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Abstract: The need for cooling is more and more important in current applications, as 
environmental constraints become more and more restrictive. Therefore, the optimization of reverse 
cycle machines is currently required. This optimization could be split in two parts, namely, (1) the 
design optimization, leading to an optimal dimensioning to fulfill the specific demand (static or 
nominal steady state optimization); and (2) the dynamic optimization, where the demand fluctuates, 
and the system must be continuously adapted. Thus, the variability of the system load (with or 
without storage) implies its careful control-command. The topic of this paper is concerned with part 
(1) and proposes a novel and more complete modeling of an irreversible Carnot refrigerator that 
involves the coupling between sink (source) and machine through a heat transfer constraint. 
Moreover, it induces the choice of a reference heat transfer entropy, which is the heat transfer 
entropy at the source of a Carnot irreversible refrigerator. The thermodynamic optimization of the 
refrigerator provides new results regarding the optimal allocation of heat transfer conductances and 
minimum energy consumption with associated coefficient of performance (COP) when various forms 
of entropy production owing to internal irreversibility are considered. The reported results and their 
consequences represent a new fundamental step forward regarding the performance upper bound of 
Carnot irreversible refrigerator. 

Keywords: refrigerator; optimization; minimum energy expense; heat transfer conductance 
allocation; production of entropy 

 

1. Introduction 

The refrigeration machine continues to play a vital role in the field of engineering applications, 
proven by numerous papers published in international journals, some of them specifically dedicated 
to this topic. 

By examining recently published scientific works regarding reverse cycle machines, one remarks 
that more papers are devoted to refrigerating machines than to heat pumps [1–10], which also 
corresponds to current applications that are more and more developed; that is, refrigeration freezing 
and deep-freezing in the food industry, air conditioning, heat pumps, or medical applications. 

To meet the consumer requirements regarding the performance and energy expense, the 
optimization of reverse cycle machines appears as an important task. The optimization procedure 
could follow two trends depending on the machine operation mode. Thus, the first one is relative to 
the nominal operation conditions and provides optimal dimensioning of the machine subsystems 
(design optimization). The second one is associated with control-command of the reverse cycle 
systems owing to the variability of ambient and operation conditions (dynamic optimization). 
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Many studies in the literature are concerned with specific improvement of reverse cycle 
machines, most recently dealing with topical applications, namely, thermoelectric cooler [11], vortex 
tube design models [12], electronic cooling with nanofluids [13], ground source heat pumps 
applications [14], electrocaloric refrigeration [15], or magnetic refrigeration [16]. 

Our approach focuses on a global optimization from a thermodynamic point of view, even if the 
thermo-economic optimizations [17–24] are also important and indispensable from an engineering 
point of view. 

Note that, in terms of the thermodynamic approach, finite time thermodynamics (FTT) 
optimization and entropy generation minimization [4,18] reported important results in the recent 
past. Nevertheless, these approaches remained limited to endo-reversible thermodynamics tools 
[4,25,26]. 

Some insight aiming to get closer to real operation of reverse cycle machines has been developed 
using linear irreversible thermodynamics [27]. 

The purpose of this paper is to complete the previous reviews [1,2]. Thus, an extension of a new 
modified modelling of Carnot irreversible refrigerator recently developed [4] is proposed, aiming to 
provide optimal physical dimensions of the refrigerator, mainly optimal allocation of heat transfer 
characteristics between source (sink) and machine (internal fluid cycled). The model developed in [4] 
has considered the coupling between thermostats and machine by an energy balance between source 
(sink) and cycled medium, but limited only to the endo-reversible case. This methodology has 
introduced a supplementary physical quantity, namely the heat transfer entropy ΔS with reference 
to source for the refrigerator. In the endo-reversible case [4], the answer is analytical. Furthermore, 
these results were extended to a refrigerator with internal irreversibility characterized by production 
of entropy ΔSI, which was supposed as a constant parameter [5]. The proposed modelling in [5] 
explored the performance of Chambadal [28] and Curzon-Ahlborn [29] cycles transposed from 
engine in refrigerators by gradually emphasizing the influence of irreversibilities through internal or 
total entropy productions, and through irreversibility degrees introduced by Novikov [30] and 
irreversibility ratios introduced by Ibrahim et al. [31]. The results have shown that Chambadal’s model 
optimum coincides with the equilibrium thermodynamics one, namely, the non-existence of 
minimum energy consumption, while the optimization of the Curzon-Ahlborn model relates the 
external temperatures to the finite dimensions of the machine (GH, GC) that have to be optimally 
allocated. Analytical expressions of the optimal distribution of the finite heat transfer conductances 
GH and GC leading to the minimum energy expense were derived for ΔS and ΔSI constant parameters 
and the total finite dimensions GT fixed. 

