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Abstract: A complex network as an abstraction of a language system has attracted much attention
during the last decade. Linguistic typological research using quantitative measures is a current
research topic based on the complex network approach. This research aims at showing the node
degree, betweenness, shortest path length, clustering coefficient, and nearest neighbourhoods’ degree,
as well as more complex measures such as: the fractal dimension, the complexity of a given network,
the Area Under Box-covering, and the Area Under the Robustness Curve. The literary works of
Mexican writers were classify according to their genre. Precisely 87% of the full word co-occurrence
networks were classified as a fractal. Also, empirical evidence is presented that supports the conjecture
that lemmatisation of the original text is a renormalisation process of the networks that preserve their
fractal property and reveal stylistic attributes by genre.

Keywords: complex networks; literary works; genre classification; stylistic attributes; lemmatization;
renormalisation process

1. Introduction

A complex network as an abstraction of a language system has attracted attention in the last
decade. The current linguistics research, based on the complex network approach, follows three major
lines [1,2]: characterisation of human language as a multi-level system, linguistic typological research
using quantitative measures, and the relationship between system-level complexity of human language
and its microscopic features.

Word co-occurrence networks and their measures have been widely employed to analyse the
syntactic features for multiple purposes, such as: identifying authors’ writing styles [3–8] and evaluating
machine translations [9]. Also, Ferraz de Arruda, Nascimento Silva [10], as well as F. de Arruda,
Q. Marinho [11] built a complex network where the nodes are the representation of adjacent paragraphs
that share a minimum semantical content to classify the text as real (written by an author) or randomly
constructed (built from random blocks of real texts).

In most of the research mentioned above, well-known measures such as: node degree (k), shortest
path length (spl), betweenness (b), clustering coefficient (cc), and the average of nearest neighbourhoods’
degree (nnd) are applied to characterise the word co-occurrence networks. The k, b, and nnd are
centrality measures that characterise local properties of the network that are useful for authorship
attribution [3–8]. However, these measures do not capture the global network structure that could give
us insight into the literary genre. This research aims at showing that local and global measures of the
word co-occurrence networks—of literary works of Mexican writers—let us classify them according to
the genre. Thus, the following research questions are formulated:
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1. Are measures of the complex network useful to classify literary works by genre?
2. Is the full word co-occurrence network of literary works fractal?
3. Do pre-process tasks such as: deletion of number, punctuation, functional words,

and lemmatisation generate fractal networks?

2. Measures of Complex Networks

Formally, a network is defined by G = (V, E) where V is the vertexes or nodes, and E is the edges.
The complex networks exhibit non-trivial topological features that do not occur in simple networks,
such as: lattices or random graphs [12], and their overall behaviour cannot be predicted by observing
the behaviour of their nodes [13]. Since the complex network theory has its root in graph theory, some
measures are presented below.

The degree of a node i is defined by:

ki =
N∑
j

vi j (1)

where j represents a given neighbour of the node i, and N is the total neighbours. The value of vij is
defined as one, if there is a connection between nodes i and j, and as 0 otherwise.

Similarly, the betweenness of a node is defined as:

bi =
∑
j,m,i

L jm(i)
L jm

(2)

where Ljm, is the number of shortest paths between nodes j and k, and Ljm(i) is the shortest paths
between nodes j and m that go through i.

The average nearest neighbourhoods’ degree (nnd) of a given node can be computed by:

nndi =
∑

j∈V(i)

k j

ki
(3)

where ki is the degree of the node i, and the set V(i) contains its nearest neighbours, and kj is the degree
of a given neighbour.

A definition of network clustering is expressed by:

cc(G) =
3τ

spl(2)
(4)

where τ is the number of triangles of the network and spl(2) is the shortest path of length two.
A “triangle” is a set of three nodes in which each contacts the other two.

