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Abstract: We analyze a nonlinear q-voter model with stochastic noise, interpreted in the social context
as independence, on a duplex network. The size of the lobby q (i.e., the pressure group) is a crucial
parameter that changes the behavior of the system. The q-voter model has been applied on multiplex
networks, and it has been shown that the character of the phase transition depends on the number of
levels in the multiplex network as well as on the value of q. The primary aim of this study is to examine
phase transition character in the case when on each level of the network the lobby size is different,
resulting in two parameters q1 and q2. In a system of a duplex clique (i.e., two fully overlapped
complete graphs) we find evidence of successive phase transitions when a continuous phase transition
is followed by a discontinuous one or two consecutive discontinuous phase transitions appear,
depending on the parameter. When analyzing this system, we even encounter mixed-order (or
hybrid) phase transition. The observation of successive phase transitions is a new quantity in binary
state opinion formation models and we show that our analytical considerations are fully supported
by Monte-Carlo simulations.

Keywords: multiplex networks; voter model;opinion dynamics; successive phase transition;
hybrid phase transition

1. Introduction

It is pretty obvious that modeling opinion dynamics [1–6] is a tricky task that can be seen as
maneuvering between two distinct extremes. On one side, there are classical binary state models [7]
that are often subject to exact analytical treatment, although their assumptions and formulation can
be seen as oversimplified, especially from the social science point of view. On the other hand, it is
also possible to move towards a very general approach of agent-based models [8–11], equipping
individuals with large vectors of attributes, applying detailed, very complex rules and, last but not
least, taking into account multidimensional structure of interactions.

As underlined before [12], the so-called q-voter model with independence, understood as
stochastic noise (later on in this paper referred as simply q-voter model for brevity), is of particular
interest in the group of binary opinion models. The idea that q-lobby (a group of q nodes chosen
form of all the neighbors of an agent) acting on an individual needs to be unanimous in order to
change agent’s opinion has solid grounds in social sciences. As a seminal example one can refer to
Asch experiments [13] that raise the importance of the agreement among a group that is bound to
convince a participant to change his/her opinion. The size of the group (lobby) and the homogeneity
of the state is also particularly essential as it was shown in Stanley Milgram’s studies [14]. In this way,
despite being relatively simple, q-voter model can be said to have realistic assumptions. From the
macroscopic perspective the q-voter model shows how, owing to the introduction of the noise to
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the system, society is going to a consensus (i.e., one opinion dominates) which is an example of a
spontaneous symmetry breaking.

However, q-voter model with independence manifests also another property that is claimed to be
very often observed in social systems [15,16]: a hysteresis, i.e., the dependence of the current state of the
system on previous ones. This phenomenon is directly connected to an especially interesting physical
concept of a discontinuous phase transition. We need to stress that although a phase transition between
the ordered and disordered state is typically observed in the vast majority of binary-state models
such as Sznajd model [2], voter model [3], and threshold model [6], it is usually a continuous phase
transition. The fact that q-voter model with independence, in spite of its relative simplicity, displays
the discontinuous phase transition driven by a stochastic noise makes it a very attractive playground.
When examined on the topology of a complete graph (i.e., a clique) which is subject to mean-field
approach, the transition changes its character from continuous to discontinuous for q ≥ 6 [17]. It is
also possible to examine the q-voter model with independence for more realistic network topologies,
such as Erdős–Rényi random graphs, Barabasi–Albert evolving networks, or Watts–Strogatz model
using pair approximation [18], however in the limiting case, these solutions coincide with the complete
graph one.

The above-mentioned graph structures can be criticized as being oriented on just a single aspect
of one’s relationship. In reality, an individual is subject to constant pressure from different groups that
create separate networks—such a situation is especially evident in the case of different social on-line
media. Exchanging comments with a friend, let us say, on Twitter, does not necessarily mean that
the same person is among one’s contacts in Facebook. In the last decade, multiplex networks [19]
were proposed as an elegant tool to model such aspects of activity and, without any doubt, they have
become one of the most active areas of recent network research mainly due to the fact that many
real-world systems possess layers in a natural way [20]. A lot of attention has also been devoted to the
analysis of various dynamics on multiplex networks, including diffusion processes [21,22], epidemic
spreading [23], majority-vote [24], and voter dynamics [25,26]. The q-voter model examined on a
duplex (i.e., consisting of two levels) networks as well as on an arbitrary number L of layers [12]
brings interesting results: the value of q for which the transition changes its character from continuous
to discontinuous moves from q ≥ 6 observed for a monoplex (i.e., L = 1) to q ≥ 5 for a duplex.
In case of L ≥ 3, this critical value becomes constant and equal to 4—so far there is no straightforward
explanation of these phenomena. Lately, also the pair approximation technique has been used to
examine different topologies [27].