The present paper presents the thermodynamics optimization of the Carnot endo-irreversible 
refrigerator, providing new results regarding the optimal allocation of heat transfer conductances 
and minimum energy consumption and associated coefficient of performance (COP) when various 
forms of entropy production owing to internal irreversibility are considered. It uses the same 
methodology, but further developed for the case when the minimization of mean power consumption 
is sought (Section 2.2). The new concept of production entropy action is introduced, being analogous to 
energy action used in classical mechanical. 

A step further consists of a quasi-Chambadal refrigerator modeling analysis. In this case, the 
source is considered finite, determining the heat transfer across a temperature gap, while the sink 
(atmosphere) remains in perfect thermal contact with the cycled fluid. The modeling of the heat 
transfer at the cold source in the quasi-Chambadal refrigerator is developed for two different cases, 
once considering the heat transfer coupling constraint, and then without coupling. The effect of 
various forms of functional dependence of the entropy production on the results reveals new expressions of 
COP and mean work per cycle. 

The Curzon-Ahlborn refrigerator model extends the study achievements. It is more complete 
and allows modeling without heat transfer coupling at source and sink (classical appraisal), or with 
coupling. Regarding the energy optimization results, the last case leads to a new optimal allocation 
of heat transfer conductance, with corresponding new upper bounds for the COP and minimum work 
expense in endo-reversible cycle, min Wendo-rev (Section 3.2). 
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Numerical results are illustrated when the production of entropy depends on temperatures and 
reference heat transfer entropy. An asymptotic solution is proposed in the low irreversibility case. 

2. Thermodynamic Cycles of Two Thermal Reservoirs Machines 

2.1. The Standard Reverse Cycles 

The topic developed here is only concerned with the reverse cycle machines coupled with one 
heat source and a cold sink. Generally, these machines are vapor compression machines according to 
cycle 1 illustrated in Figure 1. Owing to technological constraint, the cycle is composed of a 
compression of superheated vapor that is followed by desuperheating of vapor. Then, a condensation 
of the cycled fluid occurs as well as, generally, a subcooling of the saturated liquid before entering 
the expansion valve, where an isenthalpic transformation occurs. The last transformation closing the 
cycle consists of fluid vaporization and superheating of vapor. Note that this kind of cycle is efficient 
only in a specific interval characteristic of a pure fluid, referring here to the temperature variation 
range [TT, TK], with TT (TK) triple point (critical point) temperature. 

 
Figure 1. Cycles of vapor compression machines illustrated in T–s diagram. 

If the fluid is a mixture, the corresponding cycle is subject to a glide of temperature in the liquid 
vapor domain, thus the corresponding cycle is near to a Lorenz cycle (cycle 2 in Figure 1). 

If a more important variation of temperature is needed, supercritical (or transcritical) cycles are 
possible (cycle 3). In this configuration, the variation of temperature at the hot side could be huge. 

In any case, the problem is to develop the more efficient reverse cycle machines satisfying 
specific constraints or not. In the paper, only the limiting case of Carnot configuration (cycle 4) aiming 
at determining performance upper bound of the two reservoirs machines will be considered. 

