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Supplementary Information  
for “Understanding of collective atom phase control in modified photon 
echoes for a near perfect, storage time extended quantum memory” by  
Rahmatullah and B. S. Ham 
 

In Fig. S1(a), the D and R1 pulses are resonant to the transition |1⟩ − |2⟩. The two counter-propagating C1 
and C2 control pulses are resonant to the transition |2⟩ − |3⟩ . The optical Bloch and the Maxwell-Schr ö dinger 
equations are:  

 
𝜕𝜕
𝜕𝜕𝜕𝜕
𝜎𝜎11(𝑧𝑧, 𝑡𝑡,𝛥𝛥) = 𝑖𝑖ε𝑙𝑙(𝑧𝑧, 𝑡𝑡)�𝜎𝜎12(𝑧𝑧, 𝑡𝑡,𝛥𝛥) − 𝜎𝜎21(𝑧𝑧, 𝑡𝑡,𝛥𝛥)� ,                                                                                                         (S1) 

𝜕𝜕
𝜕𝜕𝜕𝜕
𝜎𝜎22(𝑧𝑧, 𝑡𝑡,𝛥𝛥) = 𝑖𝑖ε𝑙𝑙(𝑧𝑧, 𝑡𝑡)�𝜎𝜎21(𝑧𝑧, 𝑡𝑡,𝛥𝛥) − 𝜎𝜎12(𝑧𝑧, 𝑡𝑡,𝛥𝛥)� + 𝑖𝑖ε𝑗𝑗�𝜎𝜎23(𝑧𝑧, 𝑡𝑡,𝛥𝛥) − 𝜎𝜎32(𝑧𝑧, 𝑡𝑡,𝛥𝛥)� ,                                             (S2) 

𝜕𝜕
𝜕𝜕𝜕𝜕
𝜎𝜎33(𝑧𝑧, 𝑡𝑡, ,𝛥𝛥) = 𝑖𝑖ε𝑗𝑗�𝜎𝜎32(𝑧𝑧, 𝑡𝑡,𝛥𝛥) − 𝜎𝜎23(𝑧𝑧, 𝑡𝑡,𝛥𝛥)� ,                                                                                                                 (S3) 

𝜕𝜕
𝜕𝜕𝜕𝜕
𝜎𝜎12(𝑧𝑧, 𝑡𝑡,𝛥𝛥) = 𝑖𝑖Δ𝜎𝜎12(𝑧𝑧, 𝑡𝑡,𝛥𝛥) + 𝑖𝑖ε𝑙𝑙(𝑧𝑧, 𝑡𝑡)�𝜎𝜎11(𝑧𝑧, 𝑡𝑡,𝛥𝛥) − 𝜎𝜎22(𝑧𝑧, 𝑡𝑡,𝛥𝛥)� + 𝑖𝑖ε𝑗𝑗(𝑧𝑧, 𝑡𝑡)𝜎𝜎13(𝑧𝑧, 𝑡𝑡,𝛥𝛥),                                   (S4) 

𝜕𝜕
𝜕𝜕𝜕𝜕
𝜎𝜎32(𝑧𝑧, 𝑡𝑡,𝛥𝛥) = 𝑖𝑖Δ𝜎𝜎32(𝑧𝑧, 𝑡𝑡,𝛥𝛥) + 𝑖𝑖ε𝑗𝑗(𝑧𝑧, 𝑡𝑡)�𝜎𝜎33(𝑧𝑧, 𝑡𝑡,𝛥𝛥) − 𝜎𝜎22(𝑧𝑧, 𝑡𝑡,𝛥𝛥)� + 𝑖𝑖ε𝑙𝑙(𝑧𝑧, 𝑡𝑡)𝜎𝜎31(𝑧𝑧, 𝑡𝑡,𝛥𝛥),                                   (S5) 

