as adjacent radio bands may be used by other users or technologies. A specific transmit
spectral mask is usually required, a mask that allows the communication system to transmit data
within a specific radio band while guaranteeing an acceptable level of interference on the other users
or technologies. It is therefore reasonable to consider that in a wireless communication system the
transmitter confines its transmitted data within its radio band, and the receiver looks for the transmitted
data in this band. The allocated band, the corresponding channel statistics and the available transmit
power determine the maximal reliable possible data rate. In his pioneering work, Shannon [1] derived
the capacity of band-limited real additive white Gaussian noise (AWGN) channels, which for the
complex channel is

CShannon = 2W log2

[
1 +

P
2N0W

]
bits per seconds, (1)

where W is the bandwidth of the baseband channel, P is the average transmit power and N0 is the
spectrum of the additive circularly symmetric complex white Gaussian noise. Shannon derived
first the channel capacity for the discrete time channel as the block length of the codewords grows
towards infinity. He then used the sampling theorem which provides a one-to-one relation between
the continuous time and discrete time signals: For W-Hz band-limited signals when sampled at a rate
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of 2W samples per second, the operation is invertible and information lossless making use of the “sinc”
function defined in this manuscript as

sinc(2Wt) def
=

sin (2πWt)
2πWt

.

While the derived results are mathematically rigorous, some of the made assumptions do not
hold in practical settings.

First: the conversion from discrete time to continuous time and vice versa is not practical since
the “sinc” function needs an infinite time support. Moreover, the use of any band-limited function
with non-zero finite energy is not possible in practice. In the literature, Wyner [2,3] and Gallager [4]
tackled this issue and considered the use of T-seconds time-limited codewords. However, they derived
asymptotic results as T → ∞ and reached the same formula (1) derived by Shannon.

In [2], Wyner considered four different physical models and derived the asymptotic channel
capacity for each model. Wyner stated that the first two models suffer from some physical difficulties;
the assumed noise in the first model results in an infinite noise power at the receiver, and the use
of strictly band-limited signals in the second model is not practical and may produce interference
between consecutive codewords. On the other hand, he proved that using a noise model with finite
power results in infinite capacity. Wyner made some assumptions to avoid these issues in [3] and in the
third and fourth models in [2]. He derived the channel capacity of the different models by relating the
continuous time to discrete time models as Shannon did in [1], but by using the prolate spheroidal wave
functions (PSWFs) and their property that as 2WT → ∞, the first 2WT PSWFs form asymptotically a
complete orthonormal (CON) set for the time-limited and approximately band-limited signals.

Gallager [4] Section 8.5 considered transmitting time-limited signals over an additive real Gaussian
noise channel with impulse response h(t). He used an arbitrary power spectral density (PSD) for the
noise SN( f ) and arbitrary filter h(t). As T → ∞, he derived the channel capacity to be

C = max
p( f )

∫ ∞

−∞

1
2

log2

[
1 +

p( f ) |H( f )|2
SN( f )

]
d f ,

where H( f ) is the Fourier transform of the filter h(t) and p( f ) is the transmit spectrum at frequency f
subject to ∫ ∞

−∞
p( f ) d f ≤ P.

In [4] Section 8.3 he considered the special case where H( f ) is the ideal low pass filter and the
noise is white and found the capacity to be the same as the one derived by Shannon, while avoiding
the issues of infinite noise power and infinite capacity. In that special case (where H( f ) is the ideal low
pass filter) the transformation between continuous time and discrete time was also done through the
use of the PSWFs [4] Sections 8.4 and 8.5. Finally, Gallager provided an intuitive argument regarding
inter-codeword interference [4] Section 8.5; one can introduce a large guard time, say T1−ε for some
ε > 0. Asymptotically, inter-codeword interference is avoided without affecting the data rates since
T1−ε/T → 0 as T → ∞.

A related question is that of determining the degrees of freedom when using T-seconds
time-limited codewords over a W-Hz band-limited channel. The space of finite-energy functions
that are band-limited and time-limited contains only the zero function. It is nevertheless commonly
accepted in the literature that the dimension of the W-T space is approximately 2WT. This argument is
supported by results in [5–9] that were also derived in the asymptotic regime as WT → ∞, something
that we intend to relax hereafter.

Recently, in [10,11], we studied the use of T-seconds time-limited pulses over W-Hz real
band-limited Gaussian channels, and derived the channel capacity by allowing the time duration of
the codewords to grow towards infinity. In [10], we considered a pulse amplitude modulation (PAM)
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system and we studied optimal signaling; we showed that one can approach Shannon’s capacity
by signaling at faster than the Nyquist rate. In [11], we considered a combined PAM-orthogonal
multi-pulse modulation scheme (PAM-OMM) and derived the achievable rates and evaluated them
numerically. We showed that these rates can be made arbitrarily close to the Shannon’s capacity by
using a finite number of parallel filters. We also established that there are 2WT degrees of freedom
when using such system.

Second: the second questionable assumption in practical settings is the use of infinite block-length
codewords which is not feasible. In [12], Polyanskiy derived an approximation for the maximal data
rates when given a target probability of error in the finite block-length regime, where only discrete
time channels are considered.

In this work, we consider transmitting continuous time and finite duration codewords over a
band-limited Gaussian channel. We use the ideal low pass filter as a model for the channel to force the
transmitter to confine its transmitted information and energy in the allocated band and also model
good receiver designs: Given any practical low pass filter, one can implement a sharper low pass filter
that is closer to the ideal one. In such a model, there are no issues when it comes to infinite noise power
and/or infinite capacity, however inter-codeword interference is inevitable.

Our main goal is to investigate the degrees of freedom and the achievable pairs of data rates and
probability of error. We use a similar approach to [2–4] (using the PSWFs) to transform the problem
from continuous time to discrete time and vice versa, and then we apply the adapted results by
Polyanskiy for parallel discrete time AWGN channels.

Recently, in [13], we investigated the ‘dual’ problem where we derived an upper bound and a
lower bound on the rates of source coding a T-seconds finite duration piece from a W-Hz band-limited
real white Gaussian process.

