
entropy

Article

Hybrid Algorithm Based on Ant Colony Optimization
and Simulated Annealing Applied to the Dynamic
Traveling Salesman Problem

Petr Stodola 1,* , Karel Michenka 1, Jan Nohel 1 and Marian Rybanský 2

1 Department of Intelligence Support, University of Defence, Kounicova 65, 662 10 Brno, Czech Republic;
karel.michenka@unob.cz (K.M.); jan.nohel@unob.cz (J.N.)

2 Department of Military Geography and Meteorology, University of Defence, Kounicova 65, 662 10 Brno,
Czech Republic; marian.rybansky@unob.cz

* Correspondence: petr.stodola@unob.cz

Received: 21 July 2020; Accepted: 9 August 2020; Published: 12 August 2020
����������
�������

Abstract: The dynamic traveling salesman problem (DTSP) falls under the category of combinatorial
dynamic optimization problems. The DTSP is composed of a primary TSP sub-problem and a series
of TSP iterations; each iteration is created by changing the previous iteration. In this article, a novel
hybrid metaheuristic algorithm is proposed for the DTSP. This algorithm combines two metaheuristic
principles, specifically ant colony optimization (ACO) and simulated annealing (SA). Moreover,
the algorithm exploits knowledge about the dynamic changes by transferring the information gathered
in previous iterations in the form of a pheromone matrix. The significance of the hybridization, as well
as the use of knowledge about the dynamic environment, is examined and validated on benchmark
instances including small, medium, and large DTSP problems. The results are compared to the
four other state-of-the-art metaheuristic approaches with the conclusion that they are significantly
outperformed by the proposed algorithm. Furthermore, the behavior of the algorithm is analyzed
from various points of view (including, for example, convergence speed to local optimum, progress of
population diversity during optimization, and time dependence and computational complexity).

Keywords: dynamic traveling salesman problem; combinatorial dynamic optimization problem;
ant colony optimization; simulated annealing; hybridization; metaheuristic algorithm

1. Introduction

In recent years, both in civilian and military environments, considerable attention has been
paid to optimizing tasks and problems in a dynamically changing environment. In the military
environment, this attention is closely related to the growing increase in newly introduced technical
means (e.g., unmanned systems), which are programmed to perform individual tasks by means of
optimization techniques and algorithms. These techniques would make individual activities more
efficient by finding a high-quality solution to the problem at hand.

The problem in which the input variables change in time is called the dynamic optimization
problem (DOP). The optimization of DOPs aims to keep track of changes and adapt to them in order to
effectively find high-quality solutions [1]. A simple example of a combinatorial DOP is the dynamic
traveling salesman problem (DTSP). In this article, a metaheuristic approach for the DTSP is proposed
and evaluated on a set of experiments.

This article is organized as follows. Later in this section, the mathematical formulation of the
DTSP is presented and the authors’ motivation for dealing with this problem is discussed. Section 2
briefly reviews the literature connected with the heuristic approaches and algorithms of the DTSP.

Entropy 2020, 22, 884; doi:10.3390/e22080884 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-2251-8711
https://orcid.org/0000-0002-3472-1629
http://dx.doi.org/10.3390/e22080884
http://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/22/8/884?type=check_update&version=2

Entropy 2020, 22, 884 2 of 28

In Section 3, the new hybrid metaheuristic algorithm is proposed. Section 4 evaluates the algorithm
on a set of benchmark instances and compares the results with other state-of-the-art metaheuristic
techniques; this section also analyzes and discusses the parameters and behavior of the proposed
algorithm. Finally, Section 5 concludes the article and offers several possibilities for future work.

1.1. Dynamic Traveling Salesman Problem

The DTSP is defined as a sequence of static TSP sub-problems (iterations). Let I0 be the primary
sub-problem which determines the number of vertices and their positions. The first iteration I1 is
derived from the primary sub-problem I0; both the positions of the vertices and their number may be
affected (the extent of change is generally not limited). Each successive iteration is derived from the
previous one; Ii−1 → Ii for i = 1, . . . , I. where I is the total number of iterations (except the primary
sub-problem).

Let V =
{
V0, V1, . . . , VI

}
. be a set of all TSP sub-problems; Vi

∈ V is a set of vertices representing

an i-th TSP iteration, i.e., Vi =
{
Vi

1, Vi
2, . . . , Vi

Ni

}
where Ni is the number of vertices in this iteration.

The cost of traveling between any pair of vertices in the i-th iteration is ci
jk = cost

(
Vi

j, Vi
k

)
; if the

DSTP problem is symmetric, then ci
jk = ci

k j for all Vi
∈ V. and Vi

j, Vi
k ∈ Vi, otherwise, the problem

is asymmetric.
A solution to the DTSP problem is given by a set of routes R =

{
R0, R1, . . . , RI

}
, one for each

iteration. A route in an iteration starts in an arbitrary initial vertex, visits all other vertices just once in

some order, and then returns back to the initial vertex: Ri =
{
Ri

1, Ri
2, . . . , Ri

Ni , Ri
Ni+1

}
where Ri

1 = Ri
Ni+1

,

Ri
j ∈ Vi for all j = 1, 2, . . . , Ni + 1, and Ri

j , Ri
k for all j, k = 1, 2, . . . , Ni and j , k.

Quality C of each solution R of the DTSP can be calculated according to Formula (1) as a sum of
costs of individual routes Ci of all TSP iterations (i = 0, 1, 2, . . . , I). The cost of each route is calculated

as a sum of all distances traveled within this route (see Formula (2)). The function cost
(
Ri

j, Ri
j+1

)
represents the distance between vertices Ri

j and Ri
j+1 on route Ri.

C =
I∑

i=0

Ci (1)

Ci =
Ni∑
j=1

cost
(
Ri

j, Ri
j+1

)
. (2)

The objective of the DTSP is to find such a route R∗ with a minimum value of C∗. This route R∗

is considered optimal when C∗ ≤ C for all other feasible solutions in the state space. As the DTSP
is composed of a series of independent TSP iterations, the optimal solution can be found as a set of
optimal routes Ri∗ for individual iterations (C∗ = C0∗ + C1∗ + . . .+ CI∗). The aim of the algorithms
proposed for the solution is expressed in Formula (3); this means to find the highest quality solution
possible, i.e., with the lowest total cost possible (optimal in the best case).

minimize(C) (3)

1.2. Motivation

The military application of the DTSP can be illustrated using the unmanned ground vehicle
(UGV) used in systems of Command, Control, Communication, Computer, Intelligence, Surveillance,
and Reconnaissance (C4ISR). For example, as a consequence of the commander’s need to obtain
information from the area of intelligence responsibility (AIR) via a UGV, the C4ISR system plans a route
for this UGV starting from its base and returning after visiting all the waypoints in the AIR and thus
obtaining the necessary information. Due to the need to get information as quickly as possible, the task

Entropy 2020, 22, 884 3 of 28

is to optimize its time and plan the trip as efficiently as possible. A UGV using the DTSP, taking into
account the distances between each programmed point in the designated area, can generate a route
and start searching for information. However, due to unpredictable circumstances (enemy, terrain,
weather, etc.), it is difficult to consider traffic restrictions or delays that may affect the planned route.
Traffic restrictions may change the scheduled time due to conditions, and the UGV will need to find an
alternative route quickly to avoid losing the time it takes to explore the specified space.

The Tactical Decision Support System (TDSS), as part of the C4ISR system, is being developed
at the University of Defence, Czech Republic. The objective of this system is to assist the tactical
commanders of the Army of the Czech Republic in their decision-making processes [2]. The DTSP
solution proposed in this article is used in one of the models of military tactics implemented in the
TDSS. The objective of this model is to plan the reconnaissance operation for the AIR using a UGV in
a changing and uncertain environment. The model places a number of waypoints in the AIR so that as
much area as possible is explored using a minimum number of waypoints. All the waypoints need to
be visited just once and, after visiting the last waypoint, the UGV returns. If the environment changes,
the positions of the waypoints may also change and a new route is required. The algorithm proposed
in this article is used to plan the route of the UGV. More information about the model can be found
in [3]; the general topic of decision support for commanders is explored in [4–10].

1.3. Contributions

The main contributions of this article are as follows:

• A novel hybrid metaheuristic algorithm using the unique combination of ant colony optimization
(ACO) and simulated annealing (SA) principles was proposed for the dynamic traveling
salesman problem.