𝜕𝜕
𝜕𝜕𝜕𝜕
𝜎𝜎13(𝑧𝑧, 𝑡𝑡,𝛥𝛥) = 𝑖𝑖ε𝑗𝑗(𝑧𝑧, 𝑡𝑡)𝜎𝜎12(𝑧𝑧, 𝑡𝑡,𝛥𝛥) + 𝑖𝑖ε𝑙𝑙𝜎𝜎23(𝑧𝑧, 𝑡𝑡,𝛥𝛥) ,                                                                                                         (S6) 

𝜕𝜕
𝜕𝜕𝜕𝜕
ε𝑙𝑙(𝑗𝑗)(𝑧𝑧, 𝑡𝑡) =

𝑖𝑖𝑖𝑖
2𝜋𝜋

� 𝜎𝜎12(𝑧𝑧, 𝑡𝑡,𝛥𝛥)𝑑𝑑𝑑𝑑
∞

−∞

,                                                                                                                                       (S7) 

 
where, l= D or R1 and j= C1 or C2. The ε𝑙𝑙(𝑗𝑗) is the optical field, 𝛼𝛼 is the optical depth parameter and 𝛥𝛥 = 𝜔𝜔12 − 𝜔𝜔𝑙𝑙 =
𝜔𝜔23 − 𝜔𝜔𝑗𝑗  is the detuning of the atom. For the controlled single rephasing photon echo scheme without R2, the 
controlled coherence conversion is studied below as discussed in numerically in ref. [18] and experimentally in ref. 
[19]. The pulse sequence is shown in Fig. S1(b).  
 

I. D-pulse 
 A weak D-pulse propagates through the medium along z-direction. We assume that D-pulse is much weaker 
than the 𝜋𝜋-pulse and neglect population change by D: 𝜎𝜎11(𝑧𝑧, 𝑡𝑡,𝛥𝛥) = 1. The resultant Maxwell-Bloch equations by D 
are obtained by putting ε𝑙𝑙 = εD and ε𝑗𝑗 = 0 in equations (S4) and (S7)  
 
𝜕𝜕
𝜕𝜕𝜕𝜕
𝜎𝜎12(𝑧𝑧, 𝑡𝑡,𝛥𝛥) = 𝑖𝑖𝑖𝑖𝜎𝜎12(𝑧𝑧, 𝑡𝑡,𝛥𝛥) + 𝑖𝑖𝜀𝜀D(𝑧𝑧, 𝑡𝑡) ,                                                                                                                             (S8) 

𝜕𝜕
𝜕𝜕𝜕𝜕
εD(𝑧𝑧, 𝑡𝑡) =

𝑖𝑖𝑖𝑖
2𝜋𝜋

� 𝜎𝜎12(𝑧𝑧, 𝑡𝑡,𝛥𝛥)𝑑𝑑𝑑𝑑
∞

−∞

.                                                                                                                                          (S9) 

 
The equation (S8) is the first order linear differential equation. By applying integrating factor 𝑒𝑒−𝑖𝑖∆𝑡𝑡, the solution is 
obtained as: 
 

𝜎𝜎12(𝑧𝑧, 𝑡𝑡,𝛥𝛥) = 𝜎𝜎12(𝑧𝑧,−∞,𝛥𝛥) + 𝑖𝑖 � 𝜀𝜀𝐷𝐷(𝑧𝑧, 𝑡́𝑡)𝑒𝑒𝑖𝑖∆(𝑡𝑡−𝑡𝑡)́
𝑡𝑡

−∞
,                                                                                                        (S10) 