The paper is organized as follows: in Section 2, we provide a brief overview of the PSWFs,
some relevant properties in addition to some numerical computations. In Section 3, we present our
system model and formulate the problem. We derive upper and lower bounds for the data rates
and the corresponding degrees of freedom in Section 4. In Section 5, we present the results of our
numerical computations. In Section 6, we present some possible enhancements on the bounds, and we
summarize the results and conclude in Section 7.

2. Preliminaries: The Prolate Spheroidal Wave Functions

In [14], Slepian and Pollak showed that the PSWFs possess properties that make them useful in
the Fourier analysis of band-limited functions and time-limited functions. For any c = πWT > 0,
they defined the PSWFs as an infinitely countable set of real functions

{
ϕc,l(t)

}
l∈N, normalized

solutions of the integral equation where for every l ∈ N,

λc,l ϕc,l(t) =

∫ T
2

−T
2

sin 2πW(t− s)
π(t− s)

ϕc,l(s) ds, t ∈ R.

The PSWFs form a CON set for band-limited functions [14] with
∫ ∞

−∞
ϕc,l(t)ϕc,m(t) dt = δlm, ∀ l, m ∈ N×N,

where δlm is the Kronecker delta. Additionally, these functions are orthogonal over the time window T:

∫ T
2

− T
2

ϕc,l(t)ϕc,m(t) dt = λc,l δlm, ∀ l, m ∈ N×N,

where
{

λc,l
}

l∈N are the eigenvalues that are all in the range 0 < λc,l < 1 and decreasing in l [14].
The eigenvalue λc,l may be hence viewed as the energy concentration of ϕc,l(t) in the time interval
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[
− T

2 , T
2

]
and ϕc,0(t) has the highest energy concentration. Additionally, the PSWFs are real continuous

functions that are even when l is even and odd when l is odd.
In his book [4] Section 8.4, Gallager proved that the PSWFs are the desirable functions when

sending time-limited signals over a band-limited channel. He made use of one important property
of the PSWFs, namely the Fourier transform Φc,l( f ) of the PSWF ϕc,l(t) is a scaled version of a
time-limited PSWF:

Φc,l( f ) =

{
jl
√

T
2Wλc,l

ϕc,l

(
T

2W f
)

for f ∈ [−W, W]

0 otherwise
= jl

√
T

2Wλc,l
ϕc,l

(
T

2W
f
)

rect
(

f
2W

)
(2)

where j def
=
√
−1.

In this paper we define c def
= 2WT as index for the PSWFs, which is different from the one used by

Slepian and Pollak. More specifically ϕ1,l(t) here is the same as ϕ π
2 ,l(t) in [14]. We also denote here by

“Dϕc,l(t)” the T-seconds time-limited version of a PSWF. More specifically,

Dϕc,l(t)
def
= ϕc,l(t) rect

(
t
T

)
, (3)

and since λc,l is its energy, the normalized time-limited PSWF is Dϕc,l(t)√
λc,l

. We denote by ΦD
c,l( f ) the

Fourier transform of Dϕc,l(t)√
λc,l

which is equal to

ΦD
c,l( f ) = jl

√
T

2W
ϕc,l

(
T

2W
f
)

, f ∈ R. (4)

Based on (2)–(4), when Dϕc,l(t)√
λc,l

is passed through an ideal low pass filter with transfer function

rect
(

f
2W

)
, the output is

√
λc,l ϕc,l(t):

Dϕc,l(t)√
λc,l

∗ 2Wsinc (2Wt) =
√

λc,l ϕc,l(t). (5)

We have used a debugged version of the software package by Adelman et al. [15] to compute the
eigenvalues of the PSWFs. While it is known [4] Section 8.4 that for any ε > 0

lim
c→∞

λc,(1+ε)c = 0 & lim
c→∞

λc,(1−ε)c = 1,

Figure 1 shows the eigenvalues λc,l of the PSWFs for c = 100 and 84 ≤ l ≤ 116. Note that

λ100,l < 10−5 for l > 107, & λ100,l > 1− 10−5 for l < 92.

This transition region between the “extreme” eigenvalues (very close to 1 or 0) is known to have a
length proportional to the logarithm of c [4] Section 8.4. For example, for c = 2000, λ2000,l is between
10−5 and 1− 10−5 only in the range 1988 < l < 2011.

In this manuscript, shifted (in time and frequency) PSWFs will come in handy. Denote by
αk,h c,l,m the inner product between the lth normalized time-limited PSWF already shifted in time
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and frequency by k T-seconds and h 2W-Hz, respectively, and the band-limited version of the mth

normalized time-limited PSWF. By Equation (5) and using Parseval,

αk,h c,l,m
def
=

〈
Dϕc,l(t− kT)√

λc,l
ej2πh2W(t−k T),

√
λc,m ϕc,m(t)

〉

=

〈
ΦD

c,l( f − h2W)e−j2πkT f , ΦD
c,m( f )rect

(
f

2W

)〉
=

〈
ΦD

c,l( f − h2W)e−j2πkT f rect
(

f
2W

)
, ΦD

c,m( f )
〉

, (6)

which can be interpreted as the inner product between the bandlimited shifted normalized lth PSWF
and the mth normalized time-limited PSWF. In Appendix A, we study the magnitude of αk,h c,l,m and
derive various bounds that are used throughout this document.

85 90 95 100 105 110 115

i

10
-10

10
-5

10
0

100,i

1-
100,i

Figure 1. Eigenvalues of prolate spheroidal wave functions (PSWFs) for c = 100 and 84 ≤ l ≤ 116.

3. System Model and Problem Formulation

We consider a system model where a T-seconds time-limited codeword is transmitted over a
linear Gaussian channel with transfer function H( f )—assumed to be an ideal W-Hz low-pass filter,
and an additive complex Gaussian noise N(t), assumed to be a stationary W-Hz band-limited “white”
process with mean zero and PSD SN( f ) = No for f ∈ [−W, W]. With a system in mind whereby other
codewords may be transmitted—possibly by other users—consecutively and/or in neighboring bands,
we denote by C0,0(t) the codeword carrying the data packet of interest, and by {Ck,h(t)}(k,h)∈Z2\{(0,0)}
those carrying other data packets, possibly transmitted by other devices and interfering with the
message of interest as illustrated in Figure 2. Our model is based on the reasonable assumption that all
codewords follow the same modulation techniques, since every frequency band is usually allocated to
a unique technology which abides by specific standards, and the neighboring bands are more likely to
be used by the same technology.