2.1. Fractality of Complex Networks

A fractal is an object that is similar to itself on all scales [14]. A network is a fractal network if its
box-covering follows the power law given by:

Nb(l) ∼ βl−db (5)
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where Nb(l) is the minimum number of boxes of diameter l to cover the network—the procedure of
box-covering that gives us this number is detailed later—β is the scaling factor, and db is the box
dimension of a complex network that can be obtained as follows:

db = −lim
l→0

ln Nb(l)
ln l

(6)

On the other hand, a non-fractal network is characterised by a sharp decay of Nb(l), with l described
by an exponential function as follows [15,16]:

Nb(l) ∼ βe−dbl (7)

2.2. Complexity of Networks

The complexity measure of a network proposed by Lei, Liu [17] is defined as:

c(G) = d(G)s(G) (8)

where d(G) = |E|/
(
4CR3/3∆

)
is the absolute density [18]; |E|, C, R, and ∆ are the number of edges,

circumference, radius, and diameter of the network, respectively. s(G) = −k
|V|∑
i=1

(
pqi

i − pi
)
/(1− qi) is

known as structure entropy based on degree and betweenness [17], where k is the Boltzmann constant,
|V| is the number of nodes, pi =

ki
|V|∑
i=1

ki

, qi = 1 + (bmax − bi), and bmax is the maximum value of the

betweenness computed by the Equation (2). This measure captures the topology of the networks, but it
is not affected by scales and their types.

2.3. Box-Covering of Complex Networks

To obtain Nb(l), consider the phrase “No one behind, no one ahead”. Its word co-occurrence
network is shown in Figure 1. The number of boxes to cover the network Nb(l) for l = 1, and l =

∆ + 1—where ∆ is the diameter of the network—is the number of nodes of the network and one,
respectively. The Nb(l) from 2 to ∆ is not a trivial answer.

Figure 1. Word co-occurrence network of “No one behind, no one ahead”; the nodes in same colour
belong to the same box.

For example, Nb(l = 1) = 4 and Nb(l = ∆ + 1) = 1 for the network of Figure 1. To obtain the Nb(l = 2),
we first compute a dual network (G’) from the original (G) as follows: given a distance l; two nodes i, j,
in the dual network, are connected if the distance between lij is greater than or equal to l. For example,
we start the procedure from the node “no”, see Figure 2; “no” and “behind” have a distance of two in
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G, thus, they will be connected in G’. Next, the node “ahead” as the starting node is chosen—notice
that the distance from it to “behind” is two—thus, a connection in G’ will be drawn (see Figure 2).

Figure 2. Covering of the network for a given box size (l = 2). The number of boxes in this network is
Nb(2) = 2.

Then, the nodes of G’ must be coloured following a single rule: two nodes directly connected
will be painted different colours. The nodes of the resulting coloured dual network G’ are mapped
to original network G. The number of colours of G’ represents the minimum number of boxes Nb(l)
of a given value of l to cover the network. The nodes of G, in the same colour, belong to the same
box. The procedure described above is repeated until l = ∆ + 1. For more profound details of the
box-covering algorithm, the reader is referred to the work of Chaoming, Lazaros [19]. Since l vs.
Nb(l) characterises the topology of the network, the area under the box-covering curve, l vs. Nb(l)
(AUB), was also included in the measures of the word co-occurrence network.

2.4. Robustness of Fractal Networks

Intentional network attacks are based on different centrality measures such as: the node degree or
betweenness. They differ in the approach to compute those centrality measures such as: computing
the global degree or betweenness, then performing the attack, or recomputing the centrality measure
after a node is removed [20–23]. The fraction of nodes necessary to break down a fractal network
(pc) by a random attack are close to the total number of nodes; thus, these networks are extremely
robust [24]. On the other hand, this robustness decreases drastically when the nodes with a high degree
are selected to be removed [20,25]. This vulnerability to intentional attack relies on that a few nodes,
with a high degree, maintain the connectivity of the network [26]. The robustness of each network is
quantified by the size of the largest connected component Cc after removing a fraction p node from the
network [20,24,26,27] when Cc(pc) ' 0 the network has been disintegrated. The value of pc is low for
fragile networks, and the opposite for robust networks.

Although the pc value is useful for measuring the overall damage caused by the attack strategy, it
does not reflect the damage of an individual node removal; for example, Figure 3 shows the plot of Cc

vs. p, where the value of pc is 0.5 and 0.49 for networks one and two, respectively.
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Figure 3. The damage of an individual node removal of network one and two. Although the pc of
networks one and two are 0.5 and 0.49, respectively, the area under the robustness curve reflects more
precisely the vulnerability of the networks (0.0956 for network one and 0.060 for network 2).

