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Abstract: A double rephasing scheme of a photon echo is analyzed for inversion-free photon
echo-based quantum memories using controlled Rabi flopping, where the Rabi flopping is used for
phase control of collective atom coherence. Unlike the rephasing-caused π-phase shift in a single
rephasing scheme, the control Rabi flopping between the excited state and an auxiliary third state
induces coherence inversion. Thus, the absorptive photon echo in a double rephasing scheme can
be manipulated to be emissive. Here, we present a quantum coherence control of atom phases in a
double rephasing photon echo scheme for emissive photon echoes for quantum memory applications.

Keywords: quantum optics; coherent transients; quantum memory; photon echoes

1. Introduction

Modified photon echoes have been intensively studied for quantum memory applications over
the last decade since the first protocol of controlled reversible inhomogeneous broadening, where
an efficient photon echo can be achieved by a counter-propagating control pulse set in a three-level
Doppler [1] and non-Doppler medium [2]. Due to the inherent population inversion in photon echoes [3],
resulting in quantum noises and violation of the no cloning theorem [4], a conventional photon echo
itself cannot be directly applied to quantum memories. Compared with single-atom-based quantum
memory protocols, e.g., utilizing nuclear spins recently demonstrated in Si-based semiconductors [5],
the photon echoes in rare-earth doped solids have benefits of multimode, ultrafast, and ultrahigh
absorption [6]. To overcome the inherent population inversion in photon echoes [3], atomic frequency
comb (AFC) echoes [7,8], gradient echoes [9,10], and controlled double rephasing (CDR) echoes [11–13]
are presented for quantum memory applications. Because ultralong quantum memory is an essential
condition for long-distance quantum communications using quantum repeaters [14,15], storage time
extension has also been a critical issue [16–19]. As experimentally demonstrated by using dynamic
decoupling (DD) [16] and optical locking via controlled coherence conversion (CCC) [20], the optical
storage time can be extended up to spin population decay time.

The CCC theory was proposed to convert the absorptive echo into an emissive one in a double
rephasing (DR) photon echo scheme [11]. The DR photon echo scheme inherently gives the benefit
of no population inversion. Because a π-rephasing pulse induces reversible coherence evolutions
in a time domain with a π-phase shift, the DR echo is obviously absorptive like the data pulse due
to the 2π-phase shift (no change) in the collective coherence. Regardless of silent echoes in the DR
scheme [21–23], the collective coherence of the final echo is the sum of individual coherence evolutions,
resulting in absorptive coherence [11,12]. Moreover, there is no way to solve this absorptive echo
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problem in a two-level system, at least not yet. It should be noted that the photon echo in an ensemble
system must be distinguished from a single atomic system. Although population inversion or the
sign of coherence has nothing to do with the single qubit system, it is critical to the ensemble system
because of the macroscopic coherent transients of a nonlinear effect. The π–π control pulse-induced
negative sign of ensemble coherence can never be radiated out of the medium regardless of population
inversion [11,17,23].

DR photon echoes, however, have been observed, which is seemingly violating the CDR echo
theory [20–22]. The reason of seemingly contradiction in [20–22] is due to the imperfect rephrasing pulse
area caused by a Gaussian rephrasing pulse. Recently, such Gaussian pulse-caused echo generation
was discussed to be as high as 26% in retrieval efficiency [24]. The CCC in CDR echoes was already
discussed in a single rephasing photon echo scheme theoretically [25,26], as well as experimentally [27].
Here, in the present paper, we analytically investigate the collective atom phase shift in the DR scheme
and confirm the CDR echo theory with proof of coherence inversion. Compared with full numerical
analysis in previous discussions [11,12,17,18,25], we present full analytic solutions in this article.