The major drawback of such a setting of the q-voter model on multiplex networks that we want
to tackle in this paper lays in its symmetry, i.e., the lobby acting on an individual on each level has
the same size q. Such an assumption does not seem to be justified as it is rather clear that we pay
more attention to some groups while almost neglecting others—if a person is less devoted to on-line
groups than to real-life friends, even a smaller set chosen from the latter will affect him/her stronger
than larger group recruiting from the first ones. To overcome these issues we introduce in this study
an asymmetric q-voter model with independence on a duplex clique where lobby sizes on different
levels are described by parameters q1 and q2. This simple step brings unexpected and interesting
results from the statistical physics point of view: for certain values of q1 and q2, we observe so-called
successive phase transitions [28]. In fact, depending on the actual value of q1 and q2, the model
gives two consecutive discontinuous phase transitions or a continuous phase transition following a
discontinuous one.

The rest of the paper is organized in the following way: in Section 2, we first introduce in
detail the q-voter model on a single-layer network, i.e., a monoplex, giving rationale for the rate
equations used. In particular we pay attention to the complete graph case but also describe briefly
the results obtained recently for more sophisticated topologies. Then, we move to q-voter model on
a duplex clique, underlining the way dynamical rules take into account the existence of more than
one layer. The section ends with the description of the asymmetric q-voter model with independence.
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Section 3 comes back to the symmetric model, presenting a different way to describe the phase diagram
than it has been done in [12] and this approach is then used to display the results of the asymmetric
model in the remaining part of the section. The outcomes from the model and their consequences are
discussed in Section 4, that also summarizes the paper.

2. q-Voter Model on Single- and Multilayer Networks

2.1. The q-Voter Model on a Single Monoplex Clique

Let us briefly describe the q-voter model with independence on a monoplex complete graph [17].
In such a setting, we consider a set of N individuals, which are represented by binary variables Si = ±1
(spins ’up’ or ’down’). At each elementary time step ∆t we randomly choose an i-th node (i.e., a voter)
and its so-called q-lobby, which is a randomly picked group of q individuals. Only the self-consistent
q-lobby can act on the voter. With probability 1− p, the q-lobby (provided it is homogeneous) exerts
influence on the state of the voter, which means that the voter flips its state to the state of the q-lobby.
On the other hand, with probability p, the voter behaves independently—with equal probabilities it
changes its state to the opposite direction Si(t + ∆t) = −Si(t) or keeps its original state, i.e., Si(t +
∆t) = Si(t). In a single time step ∆t =

1
N , there are three scenarios possible—the number of up-spins

N↑(t) will either increase by 1, decrease by 1, or remain constant. As a consequence, the concentration

c(t) = N↑(t)
N increases or decreases by 1

N or remains constant according to the formulas

γ+(c) = Pr
{

c(t + ∆t) = c(t) +
1
N

}
, (1)

γ−(c) = Pr
{

c(t + ∆t) = c(t)− 1
N

}
,

γ0(c) = Pr {c(t + ∆t) = c(t)} = 1− γ+(c)− γ−(c)

that describe the probabilities of the change of concentration. The time evolution of the average
concentration is then given by the following rate equation:

c(t + ∆t) = c(t) +
1
N
[
γ+(c)− γ−(c)

]
. (2)

Let us underline here that, when we deal with large systems N � 1, in particular when N → ∞ the
time interval ∆t goes to zero, giving in result

∂c
∂t

= γ+(c)− γ−(c), (3)

where γ+(c), γ−(c) are probabilities that a single voter changes its state, respectively, from −1 to 1 or
from 1 to −1 and can be written as

γ+(c) = (1− p)(1− c)cq +
p(1− c)

2
,

γ−(c) = (1− p)c(1− c)q +
pc
2

. (4)

The first component in both equations is related to the conformity behavior of the voter and the second
one appears as a result of the independent behavior. The voter flips its state due to conformity rule
only when the q-lobby is homogeneous, i.e., all the chosen neighbors have the same state. The chance
for such a situation to occur is proportional to the level of concentration c. Let us consider in detail
γ+(c) here: in the first component, 1− p is the chance of applying the conformity rule and 1− c is
the chance to randomly pick up a voter with state −1 while cq gives the probability to find a q-lobby
consisting of voters with state 1. In the second component, p gives the probability that the voter
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behaves independently, 1− c is the chance to randomly pick up a voter with state −1 and 1/2 is the
chance that a voter would flip to the opposite state 1.