This means that for both networks, it is necessary to remove approximately 50% of the nodes
to disintegrate them in components that contain at most one node. Moreover, based on Figure 3,
the removal of the nodes from network two causes more damage than the removal of those from
network one. This damage can be quantified by computing the Area Under the Robustness Curve
(AURC)—0.0956 for network one and 0.060 for network 2—to a higher the value, the higher the
robustness of the network. The AURC of the attack performed by node degree was included as a
measure of network robustness instead of pc.

3. Materials and Methods

From seven Mexican writers —Juan José Arreola Zúñiga, Carlos Fuentes Macías,
Jorge Ibargüengoitia Antillón, Carlos Monsiváis Aceves, José Emilio Pacheco Berny, Octavio Irineo Paz
Lozano, and Alfonso Reyes Ocha—21 essays, 21 narratives (15 tales and six novels), and 21 research
articles were the corpus for this research (see Table 1). Noticeably, some authors wrote titles classified
as essays, tales, or novels, such as Carlos Fuentes, Jorge Ibargüengoitia, and José Emilio Pacheco.
The essays, narratives, and research articles were published between 1911 and 2019. All the titles were
obtained in an electronic format such as pdf and then converted to plain text.

The node degree (k), betweenness (b), shortest path length (spl), clustering coefficient (cc),
and nearest neighbourhoods’ degree (nnd), as well as more complex measures such as: the fractal
dimension (db) obtained by the Equation (6), the complexity of a network c(G) given by the Equation (8),
the Area Under Box-covering (AUB), and the Area Under the Robustness Curve (AURC), were computed
for each network of each title. Statistical analysis was carried out to select those measures that have a
significant difference by literary genres and produce a better classification.

Then the Support Vector Machine (SVM), Naïve Bayes (NB), Decision Tree (DT), and Neural
Network (NN) implemented in Weka [28] and fourth data mining views—described later and based
on the measures mentioned above—were employed to classify the literary works. The hyperparameter
optimisation of the data mining techniques was conducted by sequential model-based algorithm
configuration [29,30]. The hidden layers and the nodes learning function of NN were 28 and sigmoid,
respectively. The polynomial kernel was used in SVM, and all measures of the networks were
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normalised before training and validating SVM and NN. The NN technique was used with a normal
distribution to estimate the probabilities of the network measures. DT uses the C4.5 algorithm [31].

Table 1. The genre, number of titles, and primary author of the corpus.

Genre Number of Titles Primary Author

Essay 6 Alfonso Reyes Ochoa
Essay 3 Carlos Fuentes Macías
Essay 6 Carlos Monsiváis Aceves
Essay 6 Octavio Irineo Paz Lozano

Narrative (Tale) 2 Carlos Fuentes Macías
Narrative (Tale) 5 José Emilio Pacheco Berny
Narrative (Tale) 3 Jorge Ibargüengoitia Antillón
Narrative (Tale) 5 Juan José Arreola Zúñiga

Narrative (Novel) 1 Carlos Fuentes Macías
Narrative (Novel) 1 José Emilio Pacheco Berny
Narrative (Novel) 3 Jorge Ibargüengoitia Antillón
Narrative (Novel) 1 Juan José Arreola Zúñiga
Research Article 16 Several authors

The efficacy of each data mining technique and data mining views was validated by 5-fold
cross-validation, comparing the Area under the Receiver Operating characteristic Curve (AROC).
The AROC is useful to measure the performance of a data mining technique when the dataset is
unbalanced [32]. Values of AROC closer to 1 mean a better classification than those closer to 0.5.
This analysis shows the impact of data mining techniques and the measures on the classification
of literary works. These results answer research question one (see Figure 4). Also, the accuracy of
classification is presented as additional information that is computed as (TP Positive (TP) + False
Positive (FP) + False Negative (FN) + True Negative (TN)). The computation of AROC and accuracy
are well-known for a two-class problem. Furthermore, for a multi-class problem, for each time one
class could be considered as positive, then all the others as negative. This means that TP, TN, FP,
and FN are calculated for each class. Therefore, a confusion matrix and AROC curve is obtained for
each class (see [33,34] for more details).

Figure 4. The experimental design followed to answer the research questions.

A set of word co-occurrence networks of each title was obtained and the first network was
built using the full text. The second was obtained by deleting numbers and functional words.
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A lemmatisation stage created the third after numbers and functional words deletion, and the fourth
network was attained only through a lemmatisation stage (see Figure 4).

