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Abstract: In this paper, a novel signal detector based on matrix information geometric dimensionality
reduction (DR) is proposed, which is inspired from spectrogram processing. By short time Fourier
transform (STFT), the received data are represented as a 2-D high-precision spectrogram, from which
we can well judge whether the signal exists. Previous similar studies extracted insufficient information
from these spectrograms, resulting in unsatisfactory detection performance especially for complex
signal detection task at low signal-noise-ratio (SNR). To this end, we use a global descriptor to
extract abundant features, then exploit the advantages of matrix information geometry technique
by constructing the high-dimensional features as symmetric positive definite (SPD) matrices. In this
case, our task for signal detection becomes a binary classification problem lying on an SPD manifold.
Promoting the discrimination of heterogeneous samples through information geometric DR technique
that is dedicated to SPD manifold, our proposed detector achieves satisfactory signal detection
performance in low SNR cases using the K distribution simulation and the real-life sea clutter data,
which can be widely used in the field of signal detection.

Keywords: dimensionality reduction; signal detection; SPD manifold; spectrogram processing

1. Introduction

Signal detection is a challenging task in signal processing [1]. As the basic subject in object detection,
it is acknowledged as a very valuable research which arouses lots of researchers [2]. However, since complex
clutter noise and interference are ubiquitous in the context of signal detection, this crucial task becomes
extremely difficult. The main technique in dealing with this issue rely on the Neyman–Pearson criterion [3].
Specifically, by establishing a binary signal statistical detection model, that is, the binary hypothesis H0

(no signal exists) or H1 (signal exists), the task for signal detection is accomplished with constant false alarm
technique, which is referred to as “CFAR”. Although this classical method has made many achievements in
some application fields with high efficiency [4], its detection performance still appears a serious bottleneck
that limits its practicability, especially for the case of heterogeneous clutter under low signal-noise-ratio
(SNR) [5]. Hence, how to achieve satisfactory detection performance under such complex detection
background is an issue worthy of attention [6].

From the perspective of time-frequency analysis, known as a powerful technique of research in
signal processing [6,7], the sample data processed after short time Fourier transform (STFT) [8] can be
exploited for signal detection due to the significant difference between noise and signal. Recent studies
have extracted relevant information after STFT which shows that it is feasible for signal detection from
the perspective of time-frequency technique [9,10]. More specifically, a signal exists in an area of the
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spectrogram where the energy change exceeds a certain threshold. In fact, the detection performance of
these time-frequency analysis based methods greatly depends on the quality of extracted features from
spectrogram. However, former researches only extracted few features maintaining local information,
and thus gives inadequate descriptions on the sample data. Meanwhile, their researches are mainly
under the prior condition that signal exists, in other words, the problem of false alarm has not been
taken into consideration. Hence, such spectrogram processing based methods have many constructive
issues to be solved [11].

On the other hand, in the area of matrix information geometry, data representation by
symmetric positive definite (SPD) matrix has been widely applied in many scientific researches,
e.g., pattern recognition [12], image processing [13], signal processing [14,15] and machine learning [16].
More specifically, by constructing SPD matrices, the original information extracted from the sample
data is embedded on a specific SPD manifold, which is shown to outperform the Euclidean space
operation. However, the drawback of using these matrix information geometry based methods is the
rapidly increasing computational complexity, especially for the high-dimensional SPD manifold [17].

In this case, dimensionality reduction (DR) technique in machine learning is always imperative to
reduce the redundancy and improve the discrimination in solving these high computational problems.
In fact, simply using conventional Euclidean dimensionality reduction (DR) methods, e.g., Principal
Component Analysis (PCA) [18], Linear Discriminant Analysis (LDA) [19], may destroy the implicit
structure of these manifold-valued data such that they are unreasonable for our task. Recently,
considering the special high-dimensional structure, DR work has been extended to Rienmannian
manifold. A generalization of PCA to Riemannian manifold named as PGA [20], which tends to flatten
the Riemanian manifold via tangent space mapping, however, does not fully capture the structure of
Riemannian manifold, which makes it might be suboptimal for classification. Another popular trend
of considering the Reproducing Kernel Hilbert Space (RKHS) mapping by using kernel tricks [21],
however, has a huge computational complexity for high-dimensional data, which limits its efficiency.
To this end, the information geometric based DR technique dedicated to SPD manifold is proposed [22],
by solving a manifold optimization to search a projection matrix, it maps the high-dimension SPD
matrices into a lower-dimensional and more discriminative SPD manifold, which has proven its strong
power in SPD manifold learning.