 
By setting the initial atomic coherence zero, 𝜎𝜎12(𝑧𝑧,−∞,𝛥𝛥) = 0, 

𝜎𝜎12(𝑧𝑧, 𝑡𝑡,𝛥𝛥) = 𝑖𝑖 � 𝜀𝜀𝐷𝐷(𝑧𝑧, 𝑡́𝑡)𝑒𝑒𝑖𝑖∆(𝑡𝑡−𝑡𝑡)́
𝑡𝑡

−∞
𝑑𝑑𝑡́𝑡.                                                                                                                                  (S11) 
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Here, the coherence is positive (absorptive), so does the echo. It should be noted that 𝜎𝜎12(𝑧𝑧, 𝑡𝑡,𝛥𝛥) = −𝜌𝜌12(𝑧𝑧, 𝑡𝑡,𝛥𝛥), 
where 𝜌𝜌12(𝑧𝑧, 𝑡𝑡,𝛥𝛥) is the density matrix element. Taking the Fourier transform of equation (S11) and substituting into 
the Fourier version of (S9), we obtain: 
 
 
𝜕𝜕
𝜕𝜕𝜕𝜕
εD(𝑧𝑧, 𝑡𝑡) = −

𝛼𝛼
2𝜋𝜋

� 𝜀𝜀D(𝑧𝑧,𝜔𝜔) �
1

𝑖𝑖(𝜔𝜔 − ∆) + 𝜋𝜋(𝜔𝜔 − ∆)�
∞

−∞

𝑑𝑑∆= −
𝛼𝛼
2
𝜀𝜀D(𝑧𝑧,𝜔𝜔).                                                               (S12) 

 
The solution of equation (S12) in time domain is: 
 
𝜀𝜀D(𝑧𝑧, 𝑡𝑡) = 𝑒𝑒−

𝛼𝛼𝛼𝛼
2 𝜀𝜀D(0, 𝑡𝑡).                                                                                                                                                             (S13) 

 
The D-pulse exponentially decays as it propagates through the medium.  
 

II. R1-pulse 
 

 To retrieve D, we apply a 𝜋𝜋 R1-pulse in delay time T after the D-pulse. By the R1-pulse the atoms are excited 
( 𝜎𝜎22(𝑧𝑧, 𝑡𝑡,𝛥𝛥) = 1), and the corresponding equations of motion are:  
 
𝜕𝜕
𝜕𝜕𝜕𝜕
𝜎𝜎12(𝑧𝑧, 𝑡𝑡,𝛥𝛥) = 𝑖𝑖𝑖𝑖𝜎𝜎12(𝑧𝑧, 𝑡𝑡,𝛥𝛥) − 𝑖𝑖𝜀𝜀R1(𝑧𝑧, 𝑡𝑡) ,                                                                                                                        (S14) 

 
𝜕𝜕
𝜕𝜕𝜕𝜕
𝜀𝜀R1(𝑧𝑧, 𝑡𝑡) =

𝑖𝑖𝑖𝑖
2𝜋𝜋

� 𝜎𝜎12(𝑧𝑧, 𝑡𝑡,𝛥𝛥)𝑑𝑑𝑑𝑑
∞

−∞

.                                                                                                                                      (S15) 

 
The equations (S14) and (S15) are obtained by substituting ε𝑙𝑙 = 𝜀𝜀R1 and ε𝑗𝑗 = 0 into equations (S4) and (S7). The 
solution of equation (S14) yields: 
 

𝜎𝜎12(𝑧𝑧, 𝑡𝑡,𝛥𝛥) = 𝑒𝑒𝑖𝑖∆�𝑡𝑡−𝑡𝑡R1�𝜎𝜎12�𝑧𝑧, 𝑡𝑡R1 ,𝛥𝛥� − 𝑖𝑖 � 𝜀𝜀R1(𝑧𝑧, 𝑡́𝑡)𝑒𝑒𝑖𝑖∆(𝑡𝑡−𝑡𝑡)́
𝑡𝑡

𝑡𝑡R1

𝑑𝑑𝑡́𝑡.                                                                                 (S16) 

 
The R1-pulse results in a phase conjugate of the D-excited coherence, so the coherence at 𝑡𝑡 = 𝑡𝑡R1 is equal to the  
conjugate of equation (S11):  
 