In what follows, we consider various scenarios where some or all of those interfering codewords
are present and we denote by I ⊂ Z2 \ {(0, 0)} the set of other present codewords. The overall signal
going through the channel can hence be written as the sum of the codeword of interest and the other
interfering codewords:

x(t) = C0,0(t) + ∑
(k,h)∈I

Ck,h(t),

where Ck,h(t) is non-zero only over t ∈ [−T/2+ kT, T/2+ kT]. On the receiver side, the data packet of
interest is to be recovered from y(t), t ∈ [−T/2, T/2], a T-seconds time-limited version of the output
of the channel r(t).



Entropy 2020, 22, 924 6 of 21

+

C0,0(t)

C−1,−1(t)

C−1,1(t)

C1,−1(t)

C1,1(t)

C0,−1(t)

C0,1(t)

C−1,0(t) C1,0(t)

T/2−T/2

−W

W

3T/2−3T/2

3W

−3W

H(f)

x(t) z(t)

N(t)

T
2

−T
2

y(t)r(t)
rect

(
f
2W

)

Figure 2. Continuous time system model.

We assume that, whenever present, a transmitted codeword satisfies the power constraint,

1
T

∫ T
2

− T
2

∣∣Ck,h(t + kT)
∣∣2 dt ≤ P. (7)

As Gallager proved that the PSWFs are the desirable CON set when sending a time-limited
codeword over a band-limited channel [4] Section 8.4, we use the normalized time-limited PSWF as
orthogonal pulses to send the data symbols. Hence the codewords can be written as

Ck,h(t) =
∞

∑
l=0

ak,h,l
Dϕc,l(t− kT)√

λc,l
ej2πh 2W(t−k T) –non-zero only on t ∈

[
−T

2
+ kT,

T
2
+ kT

]
,

where c = 2WT. Representing the continuous time signal Ck,h(t) by the symbols {ak,h,l} is known as
“signal space representation” in the context of digital communications. The {ak,h,l}’s are chosen from a
given complex signal constellation and by Plancherel and (7) they satisfy

1
T

∞

∑
l=0

∣∣ak,h,l
∣∣2 =

1
T

∫ T
2

− T
2

∣∣Ck,h(t + kT)
∣∣2 dt ≤ P. (8)

When it comes to the noise, N(t) is band-limited and can be hence decomposed as

N(t) =
∞

∑
l=0

nl ϕc,l(t),

where {nl}l∈Z are independent zero-mean complex circular Gaussian random variables with
variance N0.

At the receiver, sufficient statistics are clearly obtained by projecting y(t) on the set of normalized
time-limited PSWF to extract the data symbols. It is worth noting that since r(t) is band-limited and
has finite energy, it is necessarily analytic and it is therefore sufficient to know r(t) over any open
interval to determine it fully. As a consequence, from an information-theoretic perspective, whether
r(t) as whole is available or only y(t), the information rates are identical.

The problem at hand is to maximize the information rates given a maximal probability of error.
This is naturally related to the available degrees of freedom when sending time-limited codewords
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over a band-limited channel, which is the maximal number of independent data symbols that can be
transmitted to the receiver.

In the following section, we consider various scenarios and derive upper and lower bounds for
the data rates and the degrees of freedom.

4. Bounds on the Data Rates

4.1. An Upper Bound

To derive an upper bound, we consider the case where only C0,0(t) is transmitted over the channel.
By ignoring the other transmitted codewords we ignore the effect of inter-codeword interference,
and we obtain upper bounds on the rates and the degrees of freedom since interference can only be
harmful. In this scenario, the input to the channel can be written as

x(t) =
∞

∑
m=0

a0,0,m
Dϕc,m(t)√

λc,m
,

and the received signal r(t) is band-limited and can be written as

r(t) =
∞

∑
m=0

a0,0,m
√

λc,m ϕc,m(t) + N(t) =
∞

∑
m=0

[
a0,0,m

√
λc,m + nm

]
ϕc,m(t)

⇒ y(t) = r(t) rect
(

t
T

)
=

∞

∑
m=0

[
a0,0,m

√
λc,m + nm

]
Dϕc,m(t) =

∞

∑
m=0

ym Dϕc,m(t),

where ym =
√

λc,m a0,0,m + nm. From an information theoretic perspective, the considered system
model is equivalent to the discrete time system model in Figure 3 where r′m = ym/

√
λc,m = a0,0,m +

nm/
√

λc,m.

+

+

a0,0,0

a0,0,m r′m

r′0

n0/
√
λc,0

nm/
√
λc,m

Figure 3. Equivalent discrete time system model.

The noise components {nm/
√

λc,m} are independent, zero-mean complex circular Gaussian
random variables and each complex channel is equivalent to two usages of independent real
(real and imaginary) channels with additive Gaussian noise with variance N0/2λc,m per dimension.
If E

[
|a0,0,m|2

]
= 2PmT (where PmT is the second moment per dimension), the power constraint in (8)

can be written as 2
∞

∑
m=0

Pm ≤ P and the signal to noise ratio per dimension for r′m is
2λc,mPmT

N0
.

One can notice that it is possible to send infinitely many independent symbols in such a system.
However, only a finite number of them, say L, is useful because the energy per symbol is finite and the
noise energy of the mth channel is increasing towards infinity as m increases to infinity (λc,m tends to 0
as m tends to ∞ as shown in Section 2). Note that L depends on c = 2WT since there are approximately
c eigenvalues λc,m that are close to 1, and naturally L grows to infinity with c.

Polyanskiy [12] derived upper and lower bounds and an approximation for the achievable rates
at a given probability of error in the finite block-length regime. In [16], he studied the parallel Gaussian
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channel set-up where N memoryless parallel channels of different noise power are used each n times.
Following the methodology in [12] and applying the Berry–Esseen inequality [12] Lemma 14 over
n× N real independent variables shows that the maximal number of bits that can be transmitted is

n
2

N−1

∑
m=0

log2

[
1 +

2λc,mPmT
N0

]
−

√√√√n
N−1

∑
m=0

V1

[
2λc,mPmT

N0

]
Q−1(ε) + O(log2(nL)) bits, (9)

where

• ε ∈ (0, 1) is the probability of error,
• V1[θ] =

θ
2

θ+2
(θ+1)2 log2

2 e,

• {Pm} is the water-filling solution such that Pm =
[
µ− N0

2λc,mT

]+
and n

N−1

∑
m=0

Pm = P,

• and L is the number of non-zero {Pm}’s, which is less or equal N.