2. Theory

Figure 1 is a schematic diagram of the present CDR echoes, where the control pulse set of C1

and C2 is for the atom phase control in the DR scheme. The data (D), first rephasing (R1), and second
rephasing (R2) pulses satisfy a DR photon echo scheme, where they are resonant between states |1〉
and |2〉 as shown in Figure 1a. The pulse sequence of CDR is shown in Figure 1b, where the control
pulse set C1 and C2 is resonant between states |2〉 and |3〉. The time delay τ between C1 and C2 is used
for storage time extension, which is limited by the spin dephasing [25–27]. The spin dephasing can
be minimized with the zero first-order Zeeman method [28]. In an optical locking scheme applied
to three-pulse photon echoes [18], the storage time extends up to spin population decay time [20].
To satisfy general conditions of CDR, each pulse area of R1, R2, C1, and C2 is set to be π. The pulse area
of D is set to small at 0.1π. The pulse area is defined by ϕi =

∫
Ωidt, and Ωi (i = D, R1, R2, C1, and C2)

is the Rabi frequency of the pulse.

Entropy 2020, 22, x FOR PEER REVIEW 2 of 11 

 

resulting in absorptive coherence [11,12]. Moreover, there is no way to solve this absorptive echo 
problem in a two-level system, at least not yet. It should be noted that the photon echo in an 
ensemble system must be distinguished from a single atomic system. Although population 
inversion or the sign of coherence has nothing to do with the single qubit system, it is critical to the 
ensemble system because of the macroscopic coherent transients of a nonlinear effect. The π–π 
control pulse-induced negative sign of ensemble coherence can never be radiated out of the 
medium regardless of population inversion [11,17,23]. 

DR photon echoes, however, have been observed, which is seemingly violating the CDR echo 
theory [20–22]. The reason of seemingly contradiction in [20–22] is due to the imperfect rephrasing 
pulse area caused by a Gaussian rephrasing pulse. Recently, such Gaussian pulse-caused echo 
generation was discussed to be as high as 26% in retrieval efficiency [24]. The CCC in CDR echoes 
was already discussed in a single rephasing photon echo scheme theoretically [25,26], as well as 
experimentally [27]. Here, in the present paper, we analytically investigate the collective atom phase 
shift in the DR scheme and confirm the CDR echo theory with proof of coherence inversion. 
Compared with full numerical analysis in previous discussions [11,12,17,18,25], we present full 
analytic solutions in this article.  

2. Theory  

Figure 1 is a schematic diagram of the present CDR echoes, where the control pulse set of C1 
and C2 is for the atom phase control in the DR scheme. The data (D), first rephasing (R1), and second 
rephasing (R2) pulses satisfy a DR photon echo scheme, where they are resonant between states |1⟩ 
and |2⟩ as shown in Figure 1a. The pulse sequence of CDR is shown in Figure 1b, where the control 
pulse set C1 and C2 is resonant between states |2⟩ and |3⟩. The time delay τ between C1 and C2 is 
used for storage time extension, which is limited by the spin dephasing [25–27]. The spin dephasing 
can be minimized with the zero first-order Zeeman method [28]. In an optical locking scheme 
applied to three-pulse photon echoes [18], the storage time extends up to spin population decay time 
[20]. To satisfy general conditions of CDR, each pulse area of R1, R2, C1, and C2 is set to be π. The 
pulse area of D is set to small at 0.1π. The pulse area is defined by 𝜑 = Ω dt, and Ω  (𝑖 = D, R1, R2, 
C1, and C2) is the Rabi frequency of the pulse. 

 
Figure 1. (a) Schematics of controlled double rephasing echoes. (b) Pulse sequence for (a), where tj is 
the arrival time of pulse j. 

The CCC in CDR echoes must be distinguished from resonant Raman or electromagnetically 
induced transparency (EIT) based on two-photon resonance without shelving on the excited state. 
For photon echo-based quantum memories, the signal (data) pulse information (phase and 
amplitude) must be fully transferred into a matter (optical coherence) state via a complete 
absorption process in an optically dense, inhomogeneously broadened two-level medium [17]. 
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Figure 1. (a) Schematics of controlled double rephasing echoes. (b) Pulse sequence for (a), where tj is
the arrival time of pulse j.