𝜎𝜎12(𝑧𝑧, 𝑡𝑡,𝛥𝛥) = − 𝑖𝑖 𝑒𝑒−𝑖𝑖∆�2𝑡𝑡R1−𝑡𝑡� � 𝜀𝜀D
†(𝑧𝑧, 𝑡́𝑡)𝑒𝑒𝑖𝑖∆𝑡́𝑡

∞

−∞
𝑑𝑑𝑡́𝑡 − 𝑖𝑖 � 𝜀𝜀R1(𝑧𝑧, 𝑡́𝑡)𝑒𝑒𝑖𝑖∆(𝑡𝑡−𝑡𝑡)́

𝑡𝑡

𝑡𝑡R1

𝑑𝑑𝑡́𝑡.                                                            (S17) 

 
The negative sign in equation (S17) shows the emissive coherence of the photon echo. With some mathematical 
calculations, we obtain the following equation in a frequency domain: 
 

𝜎𝜎12(𝑧𝑧,𝜔𝜔,𝛥𝛥) = − 𝑖𝑖 𝑒𝑒−2𝑖𝑖∆𝑡𝑡R12𝜋𝜋𝜋𝜋(𝜔𝜔 − ∆)� εD
† (𝑧𝑧, 𝑡́𝑡)𝑒𝑒𝑖𝑖∆𝑡́𝑡𝑑𝑑𝑡́𝑡

∞

−∞
− 𝑖𝑖εR1(𝑧𝑧,𝜔𝜔) �

1
𝑖𝑖(𝜔𝜔 − ∆) + 𝜋𝜋𝜋𝜋(𝜔𝜔 − ∆)� .                     (S18) 

    
By taking the Fourier transform of equation (S15) and substituting equation (S18), we get: 
 
εR1(𝑧𝑧, 𝑡𝑡) = εR1(0, 𝑡𝑡)𝑒𝑒

𝛼𝛼𝛼𝛼
2 +2 sinh �

𝛼𝛼𝛼𝛼
2
� εD

† �0,2𝑡𝑡R1 − 𝑡𝑡�.                                                                                                      (S19) 
 
The echo is emitted at 𝑡𝑡 = 2𝑡𝑡R1 − 𝑡𝑡D. The efficiency of the echo is 4sinh2 �𝛼𝛼𝛼𝛼

2
�, which is greater than unity for a 

large optical depth due to the stimulated emission in the inverted medium [1,2].  
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III. C1 and C2 -pulses 
 

The function of C1–pulse is to convert the optical coherence 𝜎𝜎12(𝑧𝑧, 𝑡𝑡,𝛥𝛥)  into spin coherence 𝜎𝜎13(𝑧𝑧, 𝑡𝑡,𝛥𝛥) . The 
coherence at 𝑡𝑡C1is given by: 
 

𝜎𝜎12(𝑧𝑧, 𝑡𝑡,𝛥𝛥) = − 𝑖𝑖 𝑒𝑒−𝑖𝑖∆�2𝑡𝑡R1−𝑡𝑡C1� � 𝜀𝜀D
†(𝑧𝑧, 𝑡́𝑡)𝑒𝑒𝑖𝑖∆𝑡́𝑡

∞

−∞
𝑑𝑑𝑡́𝑡.                                                                                                           (S20) 

 
Here, we consider the first term of equation (S17) related to the evolution of the coherences excited by the D-pulse. 
The optical coherence is transferred to spin coherence via relation; 𝜎𝜎12(𝑧𝑧, 𝑡𝑡,𝛥𝛥) = cos �𝜋𝜋

2
� 𝜎𝜎12�𝑧𝑧, 𝑡𝑡C1 ,𝛥𝛥� = 0  and 

𝜎𝜎13(𝑧𝑧, 𝑡𝑡,𝛥𝛥) = 𝑒𝑒𝑖𝑖𝑖𝑖/2𝜎𝜎12�𝑧𝑧, 𝑡𝑡C1 ,𝛥𝛥� [17,18]. The 𝜋𝜋 C1 –pulse resulting additional 𝜋𝜋/2 phase shift, leading to the freezing 
of the optical coherence. The C2 –pulse transfers back the spin coherence to optical coherence. By setting ε𝑙𝑙 = 0 and 
𝜎𝜎13(𝑧𝑧, 𝑡𝑡, ,𝛥𝛥) = 0 in equation (S4), we get: 
 