In Polyanskiy’s work [16] N is constant and n grows towards infinity and hence [16] Theorem 4
shows an O(log2 n) term instead of the O(log2 nL) term here in (9). In our setup, each channel m in
Figure 3 has a different noise power, but each has two dimensions with the same noise power. In our
scenario therefore n = 2, L is of the order of (and grows with) c and the term O(log2 nL) becomes
O(log2 L) as n is constant and equal to 2. These derivations yield the following lemma:

Lemma 1. An upper bound on the data rates is given by,

RUB(ε, P, c) =
1
T

∞

∑
m=0

log2

[
1 +

2λc,mPmT
N0

]
− 1

T

√
2

∞

∑
m=0

V1

[
2λc,mPmT

N0

]
Q−1(ε) +

1
T

O(log2(L)) b/s.

=
1
T

L−1

∑
m=0

log2

[
1 +

2λc,mPmT
N0

]
− 1

T

√√√√2
L−1

∑
m=0

V1

[
2λc,mPmT

N0

]
Q−1(ε) +

1
T

O(log2(L)) b/s. (10)

where

• ε ∈ (0, 1) is the probability of error,
• V1[θ] =

θ
2

θ+2
(θ+1)2 log2

2 e,

• {Pm} is the water-filling solution such that Pm =
[
µ− N0

2λc,mT

]+
and 2

∞

∑
m=0

Pm = 2
L−1

∑
m=0

Pm = P,

• and L is the number of non-zero {Pm}s.

4.2. Lower Bounds

In what follows, we derive a lower bound on the rates by jointly:

• Finding an upper bound on the interference.
• Using only the first N PSWFs to transmit data.

Subsequently, we optimize over the value of N to obtain tighter bounds as well as lower bounds
on the degrees of freedom.

We study below three scenarios for the interference and derive a lower bound for these scenarios.

4.2.1. Consecutive Single Band Codewords (CSB)

We consider first the case where a single band is used and only the codewords {Ck,0(t)}k∈Z are

transmitted over the channel, i.e., I = {(k, 0), k ∈ Z∗ def
= Z \ {0}} as shown in Figure 4.
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C0,0(t)C−1,0(t) C1,0(t)

T/2−T/2

−W

W

3T/2−3T/2

3W

−3W

Figure 4. Single band interference.

In the case where only the first N PSWFs are used,

x(t) = C(0,0)(t) + ∑
k∈Z∗

Ck,0(t) =
N−1

∑
l=0

a0,0,l
Dϕc,l(t)√

λc,l
+ ∑

k∈Z∗

N−1

∑
l=0

ak,0,l
Dϕc,l(t− kT)√

λc,l
,

and the received signal is the sum of an information bearing signal, an interfering signal and additive
channel noise,

r(t) =

[
N−1

∑
l=0

a0,0,l

√
λc,l ϕc,l(t)

]
+

[
∑

k∈Z∗

N−1

∑
l=0

ak,0,l

√
λc,l ϕc,l(t− kT)

]
+ N(t).

Projecting r(t) on the mth normalized time-limited PSWF—which can be done using an
appropriate matched filter—results in

ym = λc,m a0,0,m + wm,

where the interference plus noise term wm is

wm = ∑
k∈Z∗

N−1

∑
l=0

αk,0 c,l,m ak,0,l +
√

λc,m nm,

where αk,h c,l,m is defined in Equation (6). Next, we upper bound its second moment,

E
[
|wm|2

]
= E



∣∣∣∣∣ ∑
k∈Z∗

N−1

∑
l=0

αk,0 c,l,mak,0,l

∣∣∣∣∣

2

+ λc,mN0 = ∑

k∈Z∗
E



∣∣∣∣∣

N−1

∑
l=0

αk,0 c,l,mak,0,l

∣∣∣∣∣

2

+ λc,mN0.

Since the {ak,0,l}N−1
l=0 are not necessarily uncorrelated for a fixed k, we use the upper bound

∣∣∣∣∣
N

∑
l=1

cl

∣∣∣∣∣

2

≤ N
N

∑
l=1
|cl |2 , (11)

and the fact that E
[∣∣ak,0,l

∣∣2
]
= 2PlT to upper bound the second moment

E
[
|wm|2

]
≤ ∑

k∈Z∗
N

N−1

∑
l=0

∣∣∣ αk,0 c,l,m

∣∣∣
2
E
[∣∣ak,0,l

∣∣2
]
+ λc,mN0 = N

N−1

∑
l=0

2PlT ∑
k∈Z∗

∣∣∣ αk,0 c,l,m

∣∣∣
2
+ λc,mN0.

Using the bound (A11) derived in Appendix A

∑
k∈Z∗

∣∣∣ αk,0 c,l,m

∣∣∣
2
≤ λc,l(1− λc,l) =⇒ E

[
|wm|2

]
≤ N

N−1

∑
l=0

2PlT λc,l(1− λc,l) + λc,mN0.
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Using the alternative bound (A7) and the fact that
N−1

∑
l=0

2PlT ≤ PT,

∑
k∈Z∗

∣∣∣ αk,0 c,l,m

∣∣∣
2
≤ λc,m(1− λc,m) =⇒ E

[
|wm|2

]
≤ λc,m [N(1− λc,m)PT + N0] .

Therefore the second moment of the interference term is upper-bounded by

ICSB[m]
def
= min

(
N

N−1

∑
l=0

2PlT λc,l(1− λc,l) , λc,mN(1− λc,m)PT

)
, (12)

and the signal to noise and interference ratio per dimension in ym is lower-bounded by

SCSB[m]
def
=

λ2
c,m2PmT

ICSB[m] + λc,mN0
.

These derivations yield the following lemma:

Lemma 2. A lower bound on the data rates is given by

RCSB(ε, P, c) = max
N,{Pm}m

1
T




N−1

∑
m=0

log2[1 + SCSB[m]]−

√√√√2
N−1

∑
m=0

V1[SCSB[m]]Q−1(ε) + O(log2(L))


 , (13)

where L is the number of non-zero {Pm}s.