The contributions in this paper are following:
According to [23], the high-dimensional feature can provide richer and more discriminative

information. In this case, a high-dimensional feature descriptor that contains both local and global
information called the dense short time Fourier transform (SIFT) descriptor, is employed to obtain
feature vectors of the 2-D spectrograms, which makes better use of information than inadequate edge
features previously studied [9,11]. Furthermore, combining with the emerging theory of information
geometry, our proposed detector has outperformed the existing spectrogram processing technique
based signal detection methods by using information geometric DR method on SPD manifold illustrated
in Figure 1. This study presents important information for future development of matrix information
geometry-based signal detection methods, which can be widely used for signal detection tasks.

The remainder of this paper is organized as follows: Section 2 introduces some useful backgrounds
regarding the SPD Rienmannian manifold and the construction of desired covariance matrix for SPD
manifold modeling. Section 3 shows how the novel information geometric DR technique be exploited
to our signal detection task. Our experimental results with simulation and real-life sea clutter data are
presented in Section 4 and our ongoing works are discussed in Section 5.
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Figure 1. Geometrical interpretation of signal detection method based on information geometric
dimensionality reduction. Function φ(x) means a non-linear mapping from high-dimensional
symmetric positive definite (SPD) manifoldM1 to lower-dimensional SPD manifoldM2.

2. Constructing Region Covariance Matrix on SPD Manifold

In this section, we first provide related knowledge regarding the SPD Rienmannian manifold.
Then we show the construction of desired SPD matrix transformed by high-dimensional vector using
the 128-dimensional dense SIFT descriptor for feature extraction. So far, the high-dimensional SPD
manifold consists of dense SIFT features based SPD matrices is modeled. In other words, the labeled
two heterogeneous samples are embed into the constructed SPD manifold.

2.1. The Symmetric Positive Definite (SPD) Manifold

In fact, a Riemannian manifoldMH with intrinsic geometry structure shown in Figure 2 is a
differentiable topological space in which the tangent space TP of each point p on the manifold is defined
by a smoothly varying inner product. As is well acknowledged, the SPD manifold Sn

++ viewed as
the space of n× n SPD matrices, forms the interior of a convex cone in the n(n + 1)/2 dimensional
Euclidean space. Unlike the linear Euclidean space, most properties and vector operations are not
suitable for SPD manifold due to its nonlinearity. In this case, to encode a valid SPD manifoldMH,
appropriate Riemannian metric should be applied so that the similarity between two SPD matrices can
be analyzed.

Among these Rienmannian distances designed for SPD manifold, two most popular metrics are
Affine-invariant Rienmannian metric (AIRM) [24] and Log-Euclidean metric [25]. More specifically,
with the property of affine-invariance, the AIRM metric, which induces the true geodesic distance has
been most widely used. However, one of the drawbacks is that the AIRM metric accumulates a high
computational burden due to the curvature of such high-dimensional manifold space. Thus, AIRM-based
algorithms perform less efficiently than other Riemannian metrics in some engineering cases [26].