The CCC in CDR echoes must be distinguished from resonant Raman or electromagnetically
induced transparency (EIT) based on two-photon resonance without shelving on the excited state.
For photon echo-based quantum memories, the signal (data) pulse information (phase and amplitude)
must be fully transferred into a matter (optical coherence) state via a complete absorption process in an
optically dense, inhomogeneously broadened two-level medium [17]. Unlike other coherence optics
in the three-level system mentioned above, the inhomogeneity of the ensemble is the fundamental
requirement for the coherence evolutions in photon echoes. One unique property of the CCC is the
double coherence swapping between the optical and spin states via the control pulse set of C1 and C2.
Unlike EIT, the R1 and C1 must be differentiated from the two-photon Raman coherence, where the
delay ∆T between R1 and C1 must be longer than the inverse of inhomogeneous width. Usually, this
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requirement is easily satisfied for the consecutive π-optical pulse sequence in most rare-earth doped
solids [27].

The purpose of C1 is simply to hold both optical phase decay via complete population transfer
from the excited state |2〉 to the auxiliary spin state |3〉, resulting in optical–spin coherence conversion
with ρ12 = 0 [11]. For this, the state |3〉 must be set to be vacant initially. When the second control
pulse C2 is turned on, the system population is completely recovered to the initial one reached by R1.
However, the system coherence is not invariant due to the π-phase shift, resulting in absorptive photon
echo E2 [11–13,18,24–27].

The interaction picture Hamiltonian in the atom–field interactions under rotating-wave
approximation of the proposed system in Figure 1a is written as

H = −}/2


0 Ω j 0

Ω j 0 Ωk
0 Ωk 0

 (1)

where Ω j ( j = D, R1, or R2) is the Rabi frequency of D, R1, and R2, and Ωk (k = C1 or C2) is the Rabi
frequency of C1 or C2. We calculate the rate equations for the density matrix elements using the Von
Neumann equation [29].

.
ρ = −

i
} [H,ρ] −

1
2
{
Γ,ρ

}
(2)

The corresponding rate equations are

.
ρ11 = −i

Ω j

2
(ρ12 − ρ21), (3)

.
ρ22 = −i

Ω j

2
(ρ21 − ρ12) − i

Ωk
2
(ρ23 − ρ32), (4)

.
ρ33 = −i

Ωk
2
(ρ32 − ρ23), (5)

.
ρ12 = −i

Ω j

2
(ρ11 − ρ22) − i

Ωk
2
ρ13, (6)

.
ρ12 = −i

Ωk
2
ρ12 + i

Ω j

2
ρ23, (7)

.
ρ23 = −i

Ωk
2
(ρ22 − ρ33) + i

Ω j

2
ρ13, (8)

where all decay rates are set to zero for simplicity. We now consider the CDR echo scheme for the
discussion below. For this, we start with a general DR scheme to investigate the absorptive coherence
of the final echo E2 without C1 and C2 pulses in Figure 1.

3. Discussion

3.1. DR Photon Echoes

In this subsection, we study conventional two-pulse photon echoes in a DR scheme without C1 and
C2 in Figure 1. We derive time-dependent density matrix equations for the expressions of coherence
between the ground and excited states and the population in each bare state.

3.1.1. D-Pulse

We first derive the expressions of coherence and population excited by the D-pulse. The equations
of motion for D-pulse by setting Ω j = ΩD and Ωk = 0 in Equations (3)–(8) are as follows:
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.
ρ11 = −i

ΩD

2
(ρ12 − ρ21), (9)

.
ρ22 = −i

ΩD

2
(ρ21 − ρ12), (10)

.
ρ12 = −i

ΩD

2
(ρ11 − ρ22), (11)

.
ρ21 = −i

ΩD

2
(ρ22 − ρ11). (12)

Initially, all atoms are in the ground state |1〉: ρ11(0) = 1; ρ22(0) = ρ12(0) = ρ21(0) = 0. The Laplace
transform of Equations (9)–(12) with ρ11 + ρ22 = 1 yields

L[ρ11] =
2s2 + Ω2

D

2s
(
s2 + Ω2

D

) , (13)

L[ρ12] =
−iΩD(

s2 + Ω2
D

) , (14)

L[ρ21] =
iΩD(

s2 + Ω2
D

) . (15)

The final equations for population and coherence are obtained by taking the inverse Laplace
transform of Equations (13)–(15).

ρ11 = cos2
(ϕD

2

)
, (16)

ρ22 = sin2
(ϕD

2

)
, (17)

ρ12 = −
i
2

sin(ϕD), (18)

where ϕD is the area of the D-pulse. The D-pulse obeys the area theorem which has a direct relationship
with coherence [30].