The macroscopic behavior of such a system can be described by its magnetization:

m(t) =
1
N

N

∑
i=1

Si(t) =
N↑(t)− N↓(t)

N
. (5)

with N↓(t) being the number of down-spins at time t and N = N↑(t) + N↓(t) for any t. On the other
hand, magnetization m(t) is directly related to the concentration c(t) by

m(t) = 2c(t)− 1 (6)

The probabilities γ+(c) and γ−(c) can be easily rewritten in the magnetization-dependent forms
γ+(m) and γ−(m):

γ+(m) = (1− p)
1−m

2

(
1 + m

2

)q
+

p
4
(1−m),

γ−(m) = (1− p)
1 + m

2

(
1−m

2

)q
+

p
4
(1 + m). (7)

In order to find the stationary state, the following requirement for the effective force has to
be fulfilled:

F(m) = γ+(m)− γ−(m) = 0. (8)

However, the above quantity does not allow to judge upon the stability of the solutions. To acquire
such information, one needs to integrate the effective force F(m) obtaining the effective potential

V(m) = −
∫

F(m)dm. (9)

Similar to the Landau theory, global minimum of the effective potential V(m) gives the stable stationary
solution, local minima are metastable solutions and the maximum of V(m) is related to unstable
solutions.

It has been shown [17] that the system, described by the q-voter model with independence,
undergoes the phase transition at p = pc(q). For p < pc, the majority coexists with the minority
opinion (ordered state) and for p > pc there is a status-quo (disordered state). Interestingly, for q ≤ 5
the phase transition is continuous, whereas for q > 5 it becomes discontinuous.

2.2. The q-Voter Model on a Monoplex Network

The q-voter model with a stochastic noise arising from independence was precisely investigated
on a set of complex networks in a recent work [18]. Owing to the application of the so-called pair
approximation method, it was possible to find a comprehensive mathematical description of the
model behavior on several complex structures including Erdős–Rényi random graphs, Barabási–Albert
evolving networks, and the Watts–Strogatz model, as well as on a random regular graphs. Analytical
solutions presented in [18] are in a very good agreement with Monte Carlo simulation, especially for
networks with small clustering coefficient and for large average degree 〈k〉 values. The character of
the phase transition changes from continuous to discontinuous when q becomes larger than 5, which is
the same as in complete graph case [17]. This observation means that the structure of networks has
the influence only on the critical value of the noise parameter pc but not on the character of the
phase transition.
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2.3. The Symmetric q-Voter Model on a Duplex Clique

Let us now introduce the definition of a duplex clique, which is a particular case of a multiplex [19].
A duplex clique is a network that consists of two distinct levels (layers), each of which is represented by
a complete graph (i.e., a clique) of size N. Levels represent two different communities (e.g., Facebook
and a school class), but are composed of exactly the same people—each node possesses a counterpart
node in the second level. Such an assumption reflects the fact that we consider fully overlapping
levels, it is an idealistic scenario. We also assume that each node possesses the same state on each level,
which means that the society consists of non-hypocritical individuals only. Due to this feature, we can
simplify our analysis by considering concentration c(t) only on one level. However, we need to stress
that the changes of the state of the node occur under the influence of both levels.