• The algorithm is universally applicable for symmetric and asymmetric as well as metric and
non-metric DTSP problems.

• The performance of the algorithm was evaluated on a set of benchmark instances including small,
medium, and large DTSP problems.

• The results on the benchmark problems were evaluated using a set of four different experiments
in order to show the significance of (a) the hybridization of both metaheuristic principles and (b)
knowledge about the dynamic changes in successive iterations.

• The results were compared with four other state-of-the-art metaheuristic algorithms based on the
ant colony optimization or discrete particle swarm optimization approach.

• A detailed analysis of the behavior of the algorithm was conducted, including the influence of
parameters on the convergence speed, progress of population diversity during optimization,
degree of improvement caused by simulated annealing, and time dependence and computational
complexity analysis.

• A possibility for further improvement of the solution for the DTSP was discussed and assessed
using the k-opt optimization principle.

2. Literature Review

The TSP problem was one of the first NP-hard problems to be studied; the research started at
Princeton University in the 1930s [11]. Since that time, the problem has attracted many researchers and
thousands of different approaches and algorithms have been developed. The first attempts to solve the
problem used linear programming techniques; the objective is to minimize a linear function subject to
specified linear equality/inequality constraints [12]. This approach has evolved and is still being used
in many solutions. One of the most well-known and popular solutions is the Concorde TSP solver [13]
that participated in finding the optimal solution for all benchmark instances from the TSPLIB [14],
including the largest instance with 85,900 vertices. This instance was solved by Concorde in April
2006, consuming over 136 CPU years on clusters with 256 processors [15].

Entropy 2020, 22, 884 4 of 28

Exact methods are not always suitable for larger instances. Therefore, many heuristic and
metaheuristic approaches have been proposed. One of the most successful heuristics was developed
by Lin and Kernigham [16]. Although the authors limited their algorithms to problems with at
most 110 vertices, they can successfully be applied to much larger instances [17]. The improved
Lin–Kernigham algorithm called LKH was introduced by Helsgaun [18]; this algorithm provided
the best solution reported thus far for the World TSP instance containing 1,904,711 vertices [19].
Different metaheuristic methods for the TSP also emerged using various principles such as ant
colony optimization (ACO) [20], particle swarm optimization (PSO) [21], simulated annealing [22],
genetic algorithms [23], and others [24], as well as their combinations [25–27].

All the algorithms and methods developed for the TSP can also be used for the DTSP; each iteration
can be solved independently of the others. However, the knowledge that one iteration is not much
different from the next can be used in favor of the algorithms with the benefit of achieving better
solutions and/or shorter optimization time. The literature is, of course, less extensive than in the case of
the TSP, but still, this topic has been covered by hundreds of publications. Therefore, only the newest
research and publications concerning the DTSP are examined in this section.

The ACO principle was used in several cases for solving the DTSP. Mavrovouniotis and Yang [28]
addressed the problem of population adaptation to the new environments in successive iterations
by increasing the population diversity via transferring knowledge from previous environments
to the pheromone trails using immigrant schemes; they proposed and implemented different
immigrant schemes in their ACO algorithm, including random immigrants, elitism-based immigrants,
and memory-based immigrants. Ma et al. [29] proposed an adaptive ACO algorithm; it consists of
the evaluation of the degree of changes in successive iterations of the TSP, and then an adaptive
pheromone initialization mechanism configured according to this degree is used. In their ACO solution,
Chowdhury et al. [30] developed adaptive-large-neighborhood-search-(ALNS)-based immigrant
schemes to transfer knowledge from the pheromone trails in one iteration to the next; they implemented
their method in a real-life application for wildlife surveillance via drones. Some other publications
proposing the ACO principle for the DTSP can be found in [31–33].

The discrete particle swarm optimization approach was adapted for the DTSP by Strak et al. [34].
The authors proposed their PSO algorithm with heterogeneous (non-uniform) parameter values;
the parameters are set automatically for the critical PSO parameters based on discrete probability
distributions. This approach proved to be more successful compared to the original PSO with
homogeneous (uniform) parameter values [35]. Genetic algorithms are also used in several cases for
the DTSP such as when [36] presenting an algorithm called the extended virtual loser genetic algorithm
(eVLGA) or [37] presenting a genetic algorithm that feeds on Newton’s motion equation to show how
route optimization can be improved when targets are constantly moving.

So far, there have not been many attempts to hybridize two heuristics together for the DTSP.
One of the few can be found in the paper by Boryczka and Strak [38] where the authors connected
discrete PSO with ACO principles. The proposed solution uses the virtual pheromone matrix which
serves as a communication topology and provides information about the landscape of global discrete
space. Mavrovouniotis, Muller, and Yang [39] integrated the memetic ACO algorithm with local search
operators to improve solutions in the population. They apply these local search operators to the best
solution found in the population in order to possibly improve this solution; a similar idea is used in
this article, but instead of local search operators, simulated annealing (SA) is used.

The idea of hybridization of the ACO and SA have been already applied in some studies dealing
with a variety of problems. For example, the combination of the ACO and SA was successfully used as
a machine learning technique to generate classification rules; see [40,41]. Another promising area for
using the hybrid metaheuristics is image processing. The hybrid metaheuristic algorithm combining
the ACO, SA, and genetic algorithm was used for efficient contrast enhancement of images [42,43].
The combination of ACO and SA were used in a few cases also for the TSP. The authors of [44] enhanced
their ACO algorithm with the idea inspired by the SA approach: the temperature is introduced as

Entropy 2020, 22, 884 5 of 28

a new parameter decreasing in iterations. Then, solutions generated by individual ants in an iteration
are selected to update the pheromone trails using the Metropolis criterion (the higher the temperature,
the bigger probability for a solution to be selected, even if it is inferior). This approach increases
the convergence speed. A different approach was adopted in [45]. The SA, along with the mutation
operator, was used to increase the ant population diversity.

The authors of this article are not aware of any research which hybridizes ant colony optimization
with simulated annealing for the dynamic traveling salesman problem. Although there are some
publications combining the ACO and SA for the TSP, the ideas behind the integration of the both
principles in these publications are different than the idea presented in this article.

3. Hybrid ACO Algorithm

In this section, a hybrid metaheuristic algorithm for the DTSP is proposed. The algorithm
hybridizes two stochastic approaches: ant colony optimization (ACO) and simulated annealing (SA).
The acronym ACO-SA is used for further reference. Both principles are first examined independently
in Sections 3.1 and 3.2, and then their hybridization is proposed in Section 3.3.

3.1. Ant Colony Optimization

The ACO, part of the ACO-SA algorithm, is based on the algorithm proposed by the authors for
the multi-depot vehicle routing problem (MDVRP). This section adapts this algorithm to the DTSP;
the MDVRP version can be found in [46]. The application of this algorithm to the DTSP instead of the
MDVRP allows some simplifications which follow from using only a single colony of ants instead of
multiple colonies, or missing constraints concerning the maximum length and/or capacity of vehicles.

The key parameters of the ACO algorithm are in Table 1 along with a brief discussion.
More information about their function and place in the algorithm can be found in the text below.
Table 2 records all variables and symbols used in this section.

Algorithm 1 presents the ACO algorithm in pseudocode. For each iteration, including iteration
zero (i = 0, 1, 2, . . . , I), the algorithm repeats the same process in a loop (lines 3 to 34); the result
of each loop is cost Ci (line 33) and route Ri. (line 34) representing the i-th TSP solution. The first
key step in each loop is the initialization of the pheromone matrix F (line 6). The details of this
process are mentioned later in this section (see Algorithm 2). Note that in the zero iteration (i = 0),
route Ri−1 = R−1, which is undefined, is used as an input of the initialization function. It does not
affect the functionality, as Algorithm 2 does not work with this parameter when i = 0.

The process of finding a solution for the i-th TSP proceeds in a number of generations (lines 7 to 32).
In each generation, heuristic information obtained in previous generations in the form of the pheromone
matrix is used to generate a set of solutions; each solution (route ra) is found for each ant in the colony
(a = 1, 2, . . . , Na) independently of one another (lines 9 to 25).