𝜕𝜕
𝜕𝜕𝜕𝜕
𝜎𝜎12(𝑧𝑧, 𝑡𝑡,𝛥𝛥) = 𝑖𝑖𝑖𝑖𝜎𝜎12(𝑧𝑧, 𝑡𝑡,𝛥𝛥).                                                                                                                                                (S21) 

 
The solution of (S21) is: 
 
𝜎𝜎12(𝑧𝑧, 𝑡𝑡,𝛥𝛥) = 𝜎𝜎12�𝑧𝑧, 𝑡𝑡C2 ,𝛥𝛥�𝑒𝑒𝑖𝑖∆�𝑡𝑡−𝑡𝑡C2� ,                                                                                                                                   (S22) 
 
The 𝜋𝜋 C2 –pulse re-swaps the coherences with another 𝜋𝜋/2 phase shift. 
 

𝜎𝜎12�𝑧𝑧, 𝑡𝑡C2 ,𝛥𝛥� = 𝑒𝑒𝑖𝑖𝑖𝑖/2𝜎𝜎13(𝑧𝑧, 𝑡𝑡,𝛥𝛥) = 𝑒𝑒𝑖𝑖𝑖𝑖𝜎𝜎12�𝑧𝑧, 𝑡𝑡C1 ,𝛥𝛥� = 𝑖𝑖 𝑒𝑒−𝑖𝑖∆�2𝑡𝑡R1−𝑡𝑡C1� � 𝜀𝜀D
†(𝑧𝑧, 𝑡́𝑡)𝑒𝑒𝑖𝑖∆𝑡́𝑡

∞

−∞
𝑑𝑑𝑡́𝑡.                                   (S23) 

 
Substituting equation (S23) into (S22), we obtain: 
 

𝜎𝜎12(𝑧𝑧, t,𝛥𝛥) = 𝑖𝑖 𝑒𝑒−𝑖𝑖∆�𝑡𝑡C2−𝑡𝑡C1+2𝑡𝑡R1−𝑡𝑡� � 𝜀𝜀D
†(𝑧𝑧, 𝑡́𝑡)𝑒𝑒𝑖𝑖∆𝑡́𝑡

∞

−∞
𝑑𝑑𝑡́𝑡.                                                                                                    (S24) 

 
Here the final atomic coherence is positive. Thus, the echo becomes absorptive and cannot be radiated from the 
medium [18]. If the area of the C2 is 2𝜋𝜋, it brings the atomic coherence halted (𝜎𝜎12(𝑧𝑧, 𝑡𝑡) = 0) again transferring it to 
the spin state |3⟩. For 3𝜋𝜋-C2, the atoms are returned in the excited state |2⟩, and 𝜎𝜎12�𝑧𝑧, 𝑡𝑡C2𝑡𝑡C2 ,𝛥𝛥� = −𝜎𝜎12�𝑧𝑧, 𝑡𝑡C2𝑡𝑡C2 ,𝛥𝛥� 
in equation (S24), where the echo becomes emissive. Therefore, 𝜋𝜋-3𝜋𝜋 control pulse sequence is valid for a single 
rephasing scheme as shown in ref. [18]. Thus, the controlled AFC echoes with the 𝜋𝜋-𝜋𝜋 control pulse sequence [8,9] 
results in an absorptive echo [3]. The observation of the controlled AFC is due to coherence leakage by spatial 
Gaussian distribution of laser light [20].  
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Fig. S1. (a) Schematic single rephasing echoes in a three-level system. (b) Pulse sequence for 
(a). tj is the arrival time of pulse j 