In this paper, we analyze an asymmetric q-voter model which is an extension of the original
symmetric case on a duplex network defined previously in [12]. Among the three presented methods
that transfer the model from a monoplex to multiplex network [12], the rule called LOCAL&AND
seems to be most promising from the point of statistical physics and also produce qualitatively new
behavior with respect to monoplex structure. We briefly describe the LOCAL&AND rule on the duplex
clique. The independence in this approach is LOCAL, i.e., the dynamics runs separately on each level.
A voter is independent on the first level with probability p and with probability 1− p behaves as a
conformist—it is under the influence of the q-lobby on this level. The same situation is on the second
level, where, regardless of the first level we choose if the voter behaves independently or conforms to
the q-lobby on the second level. Finally, we change the state of the voter only when both separated
dynamics give in result the same state which is an equivalent of an AND logical rule. Exact formulas
for probabilities γ+(c) and γ−(c) in the case of LOCAL&AND on the duplex clique read

γ+(c) = (1− p)2(1− c)c2q + p(1− p)(1− c)cq + p2(1−c)
4 ,

γ−(c) = (1− p)2c(1− c)2q + p(1− p)c(1− c)q + p2c
4 . (10)

There are three factors appearing in the above equations: the first is related to the situation when on
both levels the voter behaves as a conformist, the second one is a mixed factor (the voter is a conformist
on one of the levels and on the second it acts independently), and finally the last is a result of two
independent behaviors of the voter. Just like in the previously described analysis for the monoplex
network, we define the effective force and the effective potential dependent on the magnetization.
Numerical analysis of effective force (8) and the effective potential (9) allows us to create a detailed
phase diagram of the examined system.

It was shown [12] that qualitative changes in the phase transitions can be observed for the
LOCAL&AND rule—for the duplex clique, the phase transition becomes discontinuous for q = 5,
whereas for a monoplex such behavior is observed for q ≥ 6.

2.4. Asymmetric q-Voter Model on Duplex Networks

In the asymmetric q-voter model, the size of the q lobby can be different for each level:
we introduce parameter q1 reflecting the size of the lobby on the first level and q2 on the second one.
Exact formulas for probabilities γ+(c) and γ−(c) in the case of LOCAL&AND on the duplex clique
can be written as follows:

γ+(c) = (1− c)
[
(1− p)2cq1+q2 + p

2 (1− p)cq1 + p
2 (1− p)cq2 + p2

4

]
,

γ−(c) = c
[
(1− p)2(1− c)q1+q2 + p

2 (1− p)(1− c)q1 + p
2 (1− p)(1− c)q2 + p2

4

]
. (11)
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3. Results

3.1. Symmetric q-Voter Model on Duplex Networks

In this section, we revisit the symmetric q-voter model on duplex networks, analyzing it in a
slightly different way than originally presented in [12]. To find a stationary solution we numerically
solve Equation (8) and analyze the phase diagram and stability using the effective potential (9),
distinguishing between stable and metastable solutions. The approach introduced here will be our
tool to study the asymmetric q-voter model in the next section.

In the diagram shown in Figure 1, the solid line indicates phase transitions which are continuous
for q < Q (marked in blue) and discontinuous for q > Q (marked in red). The continuous transition
changes its character to discontinuous for q = Q ' 4.5. The dashed lines represent spinodals that
accompany discontinuous phase transitions.

1 2 3 4 5 6 7 8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

q

p

Q

|m| > 0

|m| = 0

Figure 1. Phase diagram for the symmetric q-voter model on duplex clique with the LOCAL&AND rule.

The phase diagram area is divided into two parts: gray (which corresponds to the ordered
phase of the system, |m| > 0) and white (in which the system is disordered, |m| = 0). The (right)
hatched area between spinodals is called the coexistence region. When the state parameters (i.e., q—the
clique size and p—the level of independence) belong to this area, the system can be observed in two
stationary states, one of which is stable and the other is metastable. The stable state corresponds to
the global minimum of the potential V(m) (see Figure 2), while the metastable state corresponds to its
local minimum. In the hatched white area (between the discontinuous transition line and the upper
spinodal), the disordered phase is stable. In the hatched gray area (between the transition line and the
lower spinodal), the stable phase is the ordered one and the disordered phase is metastable.
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0.20 0.25 0.30 0.35 0.40
0.0
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0.4
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-1 0 1
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2V
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1
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q = 6

(a) (b)

Figure 2. Average magnetization against the parameter p for two different lobby sizes in the symmetric
voter model on duplex clique with the LOCAL&AND rule. (a) q = 3 and (b) q = 6 (cf. Figure 1).
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In Figure 2, for two values of q it is shown how magnetization of the system changes as the
parameter p increases. Red bold solid lines represent stable states of the system while thin red lines
stand for metastable states. Blue dashed lines indicate unstable solutions of Equation (8). To the right
of this figure, there are also auxiliary charts showing how the potential of the system V(m) given by
Equation (9) looks like for selected values of p. It is easy to see that stable solutions (bold red lines)
always correspond to the global minima of V(m), metastable solutions (thin red lines) are visible as its
local minima, and, finally, unstable states (blue dotted lines) coincide with the maxima of V(m).