A solution for each ant is created based on the gradual selection of vertices from set Vi and their
insertion into route ra in a loop (lines 14 to 20). For this, set U is established, registering all vertices still
missing in route ra (line 13). The loop ends when this set is empty, i.e., there are no more vertices in set
U, which means that route ra contains all vertices from set Vi. Each vertex U j ∈ U is a candidate for
insertion into route ra; the probability of this insertion p j

(
U j

)
(lines 15 to 16) is calculated according

to Formula (4). The next vertex in the route is selected based on these probabilities (line 17) using
a simple roulette wheel principle (see Algorithm 3 later in this section):

p j
(
U j

)
=

D−αkj · F
β
kj∑

Ui∈U D−αki · F
β
ki

for all U j ∈ U (4)

where Dkj is the distance between the last vertex inserted into route ra (which is vertex ra
k) and candidate

vertex U j (Dkj = cos t
(
ra

k, U j
)
), Fkj is a pheromone trail between the last vertex inserted into route

Entropy 2020, 22, 884 6 of 28

and vertex U j, Dki is the distance between the last vertex inserted into route and vertex Ui ∈ U
(Dki = cos t

(
ra

k, Ui
)
), Fki is a pheromone trail between the last vertex inserted into route and Ui ∈ U,

α is the coefficient controlling the influence of the distance between vertices on the probability, and β
is the coefficient controlling the influence of the pheromones on the probability. As can be seen, the
distance is inversed, i.e., the bigger the distance, the lower the probability.

Table 1. Key parameters of the ant colony optimization (ACO) algorithm.

Ng

Number of generations of the algorithm. In each
traveling salesman problem (TSP) iteration, the same
number of generations is executed; in each generation,
solutions are generated based on the heuristic
information gathered in previous generations.

Na

Number of ants in a colony. For each ant in each
generation, an independent solution is found. In total,
Ng ·Na solutions are generated and evaluated in a single
TSP iteration of the algorithm.

ρ

Pheromone evaporation coefficient. This coefficient
controls the speed of the pheromone evaporation process,
which is a key principle ensuring that solutions of lower
quality from earlier generations lose their influence in the
pheromone matrix in favor of higher quality solutions
from recent generations. This coefficient has great impact
on the speed of convergence to a local optimum; the
correct setting is of significance for any dynamic
traveling salesman problem (DTSP).

δ

Pheromone updating coefficient. This coefficient
controls the influence of the best solution found in each
generation on the pheromone matrix when updating the
pheromone trails according to this solution.

τ

Pheromone initialization coefficient. This coefficient
controls the initial strength of the pheromone trails in
each DTSP iteration according to the best solution found
in the previous iteration. The main idea behind this is the
knowledge that only a small portion of vertices changes
from one TSP iteration to another.

α

Distance probability coefficient. This coefficient
controls the influence of the distance between vertices
when calculating the probability to select the next vertex
on the route.

β

Pheromone probability coefficient. This coefficient
controls the influence of the strength of pheromone trails
between vertices when calculating the probability to
select the next vertex on the route.

Entropy 2020, 22, 884 7 of 28

Table 2. Variables and symbols used in Section 3.1.

I Number of iterations of the DTSP.
N Number of vertices in each TSP.
V A set of sets of all vertices of the DTSP; V =

{
V0, V1, . . . , VI

}
.

Vi A set of vertices of the i-th TSP iteration; Vi =
{
Vi

1, Vi
2, . . . , Vi

N

}
,

i = 0, 1, 2, . . . , I.
Vi

k k-th vertex of the i-th TSP iteration; i = 0, 1, 2, . . . , I, k = 1, 2, . . . , N.
C Total cost of thDTSP solution.
Ci Cost of the i-th TSP solution; i = 0, 1, 2, . . . , I.
ca Cost of a solution found by the a-th ant in the colony; a = 1, 2, . . . , Na.

cbest The lowest cost of all solutions found by ants in a generation.
R A set of all routes for the DTSP; R =

{
R0, R1, . . . , RI

}
.

Ri A route for the i-th TSP; Ri =
{
Ri

1, Ri
2, . . . , Ri

N , Ri
N+1

}
, i = 0, 1, 2, . . . , I.

Ri
k k-th vertex in a route of the i-th TSP; i = 0, 1, 2, . . . , I, k = 1, 2, . . . , N+1.

ra A route found by the a-th ant in the colony; ra =
{
Ra

1, Ra
2, . . . , Ra

N , Ra
N+1

}
,

a = 1, 2, . . . , Na.
ra

k k-th vertex in a route of the a-th ant; a = 1, 2, . . . , Na, k = 1, 2, . . . , N+1.
rbest The route with the lowest cost found by ants in a generation.
U A set of alvertices still missing in a route.
U j A selected vtex still missing in a route; U j ∈ U.

p j
(
U j

)
Probability that vertex Uj will be chosen as the next vertex in route ra

F An N ×N pheromone matrix.
Fm,n An element of matrix F; m = 1, 2, . . . , N, n = 1, 2, . . . , N.

The best route ra of all ants (a = 1, 2, . . . , Na.), i.e., the one with the lowest cost
cbest = min

(
c1, c2, . . . , cNa

)
, is stored as route rbest (lines 23 to 25). If the best solution rbest found

in a generation is better than the best solution found so far in previous generations, this solution is
saved as route Ri with cost Ci (lines 26 to 28).

Then, the pheromone matrix modification process starts; this process is composed of two phases.
In the first phase (lines 29 to 30), the trails in the pheromone matrix evaporate; the speed is controlled
by the pheromone evaporation coefficient ρ. In the second phase (lines 31 to 32), the pheromone matrix
is updated according to best route rbest. Trails between neighboring vertices in route rbest are intensified.
The strength depends on the pheromone updating coefficient δ as well as on the quality of solution
cbest compared to the best-known solution Ci.

Although Algorithm 1, for the sake of simplicity, uses a constant number of generations to find
a TSP solution (loop on lines 7 to 32), the real implementation enables two other termination conditions
to end an individual iteration. The first one is the maximum time constraint; the second is the maximum
specified number of generations without improving a solution (i.e., the number of generations in which
the condition on line 26 is not met).

Algorithm 2 presents the principle of the pheromone matrix initialization at the beginning of
each i-th TSP iteration (see line 6 in Algorithm 1). In the first phase, all elements in N ×N pheromone
matrix F are set to 1 (lines 2 to 3); this value represents the initial pheromone strength of a connection
between two vertices. In the second phase, a solution from the previous iteration (i − 1) is used to
update the matrix. This is based on an assumption following from the DTSP problem that only a small
percentage of vertices changed from one iteration to another. Thus, a great part of the information from
the solution found in the previous iteration is also valid in the current iteration. This information is
integrated into the pheromone matrix by intensifying the trails between neighboring vertices in route
Ri−1 (lines 5 to 6). The strength of this intensification is controlled by the pheromone initialization
coefficient τ ≥ 1. In the zero iteration (i = 0) where there is no known route from the previous iteration,
the second phase is skipped (see the condition on line 4). The second phase could also be skipped in
case it is required to solve the DTSP problem as a number of independent TSP problems.

Entropy 2020, 22, 884 8 of 28

Algorithm 1. ACO algorithm for the DTSP

Algorithm_DTSP_ACO (V,Ng,Na,ρ,δ,τ,α,β)

1. C = 0
2. R = ∅
3. for i = 0 to I do // Iterations
4. Ci = ∞

5. Ri = ∅
6. F =Initialize_Pheromone_Matrix

(∣∣∣Vi
∣∣∣ , Ri−1, τ

)
7. for g = 1 to Ng do // Generations
8. cbest = ∞

9. for a = 1 to Na do // Route for each ant
10. k = 1
11. ca = 0

12. ra =
{
Vi

1

}
13. U = Vi

−

{
Vi

1

}
14. while U , ∅ do
15. for each U j ∈ U do

16. compute p j
(
U j

)
= f

(
ra

k, Vi, F,α, β
)

17. ra
k+1 =Select_Next_Vertex

(
U, p1, p2, . . . , p|U|

)
18. U = U −

{
ra

k+1

}
19. ca = ca + cos t

(
ra

k, ra
k+1

)
20. k = k + 1
21. ra

k+1 = Vi
1

22. ca = ca + cos t
(
ra

k, ra
k+1

)
23. if ca < cbest then do
24. cbest = ca

25. rbest = ra

26. if cbest < Ci then do
27. Ci = cbest

28. Ri = rbest

29. for each Fm,n ∈ F do // Evaporate pheromones
30. Fm,n = Fm,n · (1− ρ)
31. for k = 1 to N do // Update pheromones

32. Frbest
k ,rbest

k+1
= Frbest

k ,rbest
k+1

+ δ ·
(
Ci/cbest

)
33. C = C + Ci

34. R = R +
{
Ri

}
35. return C,R

Algorithm 2. Pheromone matrix initialization

Initialize_Pheromone_Matrix (N,Ri−1,τ)

1. F = (Fm,n) ∈ RN×N

2. for Fm,n ∈ F do
3. Fm,n = 1
4. if i > 0 then do
5. for k = 1 to N do
6. FRi−1

k ,Ri−1
k+1

= τ

7. return F

Algorithm 3 shows the principle of selecting the next vertex from set U based on probabilities
p1, p2, . . . p|U| (see line 17 in Algorithm 1). The algorithm uses the simple roulette wheel selection
principle. RandU(a, b) is a pseudo-random number generator with uniform distribution ranging from
a to b.