Classically, the equilibrium thermodynamics is concerned with determining the upper bound 
efficiency of a cycle. For a reverse cycle machine, this efficiency is characterised by the coefficient of 
performance (COP) relative to the refrigerator COPREF or to the heat pump COPHP. 

If the cold source is a thermostat at temperature TCS, and the hot sink is a thermostat at 
temperature THS, one gets the well-known result depending only on these two temperatures: 𝐶𝑂𝑃  = 𝑇𝑇 − 𝑇 = 𝑇∆𝑇 , (1)

𝐶𝑂𝑃  = 𝑇𝑇 − 𝑇 = 𝑇∆𝑇 , (2)

with ΔTS = THS − TCS. 
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These formulas determine the upper bound of COPs under reversible operation conditions of 
the system consisting of source–machine–sink. Nevertheless, these quasi static conditions are 
associated with infinite time duration of the processes, thus the corresponding heat transfer rate at 
the cold or hot side of the machine is null. This is the reason for which the modelling hereafter will 
consider the endo-irreversible cycle condition focused on refrigeration to illustrate the methodology 
and the obtained results. The same modelling could be adapted for heat pump configuration. It is 
under development by our research group and is in due course of publication. 

2.2. Endo-Irreversible Carnot Refrigerator 

The endo-irreversible Carnot machine configuration is represented in Figure 2 and can also be 
named the exo-reversible Carnot refrigerator [5], as there is no heat transfer at finite temperature gap 
at the cold and hot side of the machine. 

 
Figure 2. Carnot endo-irreversible refrigerator. 

The irreversible cycle is identified from state 1 (beginning of the low temperature isotherm), 2 
(exit of the low temperature isotherm and beginning of the adiabatic compression), 3 (end of the 
irreversible adiabatic compression and beginning of the high temperature isotherm), and 4 (exit of the 
high temperature isotherm and beginning of the irreversible adiabatic expansion, up to state 1). 

Figure 2 also shows the internal irreversibility of the cycle by the corresponding production of 
entropy on the two isothermal transformations ΔSIC, ΔSIH and on the adiabatic compression and 
expansion, ΔSICo, ΔSIEx, respectively. The sum of these four terms is the cycle production of entropy, ΔSI. 

In this configuration, one supposes that thermal loss between hot and cold side does not exist. 
This is a favorable case allowing to estimate the upper bound for the COP corresponding to the 
minimum of work expense. 

The Carnot endo-irreversible model is presented for a cycle with the constraint relative to 
temperatures that imposes 𝑇 = 𝑇 > 𝑇  (T0, ambient temperature). 

The energy balance over a cycle is expressed as follows: |𝑊| = |𝑄 | − 𝑄 , (3)

where W is the work input in the cycle and 𝑄 , (𝑄 ) are the heat delivered at the hot sink (heat 
received at the cold source) by the working fluid. They are expressed as follows: |𝑄 | = 𝑇 |∆𝑆 | = 𝑇 |∆𝑆 |, (4)𝑄 = 𝑇 ∆𝑆 , (5)

The entropy balance is expressed as follows: 
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|∆𝑆 | = ∆𝑆 + ∆𝑆 , (6)

where ∆𝑆 , heat transfer entropy released at the hot side during the cycle; ∆𝑆 , heat transfer entropy received at the cold side by the cycle medium; ∆𝑆 , the total entropy production during the cycle. It is the sum of four entropy productions 
corresponding to each transformation of the cycle (see Figure 2), successively indicated by ∆𝑆 ,∆𝑆 ,∆𝑆 ,∆𝑆  such that ∆𝑆 = ∆𝑆 + ∆𝑆 + ∆𝑆 + ∆𝑆 . (7)

By combining Equations (3)–(6) and using as reference the heat transfer entropy chosen at the 
useful cold side (∆𝑆 ) that will be simply denoted by ∆𝑆, one gets the following: |𝑊| = ∆𝑆(𝑇 − 𝑇 ) + 𝑇 ∆𝑆 . (8)

This relation corresponds to the Gouy–Stodola theorem applied to the refrigerator, stating that 
the minimum of energy expense corresponds to the minimum of entropy production. In fact, this 
condition is achieved for the reversible or quasi static operation. 