On the other hand, induced from Lie group, the Log-Euclidean metric embeds the SPD manifold via
matrix logarithm mapping into its tangent space TP so that linear operations can be directly performed.
In addition, this Riemannian metric between X and Y enjoys a variety of useful properties [26] that have a
simple form of distance measure and low computational complexity, which can be defined as:

dLE (X, Y) = ‖ log X− log Y‖F (1)

where log(·) denotes the matrix logarithm operation, and ‖ · ‖F means the Frobenius norm.
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Figure 2. The Riemannian manifold and its tangent space Tp

2.2. The Region Covariance Matrix Based on Dense SIFT Descriptor

The region covariance matrix (RCM) is known as a special kind of SPD matrix with strong
robustness and discrimination, which can implicitly capture the second-order statistical characteristics
of the sample data. Furthermore, the size of the RCM only depends on the characteristic dimension,
hence, regions with different sizes can be directly compared without any transformations. As a
consequence of these useful properties, the RCM has achieved remarkable improvement in texture
classification [27], pedestrian detection [28], 3D human motion sequence [29], target tracking [30] and
many other aspects.

Given a W × H image I with n image pixels. The RCM can be given by:

CR =
1

n− 1

n

∑
k=1

(zk − µ) (zk − µ)T (2)

where zk is the characteristic value corresponding to the k-th pixel, and µ = 1
n ∑n

i=1 zk is the average
value of the corresponding feature.

In order to fully exploit the information implied in the 2-D spectrograms, the 128-dimensional
dense SIFT descriptor with scale invariance is employed for each grid point, which has been shown
as a powerful tool in image recognition [31]. The difference between the dense SIFT descriptor and
classical SIFT descriptor is that the former is used to extract global image features, while the latter only
obtains SIFT features of several key points. Through Gaussian smoothing, the dense SIFT descriptor
is obtained by sliding a specific window to record the gradient in 8 directions of each grid point,
forming a 4 × 4 × 8-dimensional feature vector shown in Figure 3.

Clearly, using such a global high-dimensional descriptor has its pros and cons: the dense SIFT
descriptor can extract abundant information from the sample data but brings unnecessary redundancy,
which motivates us to consider effective dimensionality reduction methods.

Figure 3. The 128-dimensional dense short time Fourier transform (SIFT) descriptor of one grid point.

3. Matrix Informantion Geometric Dimensionality Reduction Technique

In order to reduce the redundancy and enhance the discrimination, a manifold optimization based
information geometric DR technique is employed. The key idea is to find a projection matrix that maps
the original SPD manifold into a low-dimensional one by performing a manifold optimization without
changing the intrinsic structure of “the manifold-valued data”. Formally, for a set of SPD matrices
X ∈ Sn

++, our goal is to seek for a mapping f : Sn
++ × Rn×m → Sm

++ with the learned projection matrix
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W ∈ Rn×m, m < n. Hence, with the elimination of redundant information by using this technique,
“the manifold-valued data” becomes more discriminative, which is shown to overcome the limitations
of Euclidean dimensionality reduction methods.

3.1. Affinity Graph Embedding

In feature extraction, the training data are generally described by in terms of measurable features
that tend to be high-dimensional. In order to reduce the cost of feature measurement, and improve
the learning performance, dimensionality reduction that drives new lower-dimensional features from
the original features is always employed. However, new feature descriptions invariably cause the
discard of the original information, and thus, may give poor overall accuracy. To this end, an affinity
function A(i, j) is added in order to force the samples sharing the same label more concentrated,
that is, pulling the homogeneous samples closer and pushing the heterogeneous samples away.
More specifically, let {(Xi, Yi)}

p
i=1 denotes p labeled spectrograms, here Xi ∈ Sn

++,Yi ∈ {0, 1}
represents the label of the two classes. In this case, the affinity function A(i, j) can be established by
two nearest neighbor graphs, namely the within-class similarity graph Gw(i, j) and the between-class
similarity graph Gb(i, j), which can be defined by:

Gw(i, j) =

{
1, if Yi = Kw

(
Yj

)
or Yj = Kw (Yi)

0, otherwise
(3)

Gb(i, j) =

{
1, if Yi 6= Kb

(
Yj

)
or Yj 6= Kb (Yi)

0, otherwise
(4)

Here, parameter Kw(Xi) and Kb(Xi) represent the number of the neighbor of Xi. Hence, the affinity
function can be written as:

A = Gw − Gb (5)

which is a binary matrix consisting of 0 and 1. For the balance of Gw(i, j) and Gb(i, j), we usually
take kb < kw.