Entropy 2020, 22, 884 9 of 28

Algorithm 3. Selection of the next vertex in the route

Select_Next_Vertex (U,p1,p2, ...p|U|)

1. psum =
∑
k

pk

2. prnd = RandU(0, psum)

3. for k = 1 to |U| do

4. if prnd ≤
k∑

l=1
pl then do

5. return Uk

3.2. Simulated Annealing

The simulated annealing (SA) part of the ACO-SA algorithm is inspired by annealing in metallurgy,
where this process is used to reduce the defects of material by way of heating and controlled cooling.
The key idea behind the SA is to accept the worse solutions with some probability, thus expanding the
search space explored for the global optimum. The SA can be used both for continuous and discrete
state space.

The SA implementation presented in this section is only used for a single TSP problem instead of
a series of TSP iterations. The reason for this is that it is needed for the hybridization with the ACO.
To use it for the DTSP, the algorithm could be executed repeatedly with the solution from the previous
iteration as an input.

Table 3 shows the key parameters of the SA algorithm; their function and place in the algorithm is
mentioned below in more detail. Table 4 records all new symbols and variables used in this section;
symbols in common with Section 3.1 can be found in Table 2.

Table 3. Key parameters of the SA algorithm.

Tmax
Maximum temperature. The initial value of the
temperature used in the first generation.

Tmin

Minimum temperature. The threshold value of the
temperature. When the current temperature drops
below this threshold, the algorithm ends.

γ
Cooling coefficient. This coefficient controls the
speed of temperature cooling in successive
generations (0 < γ < 1).

n1max

Maximum number of transformations in a
generation. In each generation, a current solution is
repeatedly transformed into a new solution. These
coefficients control the number of those
transformations in each generation.

n2max

Maximum number of replacements in a generation.
In each generation, a newly created (transformed)
solution can replace the original solution with a
probability. These coefficients control the number of
those replacements in each generation.

Entropy 2020, 22, 884 10 of 28

Table 4. Variables and symbols used in Section 3.2.

CSA Cost of the initial and final TSP solution.
cSA Cost of the current solution.
cSA′ Cost of the solution transformed from the current solution.
RSA A route of the initial and final TSP solution; RSA =

{
RSA

1 , RSA
2 , . . . , RSA

N , RSA
N+1

}
.

RSA
k k-th vertex in a route of solution RSA; k = 1, 2, . . . , N+1.

rSA A route of the current solution; rSA =
{
rSA

1 , rSA
2 , . . . , rSA

N , rSA
N+1

}
.

rSA
k k-th vertex in a route of the current solution; k = 1, 2, . . . , N+1.

rSA′ A route of the transformed solution; rSA′ =
{
rSA′

1 , rSA′
2 , . . . , rSA′

N , rSA′
N+1

}
.

rSA′
k k-th vertex in a route of the transformed solution; k = 1, 2, . . . , N+1.
T Current temperature.
n1 Current number of transformations in a generation.
n2 Current number of replacements in a generation.

p
(
rSA
→ rSA′

)
Probability that the transformed solution rSA′ replaces the original solution rSA.

Algorithm 4 shows the SA algorithm for the TSP in pseudocode. As input, route RSA enters the
algorithm representing the first (initial) solution. This can be any feasible solution either found by
another algorithm (e.g., by the nearest neighbor algorithm) or randomly generated (i.e., containing
all vertices in random order). The algorithm works in generations (lines 4 to 19); during each
generation, the same value is used for the temperature (starting with value Tmax in the first generation).
When a generation ends, the temperature is lowered (line 18) and the next generation starts. When the
temperature is lower than the minimum threshold Tmin, the algorithm ends, returning the best
solution found.

In each generation, a number of transformations and replacements are conducted (lines 6 to 17).
The transformation of a current solution into a new solution (line 7) is a key part of the algorithm.
This process is discussed later in this section (see Algorithm 5). The newly created solution replaces
the original (lines 10 to 13) with a probability (line 9) calculated according to the Metropolis criterion
(5). If the new solution is better than the original, it is always replaced. Otherwise, the probability
of replacements depends on the difference in quality of both solutions and the current temperature.
Higher temperatures increase the chances of accepting worse solutions; this happens more often in the
initial phases (generations) of the algorithm.

p
(
rSA
→ rSA′

)
=

 1

e−
cSA′

−cSA
T

for cSA′
≤ cSA

otherwise
(5)

The numbers of conducted transformations n1 and replacements n2 within a generation are limited
by the parameters n1max and n2max. Each generation ends when either n1 or n2 exceeds its permitted
value. The best solution found during the execution of the algorithm is saved (lines 14 to 16) and
returned when the algorithm ends (line 19).

Entropy 2020, 22, 884 11 of 28

Algorithm 4. SA algorithm for the TSP

Algorithm_TSP_SA (Vi,RSA,Tmax,Tmin,γ,n1max,n2max)

1. rSA = RSA

2. cSA = CSA =
N∑

k=1

∣∣∣∣RSA
k −RSA

k+1

∣∣∣∣
3. T = Tmax

4. while T ≥ Tmin do // Generations
5. n1 = n2 = 1
6. while n1 ≤ n1max and n2 ≤ n2max do // Transformations

7. rSA′ = Transform_Solution
(
rSA ,

∣∣∣Vi
∣∣∣, T, Tmax , Tmin)

8. cSA′ =
N∑

k=1

∣∣∣∣rSA′
k − rSA′

k+1

∣∣∣∣
9. p

(
rSA
→ rSA′

)
= f

(
cSA, cSA′ , T

)
10. if RandU(0, 1) ≤ p

(
rSA
→ rSA′

)
then do // Replacements

11. rSA = rSA′

12. cSA = cSA′

13. n2 = n2 + 1
14. if cSA < CSA then do
15. RSA = rSA

16. CSA = cSA

17. n1 = n1 + 1
18. T = γ · T
19. return CSA,RSA

Table 5. Firstly, a random vertex from the original route is selected (except the first and the last
vertices) to change its position (line 1); RandI(a,b) is a pseudo-random integer generator with uniform
distribution ranging from a to b. Then, the range specifying the number of positions by which the
selected vertex moves within the route is calculated (lines 2 to 3) using the RandN(µ, σ) function which
is a pseudo-random number generator with normal distribution with a mean of µ = 0 and a standard
deviation of σ calculated according to Formula (6). This ensures that when the current temperature is
not far from its maximum value, the selected vertex can be moved across the whole route (σ = N

3 for
T = Tmax), whereas when the current temperature is close to its minimum value, the selected vertex is
moved only in the close vicinity around its position in the route (σ = 1 for T = Tmin). This principle
ensures the extensive exploration of state space in the beginning phases of the algorithm and the tuning
of the solution in the final phases. Finally, the vertex is moved in the transformed route rSA′ (lines 4 to
12) by a specified number of positions to the left (range < 0) or the right (range > 0).

σ =
(T − Tmin) ·

(
N
3 − 1

)
Tmax − Tmin

+ 1 (6)

Table 5. New parameters of the ACO-SA algorithm.

sa f req

Execution frequency of the SA algorithm. This
parameter determines the rate of executions of the SA
algorithm in generations, i.e., the SA algorithm is
executed in every sa f req-th generation.

sanum

Number of generations where the SA algorithm is
executed. This parameter determines the generations
(g = 1, 2, . . . , sanum) where the SA algorithm is
executed (not the number of executions).