Equations (1), (5), and (8) provide the expression of the corresponding COP as follows: = | | = + ∙ ∆∆ . (9)

It results from Equation (9) that the real COP is a decreasing function of two ratios: 

• the intensive ratio ; 

• the extensive ratio ∆∆  (corresponding to the one introduced for Carnot engine by Novikov [21]). 

Considering the power expense of the refrigerator, one can express its mean value over the cycles 
as follows: 𝑊 = | | ∆ , (10)

where 𝜏, time duration of the cycle. 
The quasi static case is well approximated by an entropy production inversely proportional to 𝜏: ∆𝑆 = 𝐶𝜏 . (11)

Note that Equation (11) provides the important definition of CI, which represents a production 
entropy action with the unit (J·s/K). It is analogous to energy action used in classical mechanical. 

By combining Equations (10) and (11), the mean power appears as a decreasing function of 𝜏. 
Contrarily to the engine performance, an optimum of power related to the finite Wrev imposed does 
not exist. 

Nevertheless, when the mean power 𝑊  is provided for the refrigerating machine, the energy 
expense becomes the following: |𝑊| = 𝑊 𝜏 + . (12)

In this case, by considering the second-order equation of (12), a minimum of mechanical energy 
expense is obtained for τ*: 

𝜏∗ = 𝐶 𝑇𝑊 , (13)

and it depends on the square root of the production entropy action: min|𝑊| = 𝜏 𝑊 𝐶 𝑇 . (14)

A paradox appears here, because when 𝐶 → 0, 𝜏∗ → 0 and min𝑊 → 0. 
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2.3. Quasi-Chambadal Refrigerator 

The corresponding cycle focuses on the useful heat transfer at the cold source and supposes perfect 
heat transfer at the hot sink, which is the environment at temperature T0 (Figure 3). 

 
Figure 3. Cycle representation of Chambadal’s refrigerator. 

Thus, the major advance in the modelling compared with the previous case (Section 2.2) is given 
by the heat transfer QC, which is performed at a temperature gap (TCS−TC) in Chambadal refrigerator 
cycle. This leads to two potential approaches, so-called without coupling and with coupling at the 
cold source. The difference between them is provided by the way the heat transfer QC is expressed, 
once using the heat transfer entropy, and then by involving the heat transfer conductance relative to 
the heat exchanger at the refrigerator cold side. 

2.3.1. Modelling without Coupling at the Cold Source 

The modelling is analogous to the previous one (Section 2.2). 
The same ΔSC remains as reference heat transfer entropy, but the cold side temperature at which 

heat is transferred to the cycled medium is TC instead of TCS. Thus, the heat transfer to the cold side 
is expressed as follows: 𝑄 = 𝑇 ∆𝑆. (15)

The mechanical energy needed becomes the following: |𝑊| = (𝑇 − 𝑇 )∆𝑆 + 𝑇 ∆𝑆 . (16)

Note that, at this time, W depends on temperature TC and not TCS. As TC < TCS, it turns out that 
the necessary heat transfer involves a higher mechanical expense. In Equation (16), W appears as a 
decreasing function of TC, if ∆𝑆  is a considered parameter. The results corresponding to this 
assumption were reported in [5]. However, ∆𝑆  could also be a function of other properties 
(temperature, size). 

From current knowledge, the production of entropy owing to internal irreversibility of the 
converter does not have a general analytical expression, as the heat transfer entropy has. Some 
attempts have been reported [32,33] in the finite speed thermodynamics approach of irreversible 
Stirling machines and Carnot-like refrigerating machines. Nevertheless, the derived analytical 
expression of the entropy production remains very much dependent on the study assumptions. 

The purpose of the present modelling is to emphasize analytically the effect of internal 
irreversibility on refrigerator performance. Thus, the simplest forms of the functional dependence of 
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∆𝑆  were chosen to show the influence of intensity (ΔT) or extensity (ΔS) or the combination of the 
two. They are considered to hold mainly in the vicinity of the optimum found. 