3.2. Cost Function

In particular, to ensure that the new constructed SPD manifold is valid, that is, WTXW � 0,
∀X ∈ Sn

++, an orthogonal constraint WTW = Im is included because the projection matrix W ∈ Rn×m

(m < n) is required to be full rank. After learning the embedding affinity function A(i, j), we confront
with the following optimization problem [22]:

min ∑i,j A(i, j)δ2
lE

(
WT XiW, WT XjW

)
s.t. WTW = Im

(6)

By substituting Formula (1):

min
W∈Rn×m

∑
p
i,j=1 a

(
Xi, Xj

) ∥∥∥log
(
WT XiW

)
− log

(
WT XjW

)∥∥∥2

F
s.t. WTW = Im.

(7)

With Talyor expansion that log
(
WTXW

)
can be approximated as WT log(X)W, then the

optimization problem (7) can be rewritten as:

min
W∈Rn×m

∑
p
i,j=1a

(
Xi, Xj

) ∥∥∥WT log (Xi)W−WT log
(

Xj

)
W
∥∥∥2

F
s.t. WTW = Im.

(8)
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For simplicity, let

F(W) =
p

∑
i,j=1

a
(

Xi, Xj

) (
log (Xi)− log

(
Xj

))
WWT

×
(

log (Xi)− log
(

Xj

)) (9)

Then, the optimization problem for finding the projection matrix W is given as:

min
W∈Rn×m

Tr
(

WT F(W)W
)

s.t. WTW = Im

(10)

In fact, function Tr
(
WTF(W)W

)
is independent from the choice of basis spanned by projection matrix

W, that is, for an arbitrary orthogonal group R ∈ O(m), Tr
(
WTF(W)W

)
= Tr

(
(WR)TF(W)(WR)

)
, in this

case, the solution for Formula (10) known as a Grassmann problem can be optimized by Riemannian
Conjugate Gradient (RCG) [32]. However, the RCG method on the Grassmannian manifold converges
much more slowly than the iterative two-stage method using eigen-decomposition proposed in [22].
Thus, we take advantage of this eigen-decomposition-based approach for solving Formula (10), which can
be summarized as follows. First, F(W) is fixed by assuming that F(W) does not depend on the projection
matrix W. With the property that matrix trace is equal to the sum of the eigenvalues, the current solution
can be obtained by taking the m smallest eigenvectors of F(W). Then we have a new W to update
the corresponding F(W). These steps are repeated until convergence for the optimal solution of W,
which achieves the mapping from a high-dimensional SPD manifold to a low-dimensional one with
more discrimination.

4. Experimental Results

To strengthen the algorithm validation, our experiment revolves around simulation and
semi-simulation data for signal detection comparing with the state of art techniques. In the simulation
data case, we use K distribution to simulate the clutter, and a target signal with Doppler frequency
fd = 0.15 Hz. Additionally, we use the IPIX radar data of sea clutter with 27 cells collected by the
Mcmaster University in 1998 [33] for semi-simulation data, likewise, a simulation target with Doppler
frequency fd = 0.15 Hz is added.

In particular, based on the K simulation data, we have in total two labelled spectrogram categories,
namely, (a) negative samples in simulation set (no signal exists), (b) positive samples in simulation set
(signal exists), which can be clearly seen in Figure 4.

(a) The negative sample based
on K simulation data.

(b) The positive sample based
on K simulation data.

Figure 4. Generated spectrograms on K simulation data with two categaries in case of SNR = −10.
(a) K simulation data without signal labelled as the negative sample. (b) K simulation data containing
signal labelled as the positive sample.

After the short time Fourier transform (STFT), we resized the generated 2-D spectrograms to
200 × 200, using the dense SIFT descriptor to extract feature vector on a regular grid with 2 pixel spacing.
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We note that the 128-dimensional covariance matrices were constructed by using the method proposed
in [34]. In this way, these spectrograms were mapped into an originally 128-dimensional SPD manifold.
The overall experimental procedure shown in Figure 5 can be summarized as follows: processed by
STFT, the sample data generated a high-precision 2-D spectrogram. Then feature vectors were obtained
using SIFT descriptor in feature extraction, which was constructed into SPD matrices for SPD manifold
modeling. Finally, a manifold optimization based information geometric DR technique was employed by
solving Formula (10) to improve the discrimination, and thus enhance the detection performance.