∂ϕD

∂z
= −

α
2

sin(ϕD), (19)

where α is the absorption coefficient. For the D-pulse having a very small area, sin(ϕD) ≈ 1, ϕD =

(ϕD)0e−αz/2 representing Beer′s law. The information of D-pulse is now transferred into the ensemble
coherence. For a weak D-pulse ϕD � 1, the atomic population still remains in the ground state |1〉:
ρ11 ≈ 1; ρ22 ≈ 0. In our analysis, the D-pulse area is set to be 0.1π.

3.1.2. R1-Pulse

As soon as the atoms are excited by D, they immediately start to evolve with their own detuning-
dependent phase velocity until the rephasing pulse (R1-pulse) comes. We use Equations (16)–(18) as initial
conditions for Ω j = ΩR1 and Ωk = 0 to solve Equations (3)–(8). The solution of the rate equations for
R1-pulse is as follows:

ρ11 = cos2
(
ϕD + ϕR1

2

)
, (20)

ρ22 = sin2
(
ϕD + ϕR1

2

)
, (21)

ρ12 = −
i
2

sin
(
ϕD + ϕR1

)
, (22)
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where ϕR1 is the pulse area of R1. Equation (22) indicates that the rephasing π pulse R1 results in a π

shift in the coherence ρ12 initiated by the D-pulse in Equation (18) as shown in Figure 2a: [ρ12]
R1
→ [ρ12]

∗

(see also Appendix A for π/2 pulse area of D). All details of detuning-dependent atom phase evolutions
and rephasing effects are numerically shown in Figure 4 of [25], where the real parts of ρ12 are exactly
symmetric, cancelling each other’s coherence. The π rephasing pulse swaps the population between
ground and excited states as shown in Figure 2b, resulting in spontaneous and/or stimulated emission.
To overcome the population inversion, a controlled double rephasing concept was developed in the
name of CDR echoes [11,12]. For DR echoes, the second π optical pulse R2 is added to swap the
populations again, where the second echo E2 is free from quantum noises. To fully restore the D-pulse
transferred coherence, the first echo E1 must be erased (or silenced), where the silent echo does not
affect the individual coherence evolutions [21–23].

We derive the coherence and population rate equations for R2-pulse by replacing Ω j with ΩR2 and
setting Ωk = 0 in Equations (3)–(8). We use Equations (20)–(22) as the initial conditions and calculate
the expressions for coherence and populations as follows:

ρ11 = cos2
(
ϕD + ϕR1 + ϕR2

2

)
, (23)

ρ22 = sin2
(
ϕD + ϕR1 + ϕR2

2

)
, (24)

ρ12 = −
i
2

sin
(
ϕD + ϕR1 + ϕR2

)
. (25)

Entropy 2020, 22, x FOR PEER REVIEW 5 of 11 

 

𝜌 = cos , (23) 

𝜌 = sin , (24) 

𝜌 = − sin 𝜑 + 𝜑 + 𝜑 . (25) 

 
Figure 2. (a) Plot of 𝐼𝑚 𝜌  (Equation (22)) versus R1-pulse area 𝜑  with area of D-pulse 𝜑  = 
0.1π. (b) Corresponding population evolution (red) 𝜌  (Equation (20)) and (dotted) 𝜌  (Equation 
(21)). (c) Plot of 𝐼𝑚 𝜌  (Equation (25)) versus R2-pulse area 𝜑 with area of D-pulse 𝜑  = 0.1π and 
that of R1 𝜑  = π. (d) Corresponding population evolution (red) 𝜌  (Equation (23)) and (dotted) 𝜌  (Equation (24)). 

In Figure 2c,d, the R2 pulse area-dependent coherence and population are shown for 𝜑 = 0.1π 
and 𝜑 = π. As shown in Figure 2c, the π-R2 pulse inverts the coherence as the π-R1 pulse does. 
Here, the negative sign in the coherence 𝜌  shows absorption. Thus, the second echo by R2 is 
absorptive like the data pulse D [11,12]. This means that the generated echo E2 in the DR scheme 
cannot be radiated out of the medium due to the coherent transient effects, as D is fully absorbed 
into the medium. By the way, the observations of E2 in [21–23] were understood as imperfect 
rephasing-caused coherence leakage due to Gaussian distributed light pulses [24]. Our aim here is to 
get the inversion-free emissive echo. To convert the absorptive echo E2 in Figure 2 into an emissive 
one, the CDR echo scheme is applied. In the section below, we describe the roles of C1 and C2 for 
CCC in detail. 