The most common forms for production of entropy used in this analysis are as follows: 

(a) proportionality to the reference useful heat transfer entropy (extensity): ∆𝑆 = 𝑑 ∆𝑆, (17)

with dI irreversibility degree. Thus, ∆𝑆  is a function of the reference extensity. 

(b) proportionality to the gradient of available intensity (𝑇 − 𝑇 ) for the converter: ∆𝑆 = 𝑠 (𝑇 − 𝑇 ). (18)

(c) the third functional dependence is a combination of the two preceding ones (proportionality to 
the reference useful reversible energy): 

𝑆 = 𝑘  ∆𝑆 (𝑇 − 𝑇 ). (19)

It is easy to show that, for these three general linear forms of the function regarding the entropy 
production of a refrigerator, this production is decreasing when 𝑇  increases or with the increase in (𝑇 − 𝑇 ) as well as in ∆𝑆 , and obviously the increase in the three corresponding irreversibility 
parameters (𝑑 ; 𝑠 ;𝑘 ) introduced by Equations (17)–(19). Thus, it is obvious that there is no minW 
in this case. 

The general formulation of COP results from (15) and (16) as follows: = | | = 1 + ∆∆ − 1, (20)

which, compared with COP for the reversible cycle, = − 1, (21)

emphasizes a correcting factor depending on temperatures, heat transfer entropy, and production of 
entropy: 𝐹(𝑇 ,𝑇 ,∆𝑆 ,∆𝑆) = 1 + ∆∆ , (22)

which clearly shows the effect of irreversibility on the Chambadal refrigerator COP: = 𝐹 − 1 = + 1 𝐹 − 1. (23)

Obviously, the increase of TCS and ∆𝑆  will decrease the COP, while it will increase with TC and ∆𝑆. 

2.3.2. Modelling with Coupling at the Cold Source (Coupled Chambadal Refrigerator) 

The Chambadal’s model introduces a coupling, but only at the cold side of the system. For a 
linear heat transfer law, we define a new general physical quantity GC (J/K), a heat transfer 
conductance relative to the cold heat exchanger introduced by the following: 𝑄 = 𝑇 ∆𝑆 = 𝐺 (𝑇 –𝑇 ). (24)

The consequence of this new constraint is that 𝑇  changes from an independent variable to a 
determined one according to the following: 𝑇 = ∆ . (25)

Using the same approach as in Section 2.3.1, one can show that the consumed mechanical energy 
W is increasing with ∆𝑆 as well as with 𝑑  𝑜𝑟 (𝑠 ,𝑘 ), but is decreasing with 𝐺 , whichever form of 
the entropy production function is considered. 

The coupling at the cold source will modify the COP (Equation (23)) as well by the new 
correcting factor F expressed as follows: 
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𝐹 = ∆ 1 + ∆∆ . (26)

In the endo-reversible case (∆𝑆 = 0), one gets the following: 1𝐶𝑂𝑃 = 𝑇𝑇 𝐺 + ∆𝑆𝐺 − 1. (27)

Equation (27) represents a new upper bound of COP of the endo-reversible cycle that results 
from the coupling at the cold side of Chambadal refrigerator in the modelling based on heat transfer 
entropy and production of entropy. It clearly shows that the ratio ∆  makes the difference from the well-

known expression of COP for reversible cycle (Equation (21)) by decreasing the COP when it rises. 

3. The Curzon-Ahlborn Refrigerator 

This is the more comprehensive modelling that is examined here as it completes the Chambadal 
approach by considering the heat transfer across a temperature gap to the hot sink as well. Thus, the 
cycle illustrated in Figure 3 is modified in Figure 4 by considering the real heat transfer conditions, 
namely, different temperature of the source and cycle medium at the hot side, respectively. 