The networks were obtained by using the full text, by deleting numbers and functional words,
by adding a lemmatisation stage after the numbers and functional words deletion, and through only a
lemmatisation stage, are classified as fractal or non-fractal. Thus, research question two and three will
be answered.

4. Results and Discussion

Tables 2–5 show the descriptive statistics by literary genre of the three types of networks—the
first was built using the full text; the second was built by deleting numbers, punctuation marks,
and functional words; the third was built by adding a lemmatisation stage; and the fourth was built
through only a lemmatisation stage, denoted by subscripts f, nf, l and ol, respectively.

Table 2. Mean and standard deviation by genre of node degree (k), betweenness (b), shortest path
length (spl), clustering coefficient (cc), nearest neighbourhoods’ degree (nnd), fractal dimension (db),
complexity c(G), the Area Under Box-covering (AUB), and the Area Under the Robustness Curve
(AURC) of the networks built using the full text.

Genre Kf(µ–σ) bf (µ–σ) slpf (µ–σ) ccf (µ–σ) nndf (µ–σ) dbf (µ–σ) c(G) f (µ–σ) AUBf (µ–σ) AURCf (µ–σ)

Essay 5.39–0.94 8249.16–4869.58 2.9–0.81 0.427–0.107 282.51–234.12 6.07–0.772
7.84 ×

10−4–3.83 ×
10−4

1510.61–969.37 0.0154–0.0031

Narrative
(Tale) 4.76–0.536 3868.33–1709.2 3.02–0.94 0.311–0.082 99.57–55.59 5.06–0.801

7.22 ×
10−4–3.62 ×

10−4
685.86–315.90 0.0231–0.0067

Narrative
(Novel) 6.81–1.01 13667.19–4796.52 2.78–0.061 0.577–0.088 559.34–233.84 7.42–0.644

6.78 ×
10−4–2.48 ×

10−4
2631.5–1013.36 0.01456–0.0017

Research
Article 5.80–0.94 5995.1–2013.42 3.00–0.092 0.374–0.065 153.31–73.31 5.43–0.539

3.72 ×
10−4–2.39 ×

10−4
1068.4–379.76 0.0284–0.0071

Table 3. Mean and standard deviation by genre of node degree (k), betweenness (b), shortest path
length (spl), clustering coefficient (cc), nearest neighbourhoods’ degree (nnd), fractal dimension (db),
complexity c(G), the Area Under Box-covering (AUB), and the Area Under the Robustness Curve
(AURC) of the networks built by deleting numbers and functional words.

Genre knf(µ–σ) bnf (µ–σ) slpnf (µ–σ) ccnf (µ–σ) nndnf (µ–σ) dbnf (µ–σ) c(G)nf
(µ–σ)

AUBnf (µ–σ) AURCnf (µ–σ)

Essay 3.763–1.067 15092.572–8418.110 5.370–0.911 0.052–0.037 12.101–9.638 2.057–0.352
1.5 ×

10−5–1.32 ×
10−5

2299.330–1416.600 0.077–0.010

Narrative
(Tale) 3.998–0.861 13572.998–7935.093 5.109–0.922 0.710–0.042 12.319–5.054 2.141–0.302

2.1 ×
10−5–1.61 ×

10−5
2022.467–1173.400 0.083–0.018

Narrative
(Novel) 4.703–0.425 16327.442–11950.3024.460–0.249 0.097–0.029 17.797–5.444 2.390–0.160

1.8 ×
10−5–0.77 ×

10−5
2656.333–1971.806 0.087–0.006

Research
Article 3.483–1.054 15538.651–7392.827 5.770–1.03 0.037–0.024 10.648–9.539 1.940–0.383

1.2 ×
10−5–0.59 ×

10−5
2339.476–1314.540 0.070–0.012
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Table 4. Mean and standard deviation by genre of node degree (k), betweenness (b), shortest path
length (spl), clustering coefficient (cc), nearest neighbourhoods’ degree (nnd), fractal dimension (db),
complexity c(G), the Area Under Box-covering (AUB), and the Area Under the Robustness Curve
(AURC) of the networks built by deleting numbers, functional words, and lemmatisation stage.