3.2. CDR Photon Echoes 

In this subsection, we discuss the CDR echo of Figure 1 by inserting the control pulse set of C1 
and C2 in the DR scheme. The control pulse set position can be after either R1 as shown in Figure 1b 
or R2 as discussed in [11,12]. In both cases, C1 must be activated before the echo timing [25]. 

Figure 2. (a) Plot of Im[ρ12] (Equation (22)) versus R1-pulse area ϕR1 with area of D-pulse ϕD = 0.1π.
(b) Corresponding population evolution (red) ρ11 (Equation (20)) and (dotted) ρ22 (Equation (21)).
(c) Plot of Im[ρ12] (Equation (25)) versus R2-pulse area ϕR2 with area of D-pulse ϕD = 0.1π and that of R1
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In Figure 2c,d, the R2 pulse area-dependent coherence and population are shown for ϕD = 0.1π
and ϕR1 = π. As shown in Figure 2c, the π-R2 pulse inverts the coherence as the π-R1 pulse does. Here,
the negative sign in the coherence ρ12 shows absorption. Thus, the second echo by R2 is absorptive like
the data pulse D [11,12]. This means that the generated echo E2 in the DR scheme cannot be radiated
out of the medium due to the coherent transient effects, as D is fully absorbed into the medium. By the
way, the observations of E2 in [21–23] were understood as imperfect rephasing-caused coherence
leakage due to Gaussian distributed light pulses [24]. Our aim here is to get the inversion-free emissive
echo. To convert the absorptive echo E2 in Figure 2 into an emissive one, the CDR echo scheme is
applied. In the section below, we describe the roles of C1 and C2 for CCC in detail.

3.2. CDR Photon Echoes

In this subsection, we discuss the CDR echo of Figure 1 by inserting the control pulse set of C1

and C2 in the DR scheme. The control pulse set position can be after either R1 as shown in Figure 1b or
R2 as discussed in [11,12]. In both cases, C1 must be activated before the echo timing [25].

3.2.1. C1-Pulse

The function of C1-pulse with a π-pulse area is to temporally hold optical coherence decay, as well
as optical phase evolution, via transferring population in the excited state |2〉 to an auxiliary ground
(spin) state |3〉. In general, spin phase decay rate is much longer than the optical counterpart in
rare-earth doped crystals. Thus, C1 plays the role of storage time extension [12,18]. The coherence and
population changes by C1 can be obtained using Equations (20)–(22) as initial conditions. The solutions
of density matrix Equations (3)–(8) for C1 are obtained as

ρ11 = cos2
(
ϕD + ϕR1

2

)
, (26)

ρ22 = cos2
(ϕC1

2

)
sin2

(
ϕD + ϕR1

2

)
, (27)

ρ33 = sin2
(ϕC1

2

)
sin2

(
ϕD + ϕR1

2

)
, (28)

ρ12 = −
i
2

cos
(ϕC1

2

)
sin

(
ϕD + ϕR1

)
, (29)

ρ13 = −
1
2

sin
(ϕC1

2

)
sin

(
ϕD + ϕR1

)
, (30)

ρ23 = −
i
2

sin
(
ϕC1

)
sin2

(
ϕD + ϕR1

2

)
. (31)

The optical coherence ρ12 in Equation (29) by C1-pulse is equal to cos
(
ϕC1 /2

)
times the coherence

generated by R1-pulse in Equation (22), where the R1-resulted coherence is 0.15 for the 0.1π of D-pulse
and π of R1-pulse (see Figure 3). Thus, Equation (29) becomes ρ12 = 0.15i cos

(
ϕC1 /2

)
(see also Figure 2a).