3.1. Modelling without Coupling Constraints 

The methodology is the same as the one applied in Section 2.3.1, but, owing to the formal 
symmetry between hot and cold side of the system (see Figure 4), it appears this time that the results 
depend on TH value. The entropy production laws (18) and (19) become the following: 

𝑆 = 𝑠   (𝑇 − 𝑇 ), (28) 𝑆 = 𝑘  ∆𝑆 (𝑇 − 𝑇 ). (29)

The energy expense is increasing with irreversibilities parameters (𝑑 , 𝑠 ,𝑘 ), and with ΔS and 
TH, but it is decreasing with TC. 

 
Figure 4. Cycle representation of Curzon-Ahlborn’s refrigerator. 

3.2. Modelling with Coupling Constraints 

The same coupling constraint (24) used in the Chambadal model (Section 2.3.2) is conserved here 
as well, to which the constraint owing to heat transfer between the hot side of the cycle and heat sink is 
added: 
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|𝑄 | = 𝑇 |∆𝑆 | = 𝐺 (𝑇 –𝑇 ). (30)

Combining the entropy balance given by Equation (4) with Equation (30) allows to conserve the 
same heat transfer reference entropy, thus one gets the following: 𝑇 = 𝑇 (∆ ∆ ). (31)

Note that, if ∆𝑆  is no longer a constant parameter, as it is expressed by the functions (28) and 
(29), 𝑇  appears in Equation (31) as a function of 𝑇 , 𝐺 , and ∆𝑆, as well as of 𝑇 , according to 
Equation (25). This corresponds to a strong coupling and will be developed in the following section. 

Nevertheless, we want to detail and comment on the case where ∆𝑆  is considered a constant 
parameter, as well as the importance of the finite physical dimension constraint, owing to the heat 
transfer limitations of the system: 𝐺 + 𝐺 = 𝐺 , (32)

where 𝐺  represent the total heat transfer conductance to be optimally allocated between the hot 
and cold side. 

This completes the preceding works done on refrigerators [5], as well as on engines [34]. 
Variational calculus furnishes the following analytical results: 𝐺∗ = ∆(∆ ∆ ) ∆ (𝐺 − ∆𝑆 − ∆𝑆 ) 𝑇 − (∆𝑆 + ∆𝑆 ) 𝑇  , (33)

𝐺∗ = ∆ ∆(∆ ∆ ) ∆ (𝐺 + ∆𝑆) 𝑇 + ∆𝑆 𝑇  . (34)

The corresponding 𝑚𝑖𝑛|𝑊| is as follows: 𝑚𝑖𝑛|𝑊| = ∆ 𝐺 𝑇 (∆𝑆 + ∆𝑆 ) − 𝑇 ∆𝑆 + ∆𝑆(∆𝑆 + ∆𝑆 )( 𝑇 + 𝑇 ) . (35)

This function that corresponds to the optimal distribution of GH and GC is increasing with ΔS 
and ∆𝑆 , and decreasing with 𝐺 . However, one notes that the increase of GT raises the cost of the 
system, leading to an economic compromise between capital expenditure (designing) and operational 
cost (energy consumption over the system life). 

To complete the results, the combination of Equations (24), (30), (33), and (34) gives the COP 
corresponding to 𝑚𝑖𝑛|𝑊| conditions as follows: 1𝐶𝑂𝑃 (𝑚𝑖𝑛|𝑊|) = 𝑇𝑇 ∙ ∆𝑆 + ∆𝑆∆𝑆 ∙ 𝐺 𝑇 + ∆𝑆 𝑇 + 𝑇𝐺 𝑇 − (∆𝑆 + ∆𝑆 ) 𝑇 + 𝑇 − 1 = 𝑇𝑇 𝐹 − 1, (36)

where the correction factor expression is much more complex than those derived for Chambadal 
refrigerator (Equations (22) and (26)) by involving intensities and extensities as well: 

𝐹 = 𝑇𝑇 ∙ ∆𝑆 + ∆𝑆∆𝑆 ∙ 𝐺 𝑇 + ∆𝑆 𝑇 + 𝑇𝐺 𝑇 − (∆𝑆 + ∆𝑆 ) 𝑇 + 𝑇 . (37)

If ∆𝑆 = 𝑑 ∆𝑆 (case a) of Section 2.3.1, the result is immediate by substitution in Equation (36). For 
the two other cases (b and c), the results will be numerical and considered hereafter in Section 3.3. 