Genre kl(µ–σ) bl (µ–σ) slpl (µ–σ) ccl (µ–σ) nndl (µ–σ) dbl (µ–σ) c(G)l (µ–σ) AUBl (µ–σ) AURCl (µ–σ)

Essay 4.081–1.649 21871.411–7787.529 5.418–0.960 0.009–0.005 9.074–7.389 1.990–0.358
1.37 ×

10−5–1.87 ×
10−5

2202.024–752.531 0.115–0.023

Narrative
(Tale) 3.148–0.544 9538.206–4171.808 5.823–0.816 0.008–0.004 5.652–2.372 1.758–0.193

2.1 ×
10−5–1.61 ×

10−5
1121.733–411.3845 0.003–0.0149

Narrative
(Novel) 6.197–1.796 25284.524–7739.246 4.181–0.499 0.020–0.010 20.689–10.965 2.489–0.379

1.9 ×
10−5–1.49 ×

10−5
2760.667–677.608 0.138–0.017

Research
Article 4.849–0.691 11758.340–6325.385 4.296–0.352 0.207–0.010 11.169–2.802 2.234–0.155

2.8 ×
10−5–1.85 ×

10−5
1272.857–540.06 0.138–0.016

Table 5. Mean, and standard deviation by genre of node degree (k), betweenness (b), shortest path
length (spl), clustering coefficient (cc), nearest neighbourhoods’ degree (nnd), fractal dimension (db),
complexity c(G), the Area Under Box-covering (AUB), and the Area Under the Robustness Curve
(AURC) of the networks built only by lemmatisation stage.

Genre kol(µ–σ) bol (µ–σ) slpol (µ–σ) ccol (µ–σ) nndol (µ–σ) dbol (µ–σ) c(G)ol
(µ–σ) AUBol (µ–σ) AURCol (µ–σ)

Essay 5.377–0.94 2943.853–1852.075 2.915–0.081 0.413– 0.093 280.854–232.41 6.041–0.775
7.85 ×

10−4–3.84 ×
10–4

1520.381–972.673 0.0151–.003

Narrative
(Tale) 4.756–0.534 1324.018–

628.419 3.033–0.095 0.289– 0.06 99.135–
55.332 5.019–0.798 7.24 × 10−4–

3.63 × 10−4 693.8– 316.46 0.0242–0.007

Narrative
(Novel) 6.794–1.014 5035.632–1864.014 2.793–0.062 0.507–0.093 555.98–

231.929 7.383–0.673
6.79 ×

10−4–2.49 ×
10−4

2644.833–
1012.555 0.0151–0.002

Research
Article 5.777–0.466 2096.629–725.505 3.015–0.095 0.349–0.05 152.065–72.851 5.378–0.559

3.59 ×
10−4–2.42 ×

10−4
1078.357–379.765 0.0283–0.007

An Analysis of Variance (ANOVA) or a Kruskal–Wallis test—an ANOVA test carried out if the
normality and homoscedasticity assumptions were valid for the given measure—was performed to
select the measures of complex network that are influenced by essay, tale, novel, and research article
genres. The one-way ANOVA conducted on the individual influence of essay, tale, novel, and research
article on kc, splf, ccf, dbf, c(G)f, and AURCf shows significant effects: F(3,59) = 12.81, p < 0.0001; F(3,59)
= 15.039, p < 0.0001; F(3,59) = 14.77, p < 0.0001; F(3,59) = 19.27, p < 0.0001; F(3,59) = 6.40, p < 0.001;
and F(3,59) = 22.35, p < 0.0001. Similarly, a Kruskal–Wallis test shows a significant difference of the
literary genres on nndf, AUBf, bf; H(3) = 29.44, p < 0.0001; H (3) = 27.98, p < 0.0001; and H(3) = 28.68,
p < 0.0001.