Sample 

Data
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Fourier 

Transform                    

Feature 

Extraction                     
…

…

…

…

……
…

…

Manifold

Modeling

 

 

Dimensionality 

Reduction

 

 

Figure 5. The flowchart of our experiment which can be mainly divided into 4 steps.

4.1. Simulation Data Experiment

According to our former work in ICSP 2020 [35], we have proved that our proposed approach
leads to significant improvement over the original SPD manifold in the case of SNR from −5 to
−10, which has shown that the manifold-valued data after information geometric DR become more
discriminative, however, we have not explicitly given a practical detector for real-time detection.
Furthermore, the signal detection ability of our proposed algorithm in the larger range of SNR is
not demonstrated.

To this end, in this paper, we trained one general matrix W to form a detector for multiple SNRs
by taking all labeled samples into the training set at once rather than training objective W for each SNR.
More specifically, we had 200 signal sequences per signal-to-noise ratio (SNR−1 to−15) containing the
desired signal labelled as the positive samples, and 3000 noise-only samples as the negative samples.
To evaluate the detection performance, 4000 signal sequence samples per SNR (−1 to −20) were
collected as the test set (2000 positive samples, and 2000 negative samples, respectively), using KNN
classifier for efficiency on the low-dimensional and discriminative SPD manifold. Taking false alarm
probability Pf a and detection probability Pd as the two most crucial factors in signal detection as
criterion, our experimental results with the K simulation data were the following:

In our first experiment, parameters Kw and Kb in affinity graph embedding were 40 and 10.
The parameter K in KNN classifier was fixed to 4200, whose effect on detection performance will
be discussed in Section 4.1.2. We first give the detection probability curves of scheme 1© the Radon
Transform detector [36] that were widely used for linear signal detection from spectrogram processing,
and scheme 2© our proposed detector with the objective dimension dim at 40 shown in Figure 6.

It can be seen that the proposed detector outperformed the Radon Transform detector with
almost 5 SNR performance improvement. Specifically, our proposed detector led to a significant
signal detection capability with a low false alarm rate for the cases with SNR over −10. Since the
intra-class matrices constructed under lower SNR cases had little discrimination on the SPD manifold,
the detection probability dropped significantly at SNR of interval [−10, −15].
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Figure 6. The detection probability curves of the two detectors (scheme 1© the Radon Transform detector
and scheme 2© our proposed detector at dim = 40 with Pf a = 0.001) for varying the signal-noise-ratio
based on K simulation.

4.1.1. Detection Performance for Various Objective Dimension

In fact, it is obvious that the discrimination of the manifold-valued data was different on various
dimensional SPD manifolds, thus the binary classification performance was surely affected. To this
end, we compared the detection performance for various objective dimension dim (from 20 to 120 with
an interval of 20) on the simulation data, which is shown in Table 1.

Table 1. Comparison of detection performance for varying the value of dim based on K simulation.

dim = 20
Pf a = 0.004

dim = 40
Pf a = 0.001

dim = 60
Pf a = 0.0035

dim = 80
Pf a = 0.0085

dim = 100
Pf a = 0.0205

dim = 120
Pf a = 0.02

SNR = −1 1 1 1 1 1 1

SNR = −5 1 1 1 1 1 1

SNR = −10 1 1 1 0.9975 1 1

SNR = −15 0.0925 0.0485 0.1035 0.0085 0.1975 0.1895

SNR = −20 0.0105 0.003 0.011 0.0085 0.0375 0.0355

The results are shown for SNR of −1, −5, −10, −15, and −20. We note that since the negative
samples on the SPD manifold were naturally lying close, there was little difference in false alarm
frequency so that the probability Pf a for each SNR was almost a constant.