4.2.2. Single Time-Slot Multi-Band Codewords (STMB)

In this scenario multiple bands in a single time-slot are used and only the codewords {C0,h(t)}h∈Z
are transmitted over the channel, i.e., I = {(0, h), h ∈ Z∗} as shown in Figure 5 below.

C0,0(t)

C0,−1(t)

C0,1(t)

T/2−T/2

−W

W

3T/2−3T/2

3W

−3W

Figure 5. Single time-slot interference.

As above, the output of the mth matched filter is

ym = λc,m a0,0,m + wm,

where the interference plus noise term is now

wm = ∑
h∈Z∗

N−1

∑
l=0

α0,h c,l,m a0,h,l +
√

λc,m nm.
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Using the bound (A12), one can upper bound the second moment of wm,

∑
h∈Z∗

∣∣∣ α0,h c,l,m

∣∣∣
2
≤ λ2

c,m(1− λc,m)

λc,l
=⇒ E

[
|wm|2

]
= E



∣∣∣∣∣ ∑
h∈Z∗

N−1

∑
l=0

α0,h c,l,ma0,h,l

∣∣∣∣∣

2

+ λc,mN0

≤ λ2
c,m(1− λc,m)N

N−1

∑
l=0

2PlT
λc,l

+ λc,mN0.

Alternatively, using the bound (A8)

∑
h∈Z∗

∣∣∣ α0,h c,l,m

∣∣∣
2
≤ λc,m(1− λc,l) =⇒ E

[
|wm|2

]
= E



∣∣∣∣∣ ∑
h∈Z∗

N−1

∑
l=0

α0,h c,l,ma0,h,l

∣∣∣∣∣

2

+ λc,mN0

≤ λc,mN
N−1

∑
l=0

(1− λc,l)2PlT + λc,mN0.

Therefore the second moment of the interference term is upper-bounded by

ISTMB[m]
def
= min

(
λ2

c,m(1− λc,m)N
N−1

∑
l=0

2PlT
λc,l

, λc,mN
N−1

∑
l=0

(1− λc,l)2PlT

)
. (14)

These derivations yield the following lemma:

Lemma 3. The corresponding lower bound on the data rates is given by

RSTMB(ε, P, c) = max
N,{Pm}m

1
T




N−1

∑
m=0

log2[1 + SSTMB[m]]−

√√√√2
N−1

∑
m=0

V1[SSTMB[m]]Q−1(ε) + O(log2(L))


 , (15)

where L is the number of non-zero {Pm}’s and

SSTMB[m] =
λ2

c,m2PmT
ISTMB[m] + λc,mN0

.

4.2.3. Consecutive Multi-Band Codewords (CMB)

We consider now the case where all the codewords {Ck,h}(k,h)∈Z2 are transmitted over the channel.
The analysis follows as above and the interference plus noise term wm is

wm = ∑
(k,h)∈Z2\(0,0)

N−1

∑
l=0

αk,h c,l,m ak,h,l +
√

λc,m nm

=

[
∑

k∈Z∗

N−1

∑
l=0

αk,0 c,l,m ak,0,l

]
+

[
∑

h∈Z∗

N−1

∑
l=0

α0,h c,l,m a0,h,l

]
+


 ∑
(k,h)∈Z∗×Z∗

N−1

∑
l=0

αk,h c,l,m ak,h,l


+

√
λc,m nm.

Upper bounds on the second moments of the first two interference terms have been derived in
Sections 4.2.1 and 4.2.2, respectively, and it remains to derive one for the third term. By Equation (11),

E



∣∣∣∣∣ ∑
k∈Z∗

∑
h∈Z∗

N−1

∑
l=0

αk,h c,l,m ak,h,l

∣∣∣∣∣

2

 ≤ N

N−1

∑
l=0

E



∣∣∣∣∣ ∑
h∈Z∗

∑
k∈Z∗

ak,h,l αk,h c,l,m

∣∣∣∣∣

2



= N
N−1

∑
l=0

∑
h∈Z∗

∑
k∈Z∗

E
[∣∣ak,h,l

∣∣2
] ∣∣∣ αk,h c,l,m

∣∣∣
2
≤ N

N−1

∑
l=0

2PlT ∑
k∈Z∗

∑
h∈Z∗

∣∣∣ αk,h c,l,m

∣∣∣
2

.
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Using bound (A13) and Equations (12) and (14),

E
[
|wm|2

]
≤ ICSB[m] + ISTMB[m] + N

N−1

∑
l=0

(1− λc,l)2PlT + λc,mN0

Alternatively, using bound (A14),

E
[
|wm|2

]
≤ ICSB[m] + ISTMB[m] + N

N−1

∑
l=0

λc,m

λc,l
(1− λc,m)2PlT + λc,mN0,

Therefore, the second moment on the interference terms is upper-bounded by

ICMB[m]
def
= ICSB[m] + ISTMB[m] + min

(
N

N−1

∑
l=0

(1− λc,l)2PlT , N
N−1

∑
l=0

λc,m

λc,l
(1− λc,m)2PlT

)
.

These derivations yield the following lemma:

Lemma 4. The corresponding lower bound on the data rates is given by

RLB(ε, P, c) = max
N,{Pm}m

1
T




N−1

∑
m=0

log2[1 + SCMB[m]]−

√√√√2
N−1

∑
m=0

V1[SCMB[m]]Q−1(ε) + O(log2(L))


 , (16)

where L is the number of non-zero {Pm}s and

SCMB[m]
def
=

λ2
c,m2PmT

ICMB[m] + λc,mN0
.

5. Numerical Results

In what follows, we use W = 1 KHz and ε = 10−3 in our computations. Since we consider
the complex base-band channel, an equivalent real pass-band channel will have 2W-Hz bandwidth
(i.e., 2 KHz in our case), and L complex degrees of freedom in base-band is equivalent to 2L real
degrees of freedom in passband.

In the following we evaluate the degrees of freedom and the data rates for different SNR levels
(in dB) as L depends on the SNR; for example, since the water-filling algorithm is used for Equation (10),
L can be increased by increasing the “water level” in the water-filling algorithm, which means that
the SNR level must be increased. Note that for a fixed c, the ratio of the derived bounds to Shannon’s
capacity depends only on P, No and W through the ratio P

NoW , and the results for W 6= 1 KHz can be
extracted from our presented results for an appropriate range of SNR = 2P/No.