It is worth to stress that although one usually considers q-lobby size as an integer value,
Equations (8)–(9) can be also solved for a non-integer value of q. Similarly it is possible to obtain
non-integer values of q in numerical simulations by assigning probability distribution of q as it was
done in [29].

Finally, let us also note that, in general, a typical way (Landau approach) to examine the stability
of the solutions is to approximate V(m) with a suitable polynomial (usually of order 4 or 6) and obtain
results for critical points. However, it has been shown that even for relatively simple systems [30] this
analysis might not bring the expected outcomes. Moreover, due to high complexity of the problem
(high values of q1 and q2) one would need to use high orders of polynomials, making it hard to evaluate
in an analytical way. Instead, as mentioned before, we numerically examine V(m) to find the character
of the solutions of F(m) = 0.

3.2. Asymmetric q-Voter Model on Duplex Networks

In the case of the asymmetric q-voter model on the duplex clique, we follow a similar approach
solving equation for effective force F(m) = 0 and analyzing the behavior of the effective potential to
find the character of the observed phase transitions. The important feature of the asymmetric model is
the fact that we can study different lobby sizes on each of the level, which brings the model closer to
real-world situations. However, both levels are identical and indistinguishable, i.e., we obtain the same
results when the values of q1 and q2 are swapped. This symmetry is clearly visible in Figure 3 where we
show the character of the phase transition of the system for small values of q1 and q2. If on both levels
q ≤ 4, only continuous phase transition takes place, which is in agreement with the intuition from the
previous analysis of the symmetric q-voter model. However, if q1 ≤ 4 and q2 ≥ 5, the phase transition
changes its character. On the other hand, when on one of the levels the q-lobby is equal to 5 we find
a much more complex picture where first a discontinuous then continuous and finally once again
discontinuous phase transition is observed with increasing q2 (see also the inset in Figure 4); for q1 = 6
only discontinuous phase transition is present in the examined region (see Figure 5). Let us underline,
however, it is for larger values of q2 that one can observe a very interesting set of phenomena occurring
in the model. In the following sections we shall focus on two specific values of q1 (q1 = 5 and q1 = 6)
and present a detailed study of the phase diagram in such cases, noticing the presence of successive
phase transitions.

1 2 3 4 5 6
1

2

3

4

5

6

q1

q
2

continuous

phase transition

discontinuous

phase transition

Figure 3. Visualization of the character of the phase transition for the asymmetric (q1, q2)-voter model
on duplex cliques with the LOCAL&AND rule for small values of q.
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Figure 4. Phase diagram for the asymmetric (q1, q2)-voter model on duplex cliques with the
LOCAL&AND rule and q1 = 5.
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Figure 5. Average magnetization as a function of the parameter p in the asymmetric (q1, q2)-voter
model on duplex cliques with the LOCAL&AND rule for q1 = 5 and different values of q2. (a) q2 = 10,
(b) q2 = 21, (c) q2 = 25, and (d) q2 = 30 (cf. Figure 4).

3.2.1. The q1 = 5 Case

In the phase diagram shown in Figure 4, there are three main areas which are separated by solid
lines (red and blue) and marked with different colors: dark gray, light gray, and white. The hatched
and dotted areas between spinodals indicate various coexistence regions. The homogeneous white
area represents disordered (with |m| = 0) states of the system. Gray areas (dark and light) stand for
the ordered phases: |m1| > |m2| > 0, respectively. Blue solid lines are continuous (second order)
phase transitions lines. In the system studied, such continuous transitions can be observed for two
different ranges of the q2 parameter. In particular, when q2 ∈ (A, B) the transition occurs in a way
that is similar as in the symmetric system for q < Q (cf. Figure 1). For q2 > C, a succession of phase
transitions can be observed when the parameter p increases. The first order transition (red line) between
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two ordered phases, |m1| → |m2|, is followed by the second order transition (blue line), |m2| → 0.
For q2 ∈ (C, D), the continuous transition occurs in the region of coexistence that accompanies the
discontinuous transition |m1| → |m2|, in which the more ordered between two phases with non-zero
magnetization is metastable. Finally, for q2 > D, the continuous transition occurs in a similar way
as for q2 ∈ (A, B). The transition point q2 = C ' 25 at which the line of continuous transition
intersects the discontinuous line is of particular interest. At this point, the disordered phase |m| = 0
changes its character from metastable to stable and the mixed-order (or hybrid) transition takes place.
This interesting phase transition [31,32] consists of a step change in magnetization which occurs
simultaneously with diverging fluctuations, when the transition point is approached from higher
values of p. Finally, let us emphasize that the hybrid transition point q2 = C divides the discontinuous
transition line into two parts. For q2 ∈ (B, C), when the parameter p increases, the transition occurs
between the ordered and disordered phases, |m1| → 0, while for q2 > C it is between two ordered
phases, |m1| → |m2|.