Entropy 2020, 22, 884 12 of 28

Algorithm 5. Solution transformation

Transform_Solution (rSA,N,T,Tmax,Tmin)

1. k = RandI(2, N) // Vertex selection
2. σ = f (N, T, Tmax, Tmin)

3. range = Round(RandN(0, σ)) // Range
4. rSA′ = rSA

5. i1 = i2 = k
6. for j = 1 to |range| do // Movement
7. i2 = i2 + Sgn(range)
8. if i2 > N then i2 = 2
9. if i2 < 2 then i2 = N
10. rSA′

i1
= rSA

i2
11. i1 = i2
12. rSA′

i2
= rSA

k

13. return rSA’

3.3. Hybridization

In this section, hybridization of the ACO and SA algorithms is proposed. The basic idea behind
this is as follows: the ACO algorithm (Section 3.1) is the key approach complemented by the SA
algorithm (Section 3.2) which is used as a local optimization process. This process is applied to the
best solution (rbest) found by the ants in a generation; this solution inputs the SA algorithm where it is
possibly improved.

Table 5 shows the new parameters controlling this local optimization process. These parameters
determine the generations in which the SA algorithm is executed. The first one (sa f req) controls the
frequency of executions, the second (sanum) sets the last generation where the SA algorithm is executed
(i.e., it is not executed in generations after the one given by this parameter).

Algorithm 6 shows the hybridization in pseudocode. The ACO part is simplified compared to the
original, as shown in Algorithm 1. Instead, new procedures are used as follows:

• Find_Route (used on line 7 in Algorithm 6). This procedure covers the process of finding a route
for each ant (it replaces lines 10 to 22 in Algorithm 1).

• Get_Best_Route (used on line 8 in Algorithm 6). This procedure selects the best solution found
by ants (it replaces lines 23 to 25 in Algorithm 1).

• Get_Better_Route (used on line 11 in Algorithm 6). This procedure returns the better of two
solutions in order to save the best solution found so far (it replaces lines 26 to 28 in Algorithm 1).

• Evaporate_Pheromone_Matrix (used on line 12 in Algorithm 6). This procedure evaporates the
pheromone matrix as shown on lines 29 to 30 in Algorithm 1.

• Update_Pheromone_Matrix (used on line 13 in Algorithm 6). This procedure updates the
pheromone matrix as shown on lines 31 to 32 in Algorithm 1.

The local optimization process in the form of the SA algorithm is located on lines 9 to 10 in
Algorithm 6. This process is executed provided that the condition on line 9 is satisfied; this condition
uses parameters as described in Table 5. If the condition is satisfied, the SA algorithm is executed;
the best route found by ants in a generation (rbest) inputs the algorithm as an initial solution (RSA). If the
SA algorithm improves the initial solution, the solution rbest is replaced by this new improved solution
(if not, the solution returned by the SA algorithm is the same as the initial solution). The improved
solution is used to update the pheromone matrix (line 13). Then, a new generation starts and the whole
principle is repeated until the termination condition is met.

Entropy 2020, 22, 884 13 of 28

Algorithm 6. Hybrid ACO-SA algorithm

Algorithm_DTSP_ACO-SA (V,Ng,Na,ρ,δ,τ,α,β,Tmax,Tmin,γ,nimax,n2max,safreq,sanum)

1. R = ∅
2. for i = 0 to I do // Iterations
3. Ri = ∅
4. F =Initialize_Pheromone_Matrix

(∣∣∣Vi
∣∣∣ , Ri−1, τ

)
5. for g = 1 to Ng do // Generations
6. for a = 1 to Na do
7. ra = Find_Route(F,α, β)

8. rbest = Get_Best_Route
(
r1 , r2 , . . . , rNa

)
9. if

(
g modulo sa f req

)
= 0 and g ≤ sanum then do

10. rbest = Algorithm_TSP_SA
(
Vi , rbest, Tmax, Tmin,γ, n1max , n2max)

11. Ri = Get_Better_Route
(
Ri , rbest

)
12. Evaporate_Pheromone_Matrix (F,ρ)
13. Update_Pheromone_Matrix (F,δ,rbest)

14. R = R +
{
Ri

}
15. return R

3.4. Computational Complexity

The computational complexity of the ACO algorithm is defined in Formula (7). It depends
on the number of generations Ng (linear dependence), the size of the population of ants Na (linear
dependence), and the number of vertices N in the graph (quadratic dependence). The dependence on
the number of vertices emerges three times on the left side of the formula: the left term N2 is caused by
finding a route for each ant (quadratic dependence), the middle term N2 represents the pheromone
evaporation process (quadratic dependence), and the right term N represents the pheromone updating
process (linear dependence). However, both the pheromone evaporation and pheromone updating
processes can be ignored (see the right side of the formula) as they are outside the loop for finding
routes for ants. The quadratic complexity of finding a route for each ant is caused by consecutive
insertion of N vertices into the route; the selection of each vertex is also linearly dependent on N as
every vertex still missing in the route has to be considered (i.e., the probabilities of inserting all missing
vertices have to be calculated).

O
(
Ng ·

(
Na ·N2 + N2 + N

))
= O

(
Ng ·Na ·N2

)
. (7)

The computational complexity of the SA algorithm is defined in Formula (8). It depends on
the number of generations Nsa (linear dependence), the maximum number of transformations in
a generation n1max (linear dependence), and the number of vertices N in the graph (linear dependence).
The number of generations for the SA algorithm was not defined in the text above; it depends
on the maximum and minimum temperature and cooling coefficient as shown in Formula (9).
The maximum number of transformations n1max is used in Formula (8) instead of the maximum number
of replacements n2max because the number of transformations is always equal to or greater than the
number of replacements. The linear dependence on the number of vertices N represents the process of
the solution transformation and its following evaluation.

O(Nsa · n1max ·N) (8)

Nsa =
log Tmin − log Tmax

logγ
(9)

Entropy 2020, 22, 884 14 of 28

The final computational complexity of the proposed ACO-SA algorithm is defined in Formula (10)
which combines Formulas (7) and (8). In each generation of the ACO part of the algorithm, routes for
each ant need to be found (term Na ·N2), and then the SA algorithm is executed (term Nsa · n1max ·N).

O
(
Ng ·

(
Na ·N2 + Nsa · n1max ·N

))
(10)

4. Experiments and Results

This section presents experimental results of the ACO-SA algorithm. In the first part, the benchmark
instances used in experiments are introduced. Then, the experiments and results are presented and
evaluated and subsequently compared with other rival state-of-the-art metaheuristic algorithms. In the
last part, various parameters and characteristics of the proposed algorithm are analyzed and discussed.
The ACO-SA algorithm was implemented in C++ programming language using MS Visual Studio
integrated development environment.

4.1. Benchmarks

The DTSP benchmark instances are based on the well-known TSPLIB symmetric problems [47].
These TSP problems represent the zero iteration I0. Every successive iteration (I1, I2, . . .) is generated
from the previous one by modifying positions of selected vertices; about 3% of vertices randomly
change their positions in the next iteration. The same DSTP benchmark instances (created by the
authors of [34]) were used for all algorithms to ensure even-handed comparison. The benchmark
instances as well as the results are available for download at https://www.unob.cz/fvl/struktura/k111/

Documents/DTSP_ACO-SA.zip.
Table 6 records the benchmark instances used. In total, there are six instances with various ranges

of complexity: two small problems (N ≤ 100), two medium problems (100 < N ≤ 400), and two large
problems (N > 400). In all cases, there are 11 iterations I0 to I10,. i.e., the original TSP graph I0 and 10
modified graphs I1, I2, . . . , I10. The last column of Table 6 shows the representation of positions of
vertices in a graph: it is either 2D Euclidean (the position of each vertex is represented by coordinates
in two-dimensional space) or geographical (the position of each vertex is represented by longitude and
latitude on Earth). This influences the way of computing the edge weights (distances between vertices)
in the graph.

Table 6. Benchmark instances.