To evaluate the bounds in Equations (10), (13), (15) and (16), we used the optimization toolbox
in MATLAB to search for the optimal solution in {Pm}m. When it comes to the upper bound (10),
the water-filling choice used by Polyanskiy only maximizes the term ∑∞

m=0 log2

[
1 + 2λc,mPmT

N0

]
and not

the whole expression. However, the water-filling choice almost achieves the same performance as the
optimization routine with negligible differences. When it comes to the term O(log2(L)), we specialize it
to 1

2 log2(2L) for the sake of numerical computations; we used the constant 1
2 as Polyanskiy conjectured

in Equation (4.218) in his thesis [12], and we used the term 2L inside log2(.) since the number of real
independent variables is 2L (as explained in Section 4.1).
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5.1. Upper Bound

To solve Equation (10), we maximize the following quantity using the optimization tool
in MATLAB

RN
UB =max

Pm

1
T

N−1

∑
m=0

log2

[
1 +

2λc,mPmT
N0

]
− 1

T

√√√√2
N−1

∑
m=0

V1

[
2λc,mPmT

N0

]
Q−1(ε),

over {Pm}N−1
m for different values of N. The solution being decreasing with m, L is the value of N

where RN
UB saturates (which is the same as the number of non-zero Pm’s after saturation). We adopt

similar method and notations for all the bounds presented hereafter.
Figure 6 shows the obtained RN

UB for c = 1000 and at SNR = 50 dB, and in this example the
obtained degrees of freedom are L = 1004. The upper bound on the rates is

RUB(ε, P, c) = RL
UB +

1
2T

log2(2L) bits/sec.

975 980 985 990 995 1000 1005 1010 1015

N

1.085

1.09

1.095

1.1

1.105

1.11

b
it
s
/s

e
c

10 4

R
UB

N

Sat. point

Figure 6. Saturation of RN
UB for c = 1000 and SNR = 50 dB.

We compute L and the corresponding upper bound RUB for different values of c and for different
levels of SNR. Figure 7 shows the difference (L− c) between the obtained degrees of freedom and
c = 2WT, and as expected, L increases as the SNR increases (in a manner akin to the water-filling
solution: as the water level increases, it is possible to use additional PSWFs). However, the additional
degrees of freedom (beyond c) increase slowly with c and L/c→ 1 as c increases towards infinity.

200 400 600 800 1000 1200 1400 1600 1800 2000

c=2WT

-2

0

2

4

6

8

L
-c

SNR=70

SNR=50

SNR=30

Figure 7. Upper bounds on the degrees of freedom.

In Figure 8 we plot the obtained upper bound on the rates together with the Shannon capacity.
We notice that the gap between the upper bounds and the Shannon capacity decreases as c increases.
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c=2WT

0

0.5
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/s

e
c

10 4

Cap, SNR=70

UB, SNR=70

Cap, SNR=50

UB, SNR=50

Cap, SNR=30

UB, SNR=30

Figure 8. Upper bounds on the data rates.

The ratio of the bounds to the Shannon capacity can be seen in Figure 10 below.

5.2. Lower Bounds

In this section, we present the numerical results for Sections 4.2.1–4.2.3 (Equations (13), (15)
and (16)), and we apply the same numerical method we used in the previous section. We notice that
the lower bounds when using either CSB or STMB are almost the same with no significant differences
and we omit the results for CSB.

Figure 9 shows the obtained lower bounds on the degrees of freedom. We note that for given
scenario (CSB, STMB or the general lower bound), the results are almost the same for different
SNR levels; increasing the signal power will only lead to increasing the power of the interference
(see Equations (13), (15) and (16)), and the effect on the signal to interference ratio remains negligible.
Moreover, the results for the different scenarios are very close (±1 on average). Although L − c
decreases as c increases, it decreases slowly and L/c→ 1 as c increases towards infinity.

We propose approximating the degrees of freedom for the general lower bound by the
following equation

LLB =̂ c− 1.35 log2(c) + 3.25, (17)

and we draw “LLB − c” in Figure 9. It is expected that “LLB − c” is a logarithmic function of c since the
transition region of the eigenvalues of PSWFs is a logarithmic function of c (as shown in Section 2).

200 400 600 800 1000 1200 1400 1600 1800 2000

c=2WT

-12

-11

-10

-9

-8

-7

-6

L
-c

STMB, SNR=70

STMB, SNR=50

STMB, SNR=30

LB, SNR=70

LB, SNR=50

LB, SNR=30

L
LB

-c

Figure 9. Lower bounds on the degrees of freedom.

Figure 10 shows the ratio of the obtained bounds to the Shannon capacity. For a fixed c and as
SNR increases, the bounds get relatively closer to capacity and the gap between the upper bound and
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the lower bound increases. In addition, for a fixed SNR, as c increases, the gap between the bounds
decreases.

200 400 600 800 1000 1200 1400 1600 1800 2000

c=2WT

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

R
a
ti
o
 t
o
 c

a
p
a
c
it
y

UB, SNR=70

STMB, SNR=70

LB, SNR=70

UB, SNR=50

STMB, SNR=50

LB, SNR=50

UB, SNR=30

STMB, SNR=30

LB, SNR=30

Figure 10. Upper and lower bounds on the rates.

6. Possible Enhancements on the Bounds

Since the obtained upper and lower bounds on the rates (Figure 10) are very close for SNR = 30 dB,
the bounds are tight and a good approximation for the optimal data rates is reached. However, the gap
between the upper and lower bounds increases as the SNR increases. For instance, the gap between the
upper and lower bounds for c = 200 and SNR = 70 dB is 5.5% of Shannon’s capacity, which means that
one or both bounds are loose. In the following we present some possible improvements on the bounds.