In general, our proposed detector could achieve full signal detection over SNR = −10 in any
objective dimension on the simulation dataset. It can be seen that Pf a had a proportional correlation
with Pd, and Pd decreased rapidly in the SNR range of −10 to −15 because signals at this level became
extremely insignificant on the spectrogram. Furthermore, the minimum Pf a occurred at dim = 40 while
the maximum Pd was achieved for dim = 100 but caused a higher false alarm in lower SNR cases.

4.1.2. Parameter Sensitivity Experiment on K

To further control false alarm probability Pf a, we analyze the sensitivity on parameter K in KNN
classifier. We selected the case of SNR = −12 with the objective dimension dim = 40 and fixed the
parameter Kw to 40, Kb to 10. Table 2 depicts the detection performance for various values of K in the
interval [100, 5100].

It can be seen that both the value of Pf a and Pd decreased with the increase of K, which is
considered to be because fewer positive samples for each SNR were trained, while the negative samples
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were relatively large. However, simply increasing the positive samples under each SNR caused more
false alarms at low SNR cases because of the small discrimination with the two heterogeneous samples,
which also shows that our proposed detector could achieve a satisfactory Pd with a very low Pf a for
SNR over −11 on the simulation dataset.

Table 2. Comparison of detection performance at the case of SNR = −12 with the objective dimension
dim = 40 for varying the value of K based on K simulation.

K 100 1100 2100 3100 4100 5100

Pf a 0.016 0.012 0.0085 0.0055 0.0015 0

Pd 0.9885 0.8875 0.8755 0.8475 0.752 0.4465

4.2. Semi-Simulation Data Experiment

Simulation data results have shown that our proposed approach was effective, to further evaluate
our algorithm, experiments based on semi-simulation data were also conducted. Specifically, in training
phase for optimizing the projection matrix W, by using IPIX radar data of real-life sea clutter, we had
600 signal sequences per signal-to-noise ratio (SNR 5 to 1) containing the desired signal labelled as the
positive samples, and 3000 noise-only samples as the negative samples shown in Figure 7.

(a) The negative sample based
on real sea clutter.

(b) The positive sample based
on real sea clutter.

Figure 7. Generated spectrograms on real sea clutter data with two categories in case of SNR = −10.
(a) Real sea clutter labelled as the negative sample. (b) Semi-simulation data containing signal labelled
as the positive sample.

Likewise, to evaluate the detection performance, 4000 signal sequence samples per SNR (5 to −10)
were collected as the test set (2000 positive samples, and 2000 negative samples, respectively), using KNN
classifier on the low-dimensional and discriminative SPD manifold. For the semi-simulation experiment,
parameters Kw and Kb in affinity graph embedding are set to 20 and 4. The parameter K in KNN classifier
was fixed to 1, known as the nearest neighbor classifier.

In particular, the Radon transform detector misjudged the edge of the clutter as a hidden signal due
to the complexity and heterogeneity in our semi-simulation experiment, which showed its drawback
in heterogeneous clutter signal detection tasks, thus it was not acceptable for practical application.
In this case, we referred to another algorithm as comparison evaluated in our experiments, namely,
scheme (a) our proposed information geometric DR based detector, and scheme (b) a mathematical
morphology signal detector [37] based on Sobel edge detection.

4.2.1. Detection Performance for Various Objective Dimension

Similarly, as for the real sea clutter data, the impact of the objective dimension dim (from 20 to 120
with an interval of 20) on the detection performance was analyzed shown in Table 3, from which we can
clearly see that the detection performance of the proposed detector varied with different dimensions.
Generally, the geometric DR detector with lower dimension yielded better detection performance, that is,
lower Pf a and high Pd within a certain SNR range, which indicated that our proposed detector could
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effectively reduce the redundancy brought by high dimensionality, and thus, improve the detection
performance because of its stronger discrimination.