An interesting result coming out from Equation (36) is the COP at endo-reversible condition, 
namely, when ∆𝑆 = 0:   ( | |) = ∙ ∙ ∆∆ − 1. (38)

It is important to note that the correction factor F’ does not vanish in the endo-reversible case when 
the coupling is considered. 

It appears from Equation (38) that, for a given ∆𝑆 (existence condition of the cycle), the COP at 
minimum energy expense is strongly influenced by the value of ∆𝑆  in comparison with GT’s 
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influence. The equilibrium thermodynamics limit is recovered only when ∆𝑆/GT is small (or tends to 
the zero limit). 

Equation (38) constitutes a new upper bound for refrigerator COP at minimum energy expense. 
A second important consequence concerns the total entropy production of the system ∆𝑆 , 

whose value corresponds to the following: 

𝑆 = ∆𝑆 


+ 𝑑 +  ( )

 ( ) . (39)

This function increases with dI and ∆𝑆, for given GH and GC values, but it also presents an 
extremum when 𝐺∗ = ( )  , (40)

𝐺∗ =  . (41)

The comparison of optimal expressions given by Equations (33), (34), (40), and (41) clearly shows 
that the optimal allocation of the heat transfer conductances differs when the energy expense 
minimization or minimum entropy production of the system is considered. Thus, in the first case, the 
dependence on the temperature appears in Equations (33) and (34), while it is missing in the second 
case from Equations (40) and (41). Consequently, the theorem of entropy production minimization does 
not hold for refrigerator (or, more precisely, for reverse cycle machine). 

The optimum of entropy production is expressed as follows: 𝑂𝑝𝑡 ∆𝑆 = ∆𝑆 𝑑 + ∆  ( )∆ . (42)

The corresponding value for endo-reversible case (dI = 0) is straight forward: 𝑂𝑝𝑡 ∆𝑆 = ∆ . (43)

The value is quadratically increasing with ΔS and decreasing with GT. Note that the equilibrium 
thermodynamic limit (reversibility) is retrieved when ΔS/GT tends to zero. 

3.3. Modelling with Dependence on Temperature of the Production of Entropy 

This dependence is defined by Equations (28) and (29). 

3.3.1. Production of Entropy Depending only on Temperatures 

In this case introduced by Equation (28), TC remains a simple expression given by Equation (25). 
For TH, one gets the following: 𝑇 = 𝐺 − ∆𝑆 + 𝑠 𝑇 − √2𝑠 ∙ 𝑇 , (44)

with  = (𝐺 − 𝑆 + 𝑠 𝑇 ) − 4 𝑠 𝐺 𝑇 . 
TH appears depending on TC, thus the optimization must be numerical. 
Anyway, for low irreversible systems (4 𝑘 𝐺 𝑇 ≪ (𝐺 − 𝑆 + 𝑠 𝑇 ) ), it is possible to derive 

an acceptable simple approximate solution expressed as follows: 𝑇 ≅ 𝐺 𝑇𝐺 − ∆𝑆 + 𝑠 𝑇 . (45)

Considering the associated W value to this approximate solution confirms that the energy 
expenditure is increasing with ΔS and sIL, and decreasing with TC. The optimal distribution of GH and 
GC remains to be numerically sought (it is in due course). 