6.1. A Tighter Upper Bound

To derive the upper bound, we ignored the interference due to other codewords and the obtained
degrees of freedom surpassed 2WT for SNR ∈ {50 dB,70 dB}. However, the results in the literature
shows that the asymptotic dimension of the W-T space is 2WT, and thus adding the constraint that the
the codewords must be time-limited will not increase the available degrees of freedom. So one can
conclude that our upper bound on the degrees of freedom is not tight. One possible way to improve this
upper bound is to force the degrees of freedom to be at most 2WT, and hence, L in constrained to be less
or equal to 2WT in Equation (10). In other words, the normalized time-limited PSWFs Dϕc,m(t)√

λc,m
with m ≥

2WT will not be used to transmit data and their allocated power Pm’s are forced to be zero. The obtained
upper bound will decrease and hence the gap between the upper and lower bounds will decrease.

In Figure 11 we present the numerical values for the tighter upper bound (TUB) in addition to
those of the upper bound. When c = 200, we note that the tighter upper bound achieves improvements
of 0.8% and 1.5% for SNR = 50 dB and SNR = 70 dB, respectively.
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Figure 11. Tighter upper bound on the rates vs. the old ones.

6.2. Introducing a Guard Time or a Guard Band between the Codewords

The use of a guard time or a guard band is expected to decrease the effect of inter-codeword
interference which drives towards increasing the achievable rates. On the other hand a portion of
the time resources or frequency resources will not be used which decreases the data rates. Therefore,
there must be an optimal guard time and an optimal guard band that maintain a good trade-off
between the lost resources and the improvement of the inter-codeword interference.

Using a guard time TG reduces the upper bound to RUB(TG) = RUB
T

T+TG
, but introducing a

guard band does not affect it. When it comes to the lower bound, deriving a closed form expression
has proven to be difficult.

Nevertheless, if adding a guard time is beneficial, we can state that the optimal guard time T∗G
must satisfy RUB(T∗G) ≥ RLB where RUB and RLB are given by Equations (10) and (16) and hence
T∗G
T ≤

RUB
RLB
− 1. In Figure 12, we draw the obtained upper bound on T∗G. Naturally, it increases as the

SNR increases since the relative difference between the bounds increases as the SNR increases.

200 400 600 800 1000 1200 1400 1600 1800 2000

c=2WT

0

0.01

0.02

0.03

0.04

0.05

0.06

T
G

/T

SNR=70

SNR=50

SNR=30

Figure 12. Upper bound on T∗G
T for different SNR levels.

7. Summary and Conclusions

In this work, we studied the maximal achievable rates and the available degrees of freedom when
transmitting T-seconds time-limited codewords over a W-Hz band-limited AWGN channel. We made
use of the prolate spheroidal wave functions to switch to discrete time and then applied the results by
Polyanskiy. We derived the upper bound by ignoring the interference due to other codewords, and we
derived lower bounds by deriving upper bounds on the inter-codeword interference. The derived
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bounds were found to be tight for for low values of SNR/W (for example W = 1 KHz and SNR = 30 dB
or equivalently W = 100 KHz and SNR = 50 dB). However, the gap between the bounds increases as
this SNR/W ratio increases.

When it comes to the available degrees of freedom, the numerical results showed that the potential
decrease from 2WT is upper bounded by a logarithmic function of 2WT and hence the relative
reduction is asymptotically negligible.

Based on the results of this work, one can approximate the achievable data rates by

R(ε, P, c) =
L
T

log2

[
1 +

PT
N0L

]
−
√

2L
T

√
V1

[
PT
N0L

]
Q−1(ε) +

1
2T

log2(2L),

where V1(θ) =
θ
2

θ+2
(θ+1)2 log2

2 e and L is in the range c− 1.35 log2(c) + 3.25 ≤ L ≤ c. This approximation
is guaranteed to be between the derived bounds, and hence is a “good” one for low values of SNR/W.
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Appendix A. Properties of αk,h c,l,m

The inner product between the lth normalized time-limited PSWF already shifted in time and
frequency by k T-seconds and h 2W-Hz respectively, and the band-limited version of the mth normalized
time-limited PSWF is denoted in this document by αk,h c,l,m. By Equation (5) and using Parseval,

αk,h c,l,m
def
=

〈
Dϕc,l(t− k T)√

λc,l
ej2πh 2W(t−k T),

√
λc,m ϕc,m(t)

〉

=

〈
ΦD

c,l( f − h 2W)e−j2πk T f , ΦD
c,m( f ) rect

(
f

2W

)〉
=

〈
ΦD

c,l( f − h 2W)e−j2πk T f rect
(

f
2W

)
, ΦD

c,m( f )
〉

.

Property A1. The coefficients αk,h c,l,m satisfy

αk,h c,l,m = jm−l

√
λc,m

λc,l
α−h,−k c,m,l .

Proof. This can be readily obtained by noting that by (4)

αk,h c,l,m =

〈
Dϕc,l(t− kT)√

λc,l
ej2πh2W(t−kT),

√
λc,m ϕc,m(t)

〉
=

〈
ΦD

c,l( f − h2W)e−j2πkT f rect
(

f
2W

)
, ΦD

c,m( f )
〉

=

〈
jl
√

T
2W

ϕc,l

(
T

2W
( f − h2W)

)
e−j2πk T f rect

(
f

2W

)
, jm
√

T
2W

ϕc,m

(
T

2W
f
)〉

= jl−m T
2W

〈
ϕc,l

(
T

2W
( f − h2W)

)
, ϕc,m

(
T

2W
f
)

rect
(

f
2W

)
ej2πk T f

〉
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By a change of variable ν = T f /2W,

αk,h c,l,m = jl−m
〈

ϕc,l(ν− hT), ϕc,m(ν)rect
( ν

T

)
ej2πk2Wν

〉
= jl−m

〈
ϕc,l(ν), Dϕc,m(ν + hT)ej2πk2W(ν+hT)

〉

= jl−m

√
λc,m

λc,l

〈
Dϕc,m(ν + hT)√

λc,m
e−j2πk2W(ν+hT),

√
λc,l ϕc,l(ν)

〉
= jm−l

√
λc,m

λc,l
α−h,−k c,m,l .

Upper Bounds

Various upper bounds on the magnitude of αk,h c,l,m may be found using Cauchy Schwarz’s inequality.