To verify this conclusion, we give the detection probability curves of scheme (a) with the objective
dimension dim at 10 and scheme (b) shown in Figure 8. It can be seen that the proposed detector
outperformed the Sobel edge detector with Sobel threshold 280. Specifically, scheme (b) gained very
limited detection probability Pd when considering false alarm Pf a = 0.1. In particular, our proposed
detector led to a significant signal detection probability Pd with a low false alarm rate Pf a for most
SNR cases. Since the intra-class SPD matrices under lower SNR cases yielded less discrimination on
the manifold, the detection probability Pd dropped significantly at SNR of interval [0, −10].

Table 3. Comparison of detection performance for varying the value of dim based on real sea clutter.

dim = 20
Pf a = 0.0015

dim = 40
Pf a = 0.002

dim = 60
Pf a = 0.0045

dim = 80
Pf a = 0.0035

dim = 100
Pf a = 0.003

dim = 120
Pf a = 0.0045

SNR = 5 0.989 0.9785 0.9715 0.9645 0.9635 0.9575

SNR = 0 0.9795 0.97 0.9475 0.9415 0.9345 0.921

SNR = −5 0.561 0.575 0.5775 0.526 0.528 0.51

SNR = −10 0.073 0.0765 0.099 0.096 0.102 0.1075
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Figure 8. The detection probability curves of the two detectors (scheme (a) our proposed detector at
dim = 10 with Pf a = 5 × 10−4 and scheme (b) the Sobel edge detector) for varying the signal-noise-ratio
based on the real sea clutter.

4.2.2. Parameter Sensitivity Experiment on K

In addition, the impact of parameter K on detection performance was analyzed by using our
proposed algorithm for the semi-simulation data, which can be seen in Table 4. We selected the case of
SNR = −5 with the objective dimension dim = 20 and fixed the parameter Kw to 20, Kb to 4. Table 4
depicts the detection performance for various K in the interval [1, 5100]. It can be clearly seen that
both the false alarm rate Pf a and the detection probability Pd increased with K, which indicated the
same variation trend with the simulation experiment. In particular, to obtain a satisfactory detection
performance, a reasonable value of K should be taken. For instance, in this part, the false alarm rate
Pf a could be well controlled by setting a small K, that is, the nearest neighbor classifier.
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Table 4. Comparison of detection performance at the case of SNR = −5 with the objective dimension
dim = 20 for varying the value of K based on real sea clutter .

K 1 100 1100 2100 3100 4100 5100

Pf a 0.015 0.0185 0.086 0.1715 0.253 0.3075 0.4265

Pd 0.561 0.5985 0.923 0.99 1 1 1

5. Discussion

Our work focuses on the task of complex signal detection, establishing a novel signal detection
framework based on matrix information geometric dimensionality reduction. The results demonstrate
that our proposed detector achieve a satisfactory detection performance in complex signal detection
tasks and hence can be widely used in field of signal detection. More specifically, our proposed detector
has outperformed the existing signal detection techniques on both the simulation and semi-simulation
data with satisfactory detection performance, although the improvement is limited to a certain extent,
especially for the real-life sea clutter data. Meanwhile, the constructed SPD matrices in two cases
obviously have different distribution on SPD manifold, which indicates that parameters for various
signal detection tasks are required to tune for optimum function.

In conclusion, the proposed detector still has some drawbacks required to overcome:
The dimensionality reduction algorithm on such high-dimensional signal data constructed SPD
manifold has a very high computational complexity, resulting in a large computational cost, which limits
the efficiency of our method. In this case, how to accelerate these Riemannian geometry related
algorithms is a subject that merits further study. Meanwhile, the form of the constructed SPD matrix
has a great influence on detection performance, to this end, appropriate feature descriptors and
better SPD matrix construction are areas we intend to study. Additionally, considering the high
computing and storage cost on SPD matrices, we choose the KNN algorithm in our experiment,
a simple classifier without training process rather than complex predict model-based classification
methods, then obtain a satisfactory detection performance. However, the KNN classifier is sensitive
to outliers and closely related to the distribution of training samples, which denotes that there might
be potential improvement on detection performance. Thus, for future research, we may extend our
approach by using other effective classification methods on these spectral-based SPD matrices.
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