Similarly, the spin coherence in Equation (30) is ρ13 = 0.15 sin
(
ϕC1 /2

)
. In the absence of the C1-pulse,

i.e., ϕC1 = 0, ρ12 = 0.15i and ρ13 = 0. In the presence of the π C1-pulse, the optical and spin coherence
becomes ρ12 = 0.15i cos(π/2) = 0 and ρ13 = 0.15 sin(π/2) = 0.15ie−iπ/2, respectively. The π-C1-pulse
adds a π/2 phase shift to the transferred coherence ρ13 [28]. This is a well-known property in resonant
two-field interactions in a three-atomic system, where there is a π/2 phase shift between Im[ρ12] and
Re[ρ13] In conclusion, the C1-pulse locks both optical phase decay and coherence evolutions, while it
transfers ρ12 into ρ13 with a π/2 phase shift via complete population transfer. In other words, Im[ρ12]

becomes Re[ρ13] as shown in Figure 3a. Here, Im[ρ13] is zero as Re[ρ12] is zero in Equations (16)–(18).
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3.2.2. C2-Pulse

The function of C2-pulse is to restore the transferred coherence by C1. Using Equations (26)–(31)
as the initial conditions, and setting Ωk = ΩC2 and Ω j = 0 in Equations (3)–(8), the system coherence
and population expressions by C2-pulse are obtained as follows:

ρ11 = cos2
(
ϕD + ϕR1

2

)
, (32)

ρ22 = cos2
(
ϕC1 + ϕC2

2

)
sin2

(
ϕD + ϕR1

2

)
, (33)

ρ33 = sin2
(
ϕC1 + ϕC2

2

)
sin2

(
ϕD + ϕR1

2

)
, (34)

ρ12 = −
i
2

cos
(
ϕC1 + ϕC2

2

)
sin

(
ϕD + ϕR1

)
, (35)

ρ13 = −
1
2

sin
(
ϕC1 + ϕC2

2

)
sin

(
ϕD + ϕR1

)
, (36)

ρ23 = −
i
2

sin
(
ϕC1 + ϕC2

)
sin2

(
ϕD + ϕR1

2

)
. (37)

The coherence in Equation (35) is equal to cos
((
ϕC1 +ϕC2

)
/2

)
multiplied by the coherence excited by

R1-pulse in Equation (22). The π–π pulse sequence of C1 and C2, therefore, induces a coherence inversion
via the round trip of population transfer between the excited and auxiliary states: cos((π+ π)/2) = −1

(see Figure 3c) [11,12,24]: ρ12
C1&C2
−−−−−→ −ρ12. This coherence inversion mechanism is completely different
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from the rephasing by R1 or R2 [12]. In order to resume the coherence initiated by the R1-pulse, the sum
pulse area of C1 and C2 must be equal to 4nπ(n = 1,2,3 . . . ). In Figure 3c,d, we plot the coherence
and population as a function of the C2-pulse area for ϕD = 0.1π, ϕR1 = π, and ϕC1 = π. Figure 3c
shows that the ensemble coherence excited by D and rephased by R1 is recovered with the 3πC2-pulse.
The 3π C2, of course, returns the population from state |3〉 to the excited state |2〉 as shown in Figure 3d.
Thus, the (π–π) C1–C2 pulse sequence in a controlled AFC [31] induces an absorptive echo as in the DR
scheme in Figure 2c due to the π-phase shift by the control Rabi flopping. The experimental observation
in [31] is not an artefact but due to the coherence leakage through imperfect rephasing by commercial
Gaussian distributed laser pulses, where its maximum echo efficiency is far less then unity [24]. In the
CDR echo scheme, however, the π–π pulse sequence of C1 and C2 is required to compensate for the
π-phase shift in the DR scheme.

3.2.3. R2-Pulse

For the CDR echo in Figure 1, the final analytic solutions of density matrix Equations (3)–(8) are
obtained using Equations (32)–(37) as the initial conditions.