Benchmark Instance Number of Vertices (N) Number of Iterations (I) Position Representation

berlin52 52 11 2D Euclidean
kroA100 100 11 2D Euclidean
kroA200 200 11 2D Euclidean

gr202 202 11 Geographical
pcb442 442 11 2D Euclidean
gr666 666 11 Geographical

4.2. Experiments

Four different sets of experiments with all the benchmark instances were conducted as shown
in Table 7; the sets are labeled with the letters A, B, C, and D. These sets of experiments vary one
from another by (a) the algorithm used for the solution and (b) pheromone matrix initialization.
In order to emphasize the improvement in results achieved due to hybridization, both the original
ACO algorithm (sets A and B) and the hybridized ACO-SA algorithm (sets C and D) are used for the
solution. The pheromone matrix initialization offers two possibilities: TSP and DTSP. The former (sets
A and C) does not initialize the pheromone matrix (see line 6 in Algorithm 1) according to the solutions
found in the previous iterations; this means that the DTSP problem is solved as a set of independent
TSP problems. The latter (sets B and D) does initialize the pheromone matrix according to the solutions

https://www.unob.cz/fvl/struktura/k111/Documents/DTSP_ACO-SA.zip
https://www.unob.cz/fvl/struktura/k111/Documents/DTSP_ACO-SA.zip

Entropy 2020, 22, 884 15 of 28

found in the previous iterations as shown in Algorithm 2. Thus, the difference when solving a dynamic
TSP and a number of independent TSP problems can be emphasized.

Table 7. Experiment sets.

Experiment Set Algorithm Used Pheromone Matrix Initialization

A ACO TSP
B ACO DTSP
C ACO-SA TSP
D ACO-SA DTSP

Table 8 presents the settings of parameters of the algorithm used in experiments (for nomenclature,
see Tables 1, 3 and 5). As can be seen, some ACO parameters vary significantly for individual
benchmark instances, especially ρ, τ, α, and β. One of the most important parameters is the pheromone
evaporation coefficient ρ which differs even in the same instances for different sets of experiments.
The SA parameters (for sets C and D) were set so that the execution time of the whole SA part takes
about 40% of the entire execution time of the algorithm.

Table 8. Settings of parameters for experiments.

Instance Set
ACO Parameters SA Parameters ACO-SA

Ng Na ρ δ α β τ Tmax Tmin γ n1max n2max safreq sanum

berlin52

A 1664 32 0.006 1 1 1 0 – – – – – – –
B 1664 32 0.004 1 1 1 10 – – – – – – –
C 1664 32 0.001 1 1 3 0 1 0.1 0.8 50 5 1 1664
D 1664 32 0.001 1 1 3 10 1 0.1 0.8 50 5 1 1664

kroA100

A 1600 64 0.006 1 1 2 0 – – – – – – –
B 1600 64 0.005 1 1 2 20 – – – – – – –
C 1600 64 0.006 1 1 2 0 1 0.02 0.9 60 5 1 1600
D 1600 64 0.006 1 1 2 30 1 0.02 0.9 60 5 1 1600

kroA200

A 2560 80 0.007 1 1 4 0 – – – – – – –
B 2560 80 0.007 1 1 4 50 – – – – – – –
C 2560 80 0.008 1 1 4 0 1 0.03 0.9 200 10 1 2560
D 2560 80 0.008 1 1 4 50 1 0.03 0.9 200 10 1 2560

gr202

A 2048 101 0.1 1 1 1 0 – – – – – – –
B 2048 101 0.1 1 1 1 20 – – – – – – –
C 2048 101 0.13 1 1 1 0 1 0.03 0.9 200 10 1 2048
D 2048 101 0.13 1 1 1 500 1 0.03 0.9 200 10 1 2048

pcb442

A 4352 104 0.005 1 2 5 0 – – – – – – –
B 4352 104 0.001 1 2 5 20 – – – – – – –
C 4352 104 0.003 1 2 5 0 1 0.01 0.9 500 20 1 4352
D 4352 104 0.003 1 2 5 20 1 0.01 0.9 500 20 1 4352

gr666

A 6144 112 0.02 1 1 2.5 0 – – – – – – –
B 6144 112 0.007 1 1 2.5 500 – – – – – – –
C 6144 112 0.11 1 1 2.5 0 10 0.1 0.9 1000 20 1 4096
D 6144 112 0.11 1 1 2.5 500 10 0.1 0.9 1000 20 1 4096

Tables 9 and 10 show the results. Column T records the average execution time (in seconds) that
the algorithm needs to solve a single TSP iteration. Every DTSP instance was solved 60 times; Cmin%

denotes the best solution found, Cavg% is the average value, and σ% is the average standard deviation.
The values Cmin%, Cavg%, and σ% are, for each instance, presented as percentages, as the distance to
the optimal solution; optimal solutions for individual TSP iterations of instances were found using
the famous Concorde TSP solver [13]. All the algorithms were executed on a computer configured as
follows: CPU Intel i7-7700 3.5 GHz (4 cores), 32 GB RAM.

Entropy 2020, 22, 884 16 of 28

Table 9. Results of experiments A and B.

Instance
Experiment A Experiment B

T (s) Cmin% Cavg% σ% T (s) Cmin% Cavg% σ%

berlin52 0.49 0.00% 0.15% 0.27% 0.48 0.01% 0.02% 0.03%
kroA100 2.47 0.60% 1.96% 0.75% 2.61 0.39% 0.68% 0.21%
kroA200 17.49 1.50% 3.03% 0.85% 18.73 0.77% 1.45% 0.33%

gr202 17.89 1.37% 3.14% 0.88% 18.02 1.22% 2.75% 0.74%
pcb442 179.45 4.46% 6.76% 0.79% 183.33 4.18% 5.05% 0.33%
gr666 545.88 4.89% 6.76% 0.95% 557.08 4.40% 5.71% 0.58%

Table 10. Results of experiments C and D.

Instance
Experiment C Experiment D

T (s) Cmin% Cavg% σ% T (s) Cmin% Cavg% σ%

berlin52 0.90 0.00% 0.08% 0.31% 0.90 0.00% 0.00% 0.00%
kroA100 4.34 0.06% 0.39% 0.19% 4.51 0.03% 0.17% 0.09%
kroA200 30.85 0.64% 1.37% 0.41% 32.02 0.21% 0.63% 0.23%

gr202 27.79 0.35% 1.36% 0.70% 28.53 0.30% 0.97% 0.44%
pcb442 317.45 2.43% 4.17% 0.66% 312.59 1.85% 2.56% 0.30%
gr666 948.34 2.06% 3.85% 0.89% 951.12 2.09% 3.06% 0.51%

The results show the improvement of solutions when the initialization of the pheromone matrix
according to the solutions from previous iterations is performed (compare the results from experiment
A with B and C with D). It is clear that solving the DTSP problem is far better than solving its iterations
as independent TSP problems. The improvement of solutions Cavg% over all benchmark instances
is 6.13% (when comparing experiment A with B) and 3.84% (when comparing experiment C with
D) respectively.

The enhancement of the original ACO algorithm by hybridization with the SA algorithm can
be seen when comparing experiment A with C and B with D. The significant improvement is
apparent—of course, at the cost of the longer execution time (about 40% longer, as mentioned above).
The improvement calculated from the average solutions Cavg% over all benchmark instances when
using the ACO-SA algorithm instead of the ACO algorithm is 10.57% (when comparing experiment A
with C) and 8.29% (when comparing experiment B with D) respectively.

Logically, the best results were achieved in experiment D where the instances were solved as
DTSP problems using the ACO-SA algorithm. The average solutions Cavg% for small and medium
instances (berlin52, kroA100, kroA200, gr202) are not farther than 1% from the optimal solutions; for the
large instances (pcb442, gr666), it is about 3%. The algorithm was able to find the minimum solutions
Cmin% as follows: equal to the optimal solution (Cmin% = 0%.)—for instance, berlin52, very close to the
optimal solutions for instances kroA100, kroA200, and gr202, and about 2% distant from the optimal
solutions for large instances pcb442 and gr666. Moreover, in the case of instance berlin52, the optimal
solution was reached in all 60 executions (Cmin% = Cavg% = 0%).

4.3. Comparison

The results achieved in experiment D were compared with four other state-of-the-art metaheuristic
algorithms, two of them based on the ACO principle, the other two on the PSO principle. These are
as follows:

• ACS: ant colony system [48].
• PACO: population-based ant colony optimization [49].
• DPSO-Ho: discrete particle swarm optimization with homogeneous parameter values [35].
• DPSO-He: discrete particle swarm optimization with heterogeneous parameter values [34].