The one-way ANOVA conducted on the individual influence of essay, tale, novel, and research
article on splnf, ccnf, dbnf, and AURCnf shows significant effects: F(3,59) = 3.70, p = 0.016; F(3,59) = 6.17,
p = 0.001; F(3,59) = 3.00, p ≤ 0.037; and F(3,59) = 4.28, p = 0.008. On the other hand, no effect on knf
F(3,59) = 2.65, p = 0.057; nndnf F(3,59) = 1.12, p = 0.347; bnf F(3,59) = 0.227, p = 0.877; c(G)nf H(3) =

3.99, p = 0.262; and AUBnf H(3) = 1.29, p = 0.731 by genres were found. Although splnf, ccnf, dbnf, and
AURCnf have a significant difference, they do not provide additional information—of those provided
by the measures of full-text networks—to differentiate the genre. For example, splnf is only statistically
different for the novel and tale (see Table 6). However, slpf is statistically different for the novel, essay,
and both the research article and tale. Thus, splnf, ccnf, and dbnf were not included in the set of measures
to build data mining models. Table 6 summarises the significant statistical difference for splf and splnf.

Finally, the one-way ANOVA conducted on the individual influence of essay, tale, novel, and
research article on spll and AURCl shows significant effects: F(3,59) = 17.62, p < 0.0001; F(3,59) = 4.28,
p = 0.008. Similarly, a Kruskal–Wallis test shows a significant difference of kl, ccl, dbl, c(G)l, nndl, AUBl,
and bl by genre: H(3) = 32.98.44, p < 0.0001; H(3) = 23.38, p < 0.0001; H(3) = 30.20, p < 0.0001; H(3)
= 22.03, p < 0.0001; H(3) = 29.38, p < 0.0001; H(3) = 32.40, p < 0.0001, p < 0.0001; and H(3) = 32.64,
p < 0.0001.
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Table 6. The subsets built using the significant statistical differences between slpf and slpnf induced by
the novel, essay, research article, and tale. The value in the intersection of each row and column is the
means of each measure for a given genre.

Genre Subset 1 Subset 2 Subset 3

Novel–slpf 2.78
Essay–slpf 2.90

Research Article–slpf 3.00
Tale–slpf 3.02

Novel–slpnf 4.46
Essay–slpnf 5.10 5.10

Research Article–slpnf 5.37 5.37
Tale–slpnf 5.77

After these analyses, the splf, kf, nndf, ccf, bf, dbf, AURCf, AUBf, c(G) f, spll, kl, nndl, ccl, bl, dbl,
AURCl, AUBl, and c(G)l were selected to classify the genre of each literary work. This set of measures
is a data mining view named DV1, and DV1 was compared with a data mining view named DV2 that
contains all the measures computed on the three types of co-occurrence networks described previously.
Also, a third data mining view named DV3, which contains only the measures spl, k, nnd, cc, and b
obtained from the three types of co-occurrence networks, was tested to show that measures such as db,
c(G), AUB, and AURC contribute to capturing the features of the literary genre. Since the influences of
the data mining technique and data mining view on the AROC need to be tested, a two-way ANOVA
is appropriate for this purpose, providing the data is normal and homoscedastic [32,35]. However,
the AROC generated by our experiments does not meet these assumptions; thus, a Scheirer–Ray–Hare
test [36,37] was used instead. A Scheirer–Ray–Hare test shows there is a significant difference among
the AROC of the data mining views: H(2) = 21.496, p < 0.001, the data mining techniques: H(3) = 84.79,
p < 0.001, and the interaction between both: H(6) = 30.167, p < 0.001. Figure 5 summarises the effect of
both data mining view and data mining technique on AROC that are detailed below.
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is a data mining view named DV1, and DV1 was compared with a data mining view named DV2 that 
contains all the measures computed on the three types of co-occurrence networks described 
previously. Also, a third data mining view named DV3, which contains only the measures spl, k, nnd, 
cc, and b obtained from the three types of co-occurrence networks, was tested to show that measures 
such as db, c(G), AUB, and AURC contribute to capturing the features of the literary genre. Since the 
influences of the data mining technique and data mining view on the AROC need to be tested, a two-
way ANOVA is appropriate for this purpose, providing the data is normal and homoscedastic [32,35]. 
However, the AROC generated by our experiments does not meet these assumptions; thus, a 
Scheirer–Ray–Hare test [36,37] was used instead. A Scheirer–Ray–Hare test shows there is a 
significant difference among the AROC of the data mining views: H(2) = 21.496, p < 0.001, the data 
mining techniques: H(3) = 84.79, p < 0.001, and the interaction between both: H(6) = 30.167, p < 0.001. 
Figure 5 summarises the effect of both data mining view and data mining technique on AROC that 
are detailed below. 
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Operating characteristic Curve (AROC).