Property A2. The magnitude of αk,h c,l,m is upperbounded by

∣∣∣ αk,h c,l,m

∣∣∣
2
≤ λc,m

(2k+1)T/2∫

(2k−1)T/2

|ϕc,m(t)|2 dt (A1)

∣∣∣ αk,h c,l,m

∣∣∣
2
≤ λc,m

(−2h+1)T/2∫

(−2h−1)T/2

∣∣ϕc,l(t)
∣∣2 dt (A2)

∣∣∣ αk,h c,l,m

∣∣∣
2
≤

(−2k+1)T/2∫

(−2k−1)T/2

∣∣gh,l(t)
∣∣2 dt (A3)

∣∣∣ αk,h c,l,m

∣∣∣
2
≤ λc,m

λc,l

(2h+1)T/2∫

(2h−1)T/2

∣∣g−k,m(t)
∣∣2 dt (A4)

where

gh,l(t)
def
=

[
Dϕc,l(t)√

λc,l
ej2πh 2Wt

]
∗ 2W sinc (2W t) Gh,l( f ) def

= ΦD
c,l( f − h 2W) rect

(
f

2W

)
.

Before proceeding to the proof, we specialize the bounds (A3) and (A4) to the values of h = 0 and

k = 0 respectively. Using the fact that g0,l(t) =

[
Dϕc,l(t)√

λc,l

]
∗ 2W sinc (2W t) =

√
λc,l ϕc,l(t),

∣∣∣ αk,0 c,l,m

∣∣∣
2
≤

(−2k+1)T/2∫

(−2k−1)T/2

∣∣g0,l(t)
∣∣2 dt = λc,l

(−2k+1)T/2∫

(−2k−1)T/2

∣∣ϕc,l(t)
∣∣2 dt (A5)

∣∣∣ α0,h c,l,m

∣∣∣
2
≤ λc,m

λc,l

(2h+1)T/2∫

(2h−1)T/2

|g0,m(t)|2 dt =
λ2

c,m

λc,l

(2h+1)T/2∫

(2h−1)T/2

|ϕc,m(t)|2 dt. (A6)
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Proof. Bound (A1) is obtained by using Cauchy Schwarz,

αk,h c,l,m =

〈
Dϕc,l(t− k T)√

λc,l
ej2πh 2W(t−k T),

√
λc,m ϕc,m(t)

〉

=

〈
Dϕc,l(t− k T)√

λc,l
ej2πh 2W(t−k T),

√
λc,m ϕc,m(t)rect

(
t− k T

T

)〉

∣∣∣ αk,h c,l,m

∣∣∣
2
≤ λc,m

∥∥∥∥ϕc,m(t)rect
(

t− k T
T

)∥∥∥∥
2
∥∥∥∥∥

Dϕc,l(t− kT)√
λc,l

∥∥∥∥∥

2

= λc,m

(2k+1)T/2∫

(2k−1)T/2

|ϕc,m(t)|2 dt.

When it comes to (A2), using Property A1,

∣∣∣ αk,h c,l,m

∣∣∣
2
=

λc,m

λc,l

∣∣∣ α−h,−k c,m,l

∣∣∣
2
≤ λc,m

(−2h+1)T/2∫

(−2h−1)T/2

∣∣ϕc,l(t)
∣∣2 dt.

Bound (A3) may be derived as follows:

αk,h c,l,m =

〈
ΦD

c,l( f − h 2W)e−j2πk T f rect
(

f
2W

)
, ΦD

c,m( f )
〉

=

〈
ΦD

c,l( f − h 2W) rect
(

f
2W

)
, ΦD

c,m( f ) ej2πk T f
〉

=
〈
Gh,l( f ), ΦD

c,m( f ) ej2πk T f
〉

=

〈
gh,l(t),

Dϕc,m(t + k T)√
λc,m

〉
=

〈
gh,l(t) rect

(
t + kT

T

)
,

Dϕc,m(t + k T)√
λc,m

〉
,

and hence, by Cauchy Schwarz

∣∣∣ αk,h c,l,m

∣∣∣
2
≤

(−2k+1)T/2∫

(−2k−1)T/2

∣∣gh,l(t)
∣∣2 dt.

Using Property A1, bound (A4) is readily obtained

∣∣∣ αk,h c,l,m

∣∣∣
2
=

λc,m

λc,l

∣∣∣ α−h,−k c,m,l

∣∣∣
2
≤ λc,m

λc,l

(2h+1)T/2∫

(2h−1)T/2

∣∣g−k,m(t)
∣∣2 dt.

When it comes to sums over one index, one can immediately obtain the following inequalities.
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Corollary A1. The following bounds are directly obtained from the respective bounds derived above.

∑
k∈Z∗

∣∣∣ αk,h c,l,m

∣∣∣
2
≤ λc,m(1− λc,m) (A7)

∑
h∈Z∗

∣∣∣ αk,h c,l,m

∣∣∣
2
≤ λc,m(1− λc,l) (A8)

∑
k∈Z∗

∣∣∣ αk,h c,l,m

∣∣∣
2
≤

‖gh,l(t)‖2 −

T/2∫

−T/2

∣∣gh,l(t)
∣∣2 dt


≤‖gh,l(t)‖2 (A9)

∑
h∈Z∗

∣∣∣ αk,h c,l,m

∣∣∣
2
≤ λc,m

λc,l


‖g−k,m(t)‖2 −

T/2∫

−T/2

∣∣g−k,m(t)
∣∣2 dt


≤ λc,m

λc,l
‖g−k,m(t)‖2 (A10)

∑
k∈Z∗

∣∣∣ αk,0 c,l,m

∣∣∣
2
≤ λc,l(1− λc,l) (A11)

∑
h∈Z∗

∣∣∣ α0,h c,l,m

∣∣∣
2
≤ λ2

c,m

λc,l
(1− λc,m). (A12)

Finally, considering sums over the two indices k and h, we note by Plancherel that

∑
h∈Z∗
‖gh,l(t)‖2 = ∑

h∈Z∗
‖Gh,l( f )‖2= ∑

h∈Z∗

(2h+1)W∫

(2h−1)W

∣∣∣ΦD
c,l( f )

∣∣∣
2

d f = (1− λc,l),

and hence bounds (A9) and (A10) imply

∑
h∈Z∗

∑
k∈Z∗

∣∣∣ αk,h c,l,m

∣∣∣
2
≤ (1− λc,l) (A13)

∑
h∈Z∗

∑
k∈Z∗

∣∣∣ αk,h c,l,m

∣∣∣
2
≤ λc,m

λc,l
(1− λc,m). (A14)
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