3.3.2. Production of Entropy Depending both on Intensity and Extensity 

When ∆𝑆  corresponds to Equation (29), the expression of TC remains that given by Equation (25). 
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It is easy to transpose Equation (44) to obtain the new expression of TH associated to the new law 
of entropy production given in Equation (19): 𝑇 = 𝐺 − 𝑆(1 − 𝑘 𝑇 ) − √∆2𝑘 𝑆 , (46)

with  = [𝐺 − 𝑆(1 − 𝑘 𝑇 )] − 4 𝑘 𝐺 𝑆 𝑇 . 
TH is always correlated to TC, but for low irreversible systems 4 𝑘 𝐺 ∆𝑆 𝑇 ≪ [𝐺 −

𝑆(1 − 𝑘 𝑇 )] , it exists again as a reasonable approximation: 𝑇 ≅ 𝐺 𝑇𝐺 − ∆𝑆(1 − 𝑘 𝑇 ). (47)

This approximated result corresponds to an energy expense always increasing with ∆𝑆,𝑘  and 
decreasing with TC. 

The optimal energy conductance allocation remains a numerical one. 
Some results of this numerical optimization are shown in Figure 5 for the case corresponding to 

entropy production dependence on both intensity and extensity. 
Figure 5 illustrates the variation of the non-dimensional mechanical work expense with the 

optimum non-dimensional heat transfer conductance at the hot side, when the non-dimensional heat 
transfer entropy varies. The non-dimensional form of the involved property corresponds to the 
following: |𝑤| = |𝑊|𝐺 𝑇 ,            𝑔∗ = 𝐺∗𝐺 ,            ∆𝑠 = ∆𝑆𝐺 . (48)

 
Figure 5. Non-dimensional work variation versus non-dimensional heat transfer conductance for 
different values of the non-dimensional reference heat transfer entropy and kIL = 0.001. 

The curves on the figure clearly show the existence of a minimum energy expense |𝑤| for each 
value of the optimum non-dimensional heat transfer entropy Δs, and this minimum slightly slides to 
higher values of 𝑔∗  (from 0.75 to 0.8) as Δs increases (from 0.19 to 0.22). Moreover, as Δs increases, 
the variation range of left side values of 𝑔∗  decreases (from 0.56–0.95 to 0.61–0.95), together with a 
sharp increase in energy expense |𝑤|. Thus, it is obvious that an operation regime with small values 
of 𝑔∗  should be avoided even for small values of Δs. 

Figure 5 also shows the strong influence of the reference heat transfer entropy on the minimum 
energy expense because, for 𝑔∗  values near this minimum |𝑤|, its non-dimensional value increases 
2.5 times (from 0.1 to 0.25) for a Δs increase of 0.158 (from 0.19 to 0.22). 

A detailed study is in due course near to the authors. 
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4. Conclusions and Perspectives 

This paper has reported of gradual generic models of refrigerator, starting from the reverse 
Carnot cycle followed by Chambadal’s machine configuration and, finally, the Curzon-Ahlborn 
refrigerating machine. 

The main original contributions of the paper are as follows: 

• The comparison with these various models taking account or not the supplementary constraint 
due to coupling of the machine (cycle) with the cold source and hot sink. This introduces new 
results depending not only on intensities (temperatures), but also on extensities (reference heat 
transfer entropy ΔS, and production of entropy ΔSI). 

• The comparison of the results obtained for three kinds of entropy production laws for the 
machine. The mechanical energy expense is always an increasing quantity of the irreversibility 
parameters (dI, sI, kI), but also of ΔS, the reference heat transfer entropy. 

• An optimal allocation of heat transfer conductances, GH and GC, was confirmed and completed 
in the case of Curzon-Ahlborn configuration, whichever form of the entropy production law is 
considered. Analytical solutions were obtained when ΔSI is a constant parameter or proportional 
to ΔS, the reference heat transfer entropy (extensive proportional entropy production model). 
Complementary studies for other entropy production laws are in due course depending on 
available intensity, or extensity, or both. In any case, the optimal allocation of GH and GC differs 
if the minimum of energy expense, or the minimum of the system entropy production, is 
considered. 

• The COP associated with the minimum of energy expense was obtained and its corresponding 
expression for the endo-reversible configurations was determined. It constitutes a new 
expression of the upper bound for the refrigerator performance (Equation (36)). 
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