Entropy 2020, 22, 884 17 of 28

The same benchmark instances were used for all the algorithms to ensure fair comparison.
Furthermore, the same size of population/swarm (Na) as well as the number of generations (Ng) were
used; this means that the same number of solutions were generated and evaluated during the PSO
or ACO part of the algorithm (not counting transformations of the solution via simulated annealing).
Moreover, various numbers of generations were used for individual instances to compare the quality
of the solutions provided by the algorithms depending on the number of generations used.

Table 11 presents the settings of the pheromone evaporation coefficient of the ACO-SA algorithm
for individual instances and different numbers of generations; this is the only parameter which changes
when solving an instance using a different number of generations, as it controls the convergence speed.
The remaining parameters are the same as those used in experiment D (see Table 8).

Table 11. Settings of the pheromone evaporation coefficient.

Instance

berlin52 kroA100 kroA200 gr202 pcb442 gr666

Ng ρ Ng ρ Ng ρ Ng ρ Ng ρ Ng ρ

104 0.07 100 0.01 160 0.033 128 0.29 272 0.05 384 0.16
416 0.016 400 0.007 640 0.03 512 0.2 1088 0.01 768 0.14

1664 0.001 1600 0.006 2560 0.008 2048 0.13 4352 0.003 1536 0.13
– – – – – – – – – – 3072 0.11
– – – – – – – – – – 6144 0.11

The evaluation and comparison of results provided by the ACO-SA and the rival algorithms is
in Table 12. For each instance and number of generations (i.e., an experiment), the table compares
the average solutions Cavg% and the average standard deviation σ% (the latter only in the cases of the
DPSO and ACO-SA algorithms). In each experiment, the ACO-SA algorithm was executed 60 times,
providing 60 independent solutions that were averaged. The results for the rival algorithms were
taken from [34]. The best solution for each row is marked in bold. The last row of Table 12 shows the
average value of each column.

The results obtained by the ACO-SA algorithm outperform other approaches. With the single
exception of instance pcb442 and Ng = 4352, ACO-SA provided better (or the same) average solutions
in all cases. The average value of Cavg% calculated from all experiments is about 1.45% better compared
to the second-best algorithm (PACO). Additionally, the standard deviation of the solutions is lower in
most cases compared to both DPSO approaches; this shows greater stability of solutions in experiments
(which are, at the same time, better).

In particular, the ACO-SA algorithm is especially strong, i.e., providing high-quality solutions,
when using the low number of generations. For example, in the case of instance gr666 and Ng = 384, the
solutions are 4.46% away from the optimal solution, whereas it is 5.89% in case of the PACO algorithm
and more than 9% in case of other algorithms (note, for instance, that the results achieved on instance
gr666 with Ng = 768 are better than the results achieved via all other algorithms for Ng = 6144). On
average, the ACO-SA algorithm provides about 1.79% better solutions than PACO when using the
lowest number of generations in Table 12 for each instance (Ng = 384 for gr666, Ng = 272 for pcb442,
etc.); however, in the case of DPSO-Ho, it is more than 10%.

Entropy 2020, 22, 884 18 of 28

Table 12. Comparison of results.

Instance Ng
ACS PACO DPSO-Ho DPSO-He ACO-SA

Cavg% Cavg% Cavg% σ% Cavg% σ% Cavg% σ%

berlin52
104 0.96% 0.96% 0.15% 0.32% 0.13% 0.15% 0.06% 0.12%
416 0.50% 0.50% 0.01% 0.04% 0.01% 0.05% 0.01% 0.00%
1664 0.46% 0.46% 0.00% 0.00% 0.01% 0.05% 0.00% 0.00%

kroA100
100 1.80% 2.97% 5.44% 2.47% 2.68% 1.40% 0.74% 0.24%
400 1.31% 2.13% 1.28% 1.02% 1.05% 0.81% 0.29% 0.16%
1600 0.82% 1.36% 0.64% 0.69% 0.78% 0.77% 0.17% 0.09%

kroA200
160 2.41% 3.33% 15.63% 2.77% 5.14% 1.84% 1.19% 0.35%
640 1.62% 2.71% 4.45% 1.62% 2.89% 1.09% 0.81% 0.37%
2560 1.47% 2.28% 1.62% 0.81% 2.02% 0.80% 0.63% 0.23%

gr202
128 6.26% 4.91% 13.75% 2.06% 4.19% 1.20% 2.21% 0.77%
512 4.88% 3.90% 6.81% 2.11% 1.97% 0.66% 1.34% 0.56%
2048 3.93% 3.34% 1.52% 0.60% 1.53% 0.55% 0.97% 0.44%

pcb442
272 6.18% 4.44% 29.31% 5.33% 6.73% 1.68% 3.07% 0.44%
1088 4.87% 3.56% 13.41% 5.00% 2.87% 0.89% 2.83% 0.32%
4352 3.91% 3.30% 3.13% 1.52% 1.92% 0.79% 2.56% 0.30%

gr666

384 9.18% 5.89% 10.84% 1.52% 9.58% 0.86% 4.46% 0.98%
768 7.46% 4.77% 7.37% 1.00% 6.88% 0.78% 3.57% 0.70%
1536 6.09% 4.51% 5.62% 0.84% 5.33% 0.57% 3.49% 0.65%
3072 5.67% 4.14% 4.88% 0.63% 4.52% 0.88% 3.22% 0.66%
6144 4.92% 4.21% 3.99% 0.77% 3.80% 0.78% 3.06% 0.51%

Average values 3.74% 3.18% 6.49% 1.56% 3.20% 0.83% 1.73% 0.39%

Table 13 compares the time needed for optimization of the algorithms DPSO-Ho and DPSO-He
with ACO-SA. The comparison is for illustration only, as different computer configurations were used
in the experiments (optimization times were taken from [34] for DPSO algorithms). Despite this, it is
apparent that the ACO-SA algorithm is comparable to the small and medium instances. However,
it takes longer to optimize it when using the same population size as well as the same number of
generations for the large instances—in most cases, but not all of them. The optimization is faster,
for example, in the case of instance gr666 and Ng = 384, and is comparable for Ng = 768.

The linear dependence of the algorithms on the number of generations can be seen in Figure 1
using the example of instance gr666. For the ACO-SA algorithm, the optimization time can easily be
estimated using formula: T = T1 ·Ng where T1 is the time needed for a single generation. This is not
true for the DPSO algorithms where the extra time for preparation before the first generation starts
is required: T = T1 ·Ng + T0. Values of T1 and T0 for the algorithms for instance gr666 are shown in
Figure 1.

4.4. Analysis and Discussion

In this section, various features and parameters of the ACO-SA algorithm are examined
(convergence speed, population diversity, improvement by simulated annealing, dependence of
optimization time on the number of vertices, and further possibilities to improve the solution).

4.4.1. Convergence

First, the influence of the pheromone evaporation coefficient ρ is discussed. This coefficient
controls the speed of convergence to a local optimum. Figure 2 illustrates this on the zero TSP
iteration I0 of instance pcb442 for values of ρ as follows: ρ = 0.003, ρ = 0.01, ρ = 0.05. The graph
shows the progress of the solution quality during optimization (averaged from 60 optimization trials).
As is obvious, the bigger values of ρ cause faster convergence but lower final solution quality. The

Entropy 2020, 22, 884 19 of 28

values of ρ are taken from experiment D and they were set so that the results would be as good as
possible with the number of generations available (Ng = 4352, Ng = 1088, and Ng = 272 respectively).
Note, for example, that for ρ = 0.05, the solution reaches its final quality somewhere close to the
300th generation.

Table 13. Comparison of optimization times.