In Figure 5, for selected values of q2, it is shown how magnetization of the system changes as the
parameter p increases. We use the same way of marking the type of solution as in case of Figure 2:
red bold solid lines represent stable states, thin red lines stand for metastable states, and blue dashed
lines indicate unstable solutions of Equation (8). To the right of each panel in this figure, there are
also additional charts showing what the potential of the system V(m) given by Equation (9) looks like
for specific values of p. In Figure 5c, we observe a mixed (hybrid) phase transition indicated by a flat
region in the potential V(m) (marked by number “2” in a circle). Our analysis is in agreement with
Monte Carlo simulations, see Appendix A for details.

3.2.2. The q1 = 6 Case

In the same manner as in the case of q1 = 5 in Figure 6, we show the phase diagram for
q1 = 6. Contrary to the q1 = 5 example, here only the first order transition (red line) between two
ordered phases is observed. For q2 ∈ (1, E) single discontinuous phase transition between an ordered
(|m1| > 0) and disordered state (|m| = 0) appears—the inset panel on the left-hand side in Figure 6
shows details for small values of q2, where in the case of q1 = 5 a continuous phase transition is visible.
The right-hatched areas between spinodals indicate coexistence regions. The homogeneous white
area represents disordered (with |m| = 0) states of the system. The gray areas (dark and light) stand
for the ordered phases: |m1| > |m2| > 0, respectively. For q2 = E, a metastable solution |m2| > 0
appears and one discontinuous phase transition |m1| → |m2| is followed by another discontinuous
|m2| → 0. Thus, similar as in the q1 = 5 case, we have successive phase transitions, however this
time both are first-order type, in effect. From q2 = F the state |m2| > 0 becomes stable, in result,
there are as many as three areas of coexistence regions: (i) right-hatched area between |m1| > 0 and
|m| = 0, (ii) left-hatched area between |m2| > 0 and |m| = 0, and (iii) dotted area between |m1| > 0
and |m2| > 0. Inset panel on the right-hand side of Figure 6 magnifies the region of phase coexistence
and allows closer inspection of this exotic behavior: in particular, for certain values of q2 and p one
observes that three phases coexist. This phenomenon can also be studied using Figure 7, where four
specific cases of q2 have been selected to show the behavior of the average magnetization on noise
parameter p. Contrary to the q1 = 5 case, there is no evidence of a hybrid phase transition for any
values of q2 and p. Similar to q1 = 5, also in this case our analysis is in agreement with Monte Carlo
simulations (see Appendix A).
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Figure 6. Phase diagram for the asymmetric (q1, q2)-voter model on duplex cliques with the
LOCAL&AND rule and q1 = 6.
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Figure 7. Average magnetization as a function of the parameter p in the asymmetric (q1, q2)-voter
model on duplex cliques with the LOCAL&AND rule for q1 = 6 and different values of q2. (a) q2 = 35,
(b) q2 = 46, (c) q2 =0, and (d) q2 = 70.