ρ11 = 1
16

[
cos

(
ϕC1

+ϕC2−ϕD−ϕR2−ϕR1
2

)
− cos

(
ϕC1

+ϕC2−ϕD+ϕR2−ϕR1
2

)
+2 cos

(
ϕD−ϕR2+ϕR1

2

)
− cos

(
ϕC1

+ϕC2+ϕD−ϕR2+ϕR1
2

)
+ cos

(
ϕC1

+ϕC2+ϕD+ϕR2−ϕR1
2

)
+ 2 cos

(
ϕD+ϕR2+ϕR1

2

)]2
,

(38)

ρ22 = 1
16

[
sin

(
ϕC1

+ϕC2−ϕD−ϕR2−ϕR1
2

)
+ sin

(
ϕC1

+ϕC2−ϕD+ϕR2−ϕR1
2

)
+2 sin

(
ϕD−ϕR2+ϕR1

2

)
− sin

(
ϕC1

+ϕC2+ϕD−ϕR2+ϕR1
2

)
− sin

(
ϕC1

+ϕC2+ϕD+ϕR2−ϕR1
2

)
− 2 sin

(
ϕD+ϕR2+ϕR1

2

)]2
,

(39)

ρ33 = sin2
(
ϕC1 + ϕC2

2

)
sin2

(
ϕD + ϕR1

2

)
, (40)

ρ12 = − i
16 [2 sin

(
ϕR2

)
+2 sin

(
ϕR2

)
cos

(
ϕD + ϕR1

)(
3 + cos

(
ϕC1

+ϕC2
2

))
+ sin

(
ϕC1 + ϕC2 −ϕR2

)
− sin

(
ϕC1 + ϕC2 + ϕR2

)
+8 cos

(
ϕR2

)
sin

(
ϕD + ϕR1

)
cos

(
ϕC1

+ϕC2
2

)]
.

(41)

In Figure 4, we plot the evolutions of coherence and population as a function of R2-pulse area for
ϕD = 0.1π, ϕR1 = π, ϕC1 = π, and ϕC2 = π. As a result, both coherence and population excited by D
are recovered with a π-pulse area of R2, where spontaneous or stimulated emission-caused quantum
noises are completely eliminated.

The present scheme can experimentally be realized in a rare-earth Pr3+-doped Y2SiO5. In most
rare-earth doped media, the ground state hyperfine splitting is a few tens of megahertz. Thus, tens of
GHz in an optical inhomogeneous width can be sliced for multiple spectral channels for multimode
quantum memory applications, where the practical parameter of optical Rabi frequency is ~MHz.
For an extended storage time by C1, Zeeman states may be used [32].

In an atomic ensemble such as Rb vapors, Zeeman splitting may also be used, where optical
polarization control is adapted to form a three-level system. However, such an atomic medium may
not a good candidate for the photon-echo-based quantum memory applications simply due to fast
atomic diffusion. Moreover, providing a π optical pulse in a few-ns pulse duration within the optical
phase decay time is very challenging with a commercial continuous wave (CW) laser system.
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4. Conclusions

In conclusion, we analytically presented the CDR echo protocol for spontaneous emission-free-
photon echo-based quantum memory applications by combining double rephasing photon echoes
with control Rabi flopping. For this, time-dependent density matrix equations were analytically solved
for coherence/population evolutions to investigate the phase shift of a resonant atom. To overcome the
absorptive echo problem in a bare double rephasing photon echo scheme, a consecutive π–π control
pulse sequence is inserted right after the first rephasing pulse. The control pulse-generated π-phase
shift was exactly compensated for with another π-phase shift resulting from the double rephasing
scheme. As a result, emissive photon echoes were obtained under no population inversion.
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Appendix A

In the Appendix A, we analyze the coherence swapping by the π control pulse C1 for the π/2
D-pulse in Figure 3. The π/2 D-pulse creates maximum coherence in the |1〉↔|2〉 transition, where
Im[ρ12] = −0.5 (see Equation (18) for D = π/2). The negative sign represents absorption of the D-pulse.
In Figure A1, we show a phase shift of the D-pulse excited coherence according to each applied
pulses. The first rephasing pulse R1 switches the coherence from absorption to emission as shown in
Figure A1a. Identical C1 and C2 pulses with π-pulse area each invert the sign of coherence obtained
by R1, resulting in an absorptive echo in Figure A1b,c. Finally, the second rephasing pulse R2 adds a
π-phase shift to make the emissive photon echo under no population inversion, as shown in Figure A1d.
Either a control pulse set or a double rephasing pulse set with a 2π pulse area each does not change
the D-excited population distribution. Thus, the CDR echo is confirmed for a noise-free quantum
memory protocol.
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