A Kruskal–Wallis test shows that DV1, DV2, and DV3 affect the median of the AROC:
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H (2) = 21.496, p < 0.001. A posthoc Mann–Whitney test using a Dunn–Sidak adjustment [38]
(α = 0.0169) shows that the median of DV1 (Mdn = 0.975) is higher than DV2 (Mdn = 0.968)—U (NDv1

= 400, NDv2 = 400) = 68704, z = −3.59, p < 0.001 and DV3 (Mdn = 0.955)—U (NDv1 = 400, NDv2 = 400) =

66131, z = −4.388, p < 0.001. Thus, the statistical analysis carried out on the measures of three types of
networks is useful to select relevant measures that increase the AROC. No statistical difference was
found between DV2 and DV3, U (NDv2 = 400, NDv2 = 400) = 78117, z = −0.59, p = 0.236. This evidence
suggests that well-known measures such as: node degree, shortest path length, betweenness, clustering
coefficient, and the average of nearest neighbourhoods’ degree—used to build DV3—applied in the
previous research to identify authors’ writing styles [3–8] are not enough to produce a higher AROC.
On the other hand, more complex measures such as: db, c(G), AUB, and AURC improve the classification.

Similarly, the Kruskal–Wallis test shows that the medians of the AROC obtained from NN, SVM,
NB, and DT affect the AROC, H (3) = 84.793. A posthoc Mann–Whitney test using a Dunn–Sidak
adjustment [38] (α = 0.0085) shows that the median of both NN (Mdn = 1.00) and SVM (Mdn = 0.975)
were higher than those of NB (Mdn = 0.968)—see the corresponding row and column of Table 7 for the
result of the pair-wise test e.g., row NB and column NN show a significant difference: U (NNN = 300,
NNB = 300) = 36784.5, z = −3.995, p < 0.0001— and DT (Mdn = 0.911). No statistical difference between
NN (Mdn = 1.00) and SVM (Mdn = 0.975) was found.

Table 7. Pair-wise Mann–Whitney test using a Dunn–Sidak adjustment (α = 0.0085) among data mining
techniques. The intersection of a row and a column presents the result of the test between the two data
mining techniques.

NN SVM NB DT

NN —

SVM
U (NNN = 300, NSVM =
300) = 41859, z = −1.55,

p < 0.120
—

NB
U (NNN = 300, NNB =

300) = 36784.5, z =
−3.995, p < 0.0001

U (NSVM = 300,
NNB = 300) =

35311, z = −4.749, p
< 0.0001

—

DT
U (NNN = 300, NDT =

300) = 29119, z =
−7.816, p < 0.0001

U (NNN = 300, NDT
= 300) = 30523, z =
−6.989, p < 0.0001

U (NNN = 300, NDT =
300) = 35438.5, z =
−4.588, p < 0.0001,

—

Then a significant difference between NB (Mdn = 0.968) and DT (Mdn = 0.911), was found.
These results suggest that the DV1 and the use of NN or SVM produce statistically equal values of
AROC. The accuracy of NN and SVM based on DV1 are 0.93 and 0.90, respectively, based on DV1.

To support the conjecture that deleting number, punctuation, and functional words do not have
a significant effect on the AROC, the models of NN based on DV1 and the fourth data mining view
named DV4, which contain the measures from the networks built using the full text (splf, kf, nndf, ccf, bf,
dbf, AURCf, AUBf, and c(G) f) and those from networks built using only a lemmatisation stage (splol,
kol, nndol, ccol, bol, dbol, AURCol, AUBol, and c(G) ol), were compared. The Mann–Whitney test shows
no statistical difference—U (NDV1 = 100, NDV2 = 100) = 4793, z = −0.631, p = 0.528—between the
AROC of DV1 (Mdn = 1) and DV4 (Mdn = 0.98). The accuracy of DV1 and DV4 is 0.93 for both. Thus,
the deletion of the number and punctuation marks is not useful to reveal stylistic attributes by genre
as lemmatisation does. Furthermore, all these stages together modify the network fractality, as the
evidence presented later suggests. The accuracy of the NN model based on DV1, DV2, DV3, and DV4
are 0.93, 0.90, 0.89, and 0.93, respectively.