3.3. Limiting Behavior

As mentioned before, the overall form of Equation (8) is rather complex and closed-form solutions
are possible only for small values of q1 and q2. In other cases we need to use semi-analytical or
numerical methods. It is, however, fairy simple to obtain an analytical formula for the point p = p∗
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where the disordered solution |m| = 0 changes its character from unstable to stable (or metastable).
It follows that p∗ can be obtained from the condition∣∣∣∣∂F(c)

∂c

∣∣∣∣
c= 1

2

= 0, (12)

which gives

p∗ = 2q2+(2q2−4)q1+(2q1−4)(q2−1)+
√

4q2 (q1−1)2+4q1 (q2−1)2+2q1+q2+1(q1q2+q1+q2−1)
2(2q2−2)q1+(2q1−2)(2q2+2q2−2) (13)

It is worth to mention here, that in the case where we assume a symmetric model (i.e., q1 = q2 = q) we
arrive at

p∗q1=q2
=

2(2q− 1)
2(2q− 1) + 2q (14)

which exponentially drops to 0 with increasing q.
Let us now check the value of p∗ for the asymmetric case, assuming that we keep q1 constant and

q2 → ∞. Interestingly, in this limiting case we obtain that

p∗q2→∞ =
q1 − 1

q1 − 1 + 2q1−1 (15)

which coincides with the value obtained by Nyczka et al. for the q-voter model on a monoplex
network [17]. Although formally Equation (15) describes q2 → ∞, it is easy to check that we arrive at
p∗q2→∞ even for relatively small values of q2. Inspecting the lower spinodal of |m1| → 0 and then the
stable solution of |m2| > 0 in Figure 4, it is obvious that it stabilizes on the value of p∗ = 1/5 for q2 ≈ 15.
A similar situation can be spotted in the case of q1 = 6 (cf. Figure 5), where the limiting value is
p∗ = 5/37. The conclusion from these considerations is the following: if there is a significant difference
between q2 and q1 (q2 � q1), the system starts to behave as if it were a monoplex network described
by parameter q1. Of course, we can still observe the behavior characteristic for the asymmetric model,
i.e., the succession of phase transitions, however the size of the first phase transition decreases with
growing q2, to disappear when q2 → ∞. Figure 8 illustrates this behavior for q1 = 5 and q1 = 6.
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Figure 8. Average magnetization as a function of the parameter p in the asymmetric (q1, q2)-voter
model on duplex cliques with the LOCAL&AND rule for q1 = 5 (a) and q1 = 6 (b) and different values
of q1: 15 (green), 25 (orange), 50 (blue), and 500 (red). Dashed lines are solutions for the monoplex
q-voter model obtained using Equation (8).
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4. Conclusions

Let us start these conclusions by addressing a maybe provocative title of this work, in particular
the word “zoology” that might bring pejorative connotations. At the beginning of the paper we tried
to draw a suggestive picture of two possible roads to modeling of opinion dynamics, distinguishing
between binary state models and an agent-based approach. The crucial advantage of binary models
was connected to their simplicity, which in turn can be seen as an important factor when it comes to
describing specific social phenomena. The other advantage of a binary opinion model, such as the
q-voter model with independence is that, at least in theory, it could be treated as a generic structure,
i.e., one does not expect drastic changes in the observable when certain changes are introduced to
the system.

This idea can be easily illustrated by comparing base q-voter model with independence [17]
and the same model on a duplex clique with LOCAL&AND dynamics [12]: the major difference is a
shift of the value of q for which the continuous phase transition becomes a discontinuous one (q = 6
for monoplex and q = 5 for duplex). One could naively expect the same situation while examining
an asymmetric q-voter model, which could be treated as a generalization of the symmetric version.
However, the analysis shown in this study, backed with Monte-Carlo simulations presents a different
scenario: introduction of different lobby sizes on each level of the duplex clique dramatically change
the description from the statistical physics point of view (see Table 1 for a comparison). Instead of a
single first- or second-order phase transition, we observe now the phenomenon of successive phase
transitions. Our detailed analysis shows that the most diverse behavior appears if q1 = 5: (i) for q2 = 1
a discontinuous phase transition, (ii) for q2 ∈ 〈2, 3〉 a continuous phase transition, (iii) for q2 ∈ 〈4, 24〉
again a discontinuous phase transition, (iv) for q2 = 25 a mixed order phase transition, and (v) for
q2 > 25 successive phase transitions—a continuous phase transition following a discontinuous one.
For q1 = 6 (and larger values), we observe two different behaviors: (i) for q2 < 35 a discontinuous
phase transition and (ii) for q2 > 35 successive phase transitions when two discontinuous transitions
follow each other. Results also suggest that for very large differences between q1 and q2 the system
can be described in the following way: the “main” phase transition is identical as in the case of the
monoplex while the second transition is imposed on the first one and vanishes for q2 → ∞. In other
words, for sufficiently large values of q2, the first level does not “feel” the second and behaves strictly
as a monoplex clique.

Table 1. A comparison of different versions of the q-voter model.

Property Monoplex Symmetric Duplex Asymmetric Duplex

parameters p, q p, q p, q1, q2
continuous PT q < 6 q < 5 q1 ≤ 4, q2 ≤ 4
discontinuous PT q ≥ 6 q ≥ 5 q1 ≤ 4, q2 ≤ 4, also observed for

q1 ≤ 5 and specific q2
successive PTs not observed not observed for q ≤ 5 first discontinuous

PT and then continuous one;
for q ≥ 6 two discontinuous PT

mixed-order PT not observed not observed observed for q1 = 5 and q2 ≈ 25

Various extensions of the q-voter model were recently studied on monoplex networks like the
threshold q-voter model [33] or noisy threshold q-voter model [34], where a minimal agreement of
at least q0 ≤ q opposite opinions is sufficient to flip the central agent’s opinion. Although adding
the q0 parameter influences the character of the phase transition and enriches the phase diagram,
the successive phase transitions are not observed. The reasons for the appearance of successive phase
transitions in this class of models is a puzzle since it is obvious that just the multiplex structure cannot
be responsible for this exotic behavior [12,27].

This is the zoology of phase transitions mentioned in the title—one needs to underline that
in some sense it brings to the front the problem of social reliability of such models. Although the
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introduced change seems to be small, it is far from obvious how the observed phenomenon can be
interpreted from the social sciences perspective.

So far, the phenomenon of successive phase transitions has been observed only in selected physical
systems [28,35,36]. The behavior manifesting in the fact that for a selected set of parameters the system
can be in one of the three phases is, at least according to our knowledge, a new quantity in the binary
state opinion formation models. In a three-state opinion model [37], non-monotonic changes of global
ordering (qualitatively similar to the phenomena of successive phase transitions) have recently been
observed in modular network.

It is also not clear if extending the model into a higher number of layers brings additional exotic
behavior, such as a cascade of phase transitions. A similar situation has been observed when the
so-called q-Ising model was examined for monoplex [38] and partially duplex cliques [39]—also in this
case, simply introducing overlapping cliques leads to a surprising result.

Finally, let us also underline that among some further plans it should be of use to consider network
topology (e.g., random graphs or scale-free networks) instead of this very simple complete graph
approach in a similar way as it has been done by pair approximation for monoplex [18] and symmetric
duplex [27] graphs. Moreover, one needs to stress that the q-voter model with independence is just
one specific extension of the basic q-voter model—it would be interesting to analyze also the other
versions in search for the evidence of successive phase transitions. In this way it might be possible to
uncover the mechanism of phenomenon in question in this class of models.
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J.S.; visualization, P.F.; writing, all authors. All authors have read and agreed to the published version of
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Appendix A. Monte-Carlo Simulations

In order to check the validity of our analytical considerations (in a similar way to, e.g., [12,17,24,33,34]),
we performed Monte-Carlo simulations for selected parameters: q1 = 5 (Figure A1a: q2 = 25, Figure A1b:
q2 = 30) and q1 = 6 (Figure A2a: q2 = 50, Figure A2b: q2 = 70). Each simulation starts either with a fully
ordered (all voters with spins up, red points in Figures A1 and A2) or a disordered (spins set randomly,
blue points). In all cases, we used N = 105 nodes in each layer and performed M = 105 large MC steps
(where each large MC step is consists of exactly N updates—small MC steps—of randomly chosen nodes,
i.e., in total we have 1010 small MC steps) and averaged it over R = 10 repetitions. We obtain a satisfactory
agreement between MC results and the analytical approach, although it needs to be emphasized that
metastable states are reached in the same way as the stable ones. Moreover, taking into account initial
conditions imposed (|m| = 1 or |m| = 0), some solutions cannot be reached (cf. Figure A2a).
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Figure A1. Average magnetization as a function of the parameter p in the asymmetric (q1, q2)-voter
model on duplex cliques with the LOCAL&AND rule for q1 = 5 and different values of q2. (a) q2 = 25,
(b) q2 = 30.
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Figure A2. Average magnetization as a function of the parameter p in the asymmetric (q1, q2)-voter
model on duplex cliques with the LOCAL&AND rule for q1 = 6 and different values of q2. (a) q2 = 50,
(b) q2 = 70.
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