To classify each network as fractal or non-fractal, the Akaike Information Criterion (AIC) [39]
were computed for the networks based on the full text. The second network was obtained by deleting
numbers, punctuation marks, and functional words. The third was created by adding a lemmatisation
stage, and the fourth was attained only through a lemmatisation. The AIC is useful to classify networks
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as fractal and non-fractal [40]. To select the better mathematical model, first the AIC for power (denoted
by subscript P) and exponential (denoted by subscript E) models—Equations (5) and (7)—were
computed, then the minimum value is chosen (AICmin). ∆AICi was computed by AICi - AICmin,
where i is the AIC of power or exponential models. The AIC’s rule of thumb is that the two models
are statistically different if ∆AIC is greater than two, thus, the model with ∆AIC = 0 should be
selected [41,42]. Table S2 of the supplementary material shows that the difference between ∆AICP and
∆AICE for about 87% of the full word co-occurrence network is higher than two; thus, the mathematical
model for the relation l vs. Nb(l) computed by the box-covering algorithm of these networks is the
power model (see Equation (5)). Although for 13% of the networks, a model cannot be selected feasibly
based on ∆AIC, the power model obtained the least value. Thus, most of the full word co-occurrence
networks of literary works are fractal. This result supports the fractality founded in other languages
and English literature by different mathematical analyses [43–46]. Noticeably, selecting the better
model based on the adjusted coefficient of determination (R2) is rather difficult.

Similarly, Table S3 of the supplementary material shows that the difference between ∆AICP and
∆AICE for about 89% of the word co-occurrence networks—built by deleting numbers, punctuation
marks, and functional words—suggests they are fractal; 2% were classified as exponential, and 9%
were undetermined (since ∆AIC ≤ 2). However, adding a lemmatisation stage to the previous ones
dilutes the fractality (25.3% are fractal, 33.3% are exponential, and 41.3 are undetermined), see Table S4.
The lemmatisation stage alone preserves the fractality of the full-text networks (87% are fractals, and
13% are undetermined); see Tables S2 and S5, which show no difference between the AROC curve of
the classification of literary works according to their genre. Note that the lemmatisation stage preserves
the original fractality of the networks. Thus, this supports the conjecture that lemmatisation is a kind
of renormalisation of a complex network that preserves the fractality. This paves the way to compare
this linguistic renormalisation with that introduced by Song, Havlin [16].

5. Conclusions

This research aims at showing that measures of the word co-occurrence network of literary
works—by Mexican writers—classifies them according to the literary genre. The local measures—such
as: node degree, the average of nearest neighbourhoods’ degree, and global measures using shortest path
length, betweenness, clustering coefficient, and the average of nearest neighbourhoods’ degree—widely
used in the previous research to identify authors’ writing styles, produces acceptable values of AROC
classification. However, more elaborate measures using fractal dimension, complexity, the AUB,
and the AURC show an improvement of AROC. These measures capture the topology based on
the minimum number of boxes to cover the network, the robustness, and the complexity measured
by structural entropy and density. Precisely 87% of the full word co-occurrence networks were
classified as a fractal. Thus, those findings support the conjecture that fractality occurs in the literary
works of Mexican writers, as was previously reported by their English-speaking counterparts. Also,
the empirical evidence suggests that the lemmatisation of literary works is a renormalisation stage that
preserves the original text fractality. On the contrary, the deletion of numbers, punctuation marks,
and functional works, as well as lemmatisation, dilute the fractality. The number of literary works
included in this study limit the generalisation of this conjecture. Also, it would be interesting for
future research directions to compare the renormalisation induced by a lemmatisation stage—linguistic
renormalisation—to renormalisation of networks based on the box-covering algorithm.

Supplementary Materials: The following are available online at http://www.mdpi.com/1099-4300/22/8/904/s1,
Table S1 Title, primary author and the gender of the literacy works, Table S2, The adjusted determination coefficient,
AIC, ∆AIC and classification for the networks based the full text, Table S3 The adjusted determination coefficient
R2, AIC, ∆AIC and classification for the networks obtained by deleting numbers, punctuation marks and functional
words, Table S4 The adjusted determination coefficient R2, AIC, ∆AIC and classification for the networks obtained
by deleting numbers, punctuation marks, functional words and a lemmatisation stage, and Table S5 The adjusted
determination coefficient, AIC, ∆AIC and classification for the networks obtained only by a lemmatisation stage.
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