Instance Ng
Optimization Time T (s)

DPSO-Ho DPSO-He ACO-SA

berlin52
104 0.13 0.13 0.06
416 0.30 0.28 0.22
1664 0.98 0.89 0.90

kroA100
100 1.03 0.86 0.27
400 1.63 1.27 1.10
1600 4.11 3.38 4.51

kroA200
160 2.49 2.18 2.02
640 5.13 4.46 7.81
2560 15.60 13.18 32.02

gr202
128 8.82 8.17 1.78
512 11.54 10.88 7.07
2048 23.01 21.98 28.53

pcb442
272 11.22 11.16 19.63
1088 28.52 30.69 81.39
4352 102.78 108.25 312.59

gr666

384 85.19 91.83 58.95
768 98.36 115.19 116.42
1536 124.84 163.48 241.68
3072 180.66 259.00 460.09
6144 296.83 453.83 951.12

Average values 50.16 65.05 116.41

Entropy 2020, 22, x FOR PEER REVIEW 18 of 26

Figure 1. Dependence of optimization time on the number of generations (instance gr666).

4.4. Analysis and Discussion

In this section, various features and parameters of the ACO-SA algorithm are examined
(convergence speed, population diversity, improvement by simulated annealing, dependence of
optimization time on the number of vertices, and further possibilities to improve the solution).

4.4.1. Convergence

First, the influence of the pheromone evaporation coefficient 𝝆 is discussed. This coefficient
controls the speed of convergence to a local optimum. Figure 2 illustrates this on the zero TSP
iteration 𝑰𝟎 of instance pcb442 for values of 𝝆 as follows: 𝝆 = 𝟎. 𝟎𝟎𝟑, 𝝆 = 𝟎. 𝟎𝟏, 𝝆 = 𝟎. 𝟎𝟓. The
graph shows the progress of the solution quality during optimization (averaged from 60 optimization
trials). As is obvious, the bigger values of 𝝆 cause faster convergence but lower final solution quality.
The values of 𝝆 are taken from experiment D and they were set so that the results would be as good
as possible with the number of generations available (𝑵𝒈 = 𝟒𝟑𝟓𝟐 , 𝑵𝒈 = 𝟏𝟎𝟖𝟖 , and 𝑵𝒈 = 𝟐𝟕𝟐
respectively). Note, for example, that for 𝝆 = 𝟎. 𝟎𝟓, the solution reaches its final quality somewhere
close to the 300th generation.

Figure 2. Solution convergence in dependence on the pheromone evaporation coefficient (instance
pcb442).

0
100
200
300
400
500
600
700
800
900

1000

0 1000 2000 3000 4000 5000 6000

Op
tim

iza
tio

n
tim

e
(s

)

Generations

ACO-SA DPSO-He DPSO-Ho

𝑇 = 0.1544∙𝑁𝑔
𝑇 = 0.0629∙𝑁𝑔 + 67.0

𝑇 = 0.0368∙𝑁𝑔 + 69.5

3%

4%

5%

6%

7%

8%

9%

0 500 1000 1500 2000 2500 3000 3500 4000

Er
ro

r (
%

)

Generations

ρ = 0.003 ρ = 0.01 ρ = 0.05

Figure 1. Dependence of optimization time on the number of generations (instance gr666).

Entropy 2020, 22, 884 20 of 28

Entropy 2020, 22, x FOR PEER REVIEW 18 of 26

Figure 1. Dependence of optimization time on the number of generations (instance gr666).

4.4. Analysis and Discussion

In this section, various features and parameters of the ACO-SA algorithm are examined
(convergence speed, population diversity, improvement by simulated annealing, dependence of
optimization time on the number of vertices, and further possibilities to improve the solution).

4.4.1. Convergence

First, the influence of the pheromone evaporation coefficient 𝝆 is discussed. This coefficient
controls the speed of convergence to a local optimum. Figure 2 illustrates this on the zero TSP
iteration 𝑰𝟎 of instance pcb442 for values of 𝝆 as follows: 𝝆 = 𝟎. 𝟎𝟎𝟑, 𝝆 = 𝟎. 𝟎𝟏, 𝝆 = 𝟎. 𝟎𝟓. The
graph shows the progress of the solution quality during optimization (averaged from 60 optimization
trials). As is obvious, the bigger values of 𝝆 cause faster convergence but lower final solution quality.
The values of 𝝆 are taken from experiment D and they were set so that the results would be as good
as possible with the number of generations available (𝑵𝒈 = 𝟒𝟑𝟓𝟐 , 𝑵𝒈 = 𝟏𝟎𝟖𝟖 , and 𝑵𝒈 = 𝟐𝟕𝟐
respectively). Note, for example, that for 𝝆 = 𝟎. 𝟎𝟓, the solution reaches its final quality somewhere
close to the 300th generation.

Figure 2. Solution convergence in dependence on the pheromone evaporation coefficient (instance
pcb442).

0
100
200
300
400
500
600
700
800
900

1000

0 1000 2000 3000 4000 5000 6000

Op
tim

iza
tio

n
tim

e
(s

)

Generations

ACO-SA DPSO-He DPSO-Ho

𝑇 = 0.1544∙𝑁𝑔
𝑇 = 0.0629∙𝑁𝑔 + 67.0

𝑇 = 0.0368∙𝑁𝑔 + 69.5

3%

4%

5%

6%

7%

8%

9%

0 500 1000 1500 2000 2500 3000 3500 4000

Er
ro

r (
%

)

Generations

ρ = 0.003 ρ = 0.01 ρ = 0.05

Figure 2. Solution convergence in dependence on the pheromone evaporation coefficient
(instance pcb442).

4.4.2. Population Diversity

In this section, the diversity of solutions in a population of ants, and its progress with increasing
numbers of generations, is studied on the zero iteration I0 of instance gr202. In general, large diversity
is desired in the early phases of optimization because it prevents solutions from getting stuck at
a not-so-good local optimum. On the other hand, it should be low towards the end of optimization to
tune the solution to a good local optimum (or even global optimum).

The diversity of solutions in the population of a particular generation is expressed by Shannon
entropy H according to Formula (11) where pi j is the probability that edge Ei j between vertices Vi
and V j (i , j) is part of any solution in the population (Ei j = E ji). This probability can be calculated
based on the numbers of occurrences of edges in the solutions (see Formula (12)). The occurence
function returns the number of times edge Ei j is part of solution routes in a population of size Na.
The denominator expresses the total number of edges of which the routes are comprised.

H = −
N∑

i=2

i−1∑
j=1

pi j · log2 pi j (11)

pi j =
occurence

(
Ei j

)
Na ·N

(12)

Figure 3a shows the principle of the entropy calculation on a simple TSP example with 5
vertices (N = 5). The population is composed of two ants: Na = 2. As can be seen, there are two
common edges for both solutions (E12, E45) and 6 distinct edges (E13, E15, E23, E24, E34, E35); thus,
occurence(E12) = occurence(E45) = 2 and occurence(E13) = . . . = 1. The values can be also represented
in a table as shown in Figure 3b; note that only half of the values in the table in Figure 3b (the values
shaded in grey) are used to calculate entropy (because Ei j = E ji). The probabilities pi j are calculated in
the table in Figure 3c, and the entropy for this population is H = 2.922.

Entropy 2020, 22, 884 21 of 28

Entropy 2020, 22, x FOR PEER REVIEW 19 of 26

4.4.2. Population Diversity

In this section, the diversity of solutions in a population of ants, and its progress with increasing
numbers of generations, is studied on the zero iteration 𝐼 of instance gr202. In general, large
diversity is desired in the early phases of optimization because it prevents solutions from getting
stuck at a not-so-good local optimum. On the other hand, it should be low towards the end of
optimization to tune the solution to a good local optimum (or even global optimum).

The diversity of solutions in the population of a particular generation is expressed by Shannon
entropy 𝐻 according to Formula (11) where 𝑝 is the probability that edge 𝐸 between vertices 𝑉
and 𝑉 (𝑖 ≠ 𝑗) is part of any solution in the population (𝐸 = 𝐸). This probability can be calculated
based on the numbers of occurrences of edges in the solutions (see Formula (12)). The 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒
function returns the number of times edge 𝐸 is part of solution routes in a population of size 𝑁 .
The denominator expresses the total number of edges of which the routes are comprised.

𝐻 = − 𝑝 ∙ log 𝑝 (11)

𝑝 = 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 𝐸𝑁 ∙ 𝑁 (12)

Figure 3a shows the principle of the entropy calculation on a simple TSP example with 5 vertices
(𝑁 = 5). The population is composed of two ants: 𝑁 = 2. As can be seen, there are two common
edges for both solutions (𝐸 , 𝐸) and 6 distinct edges (𝐸 , 𝐸 , 𝐸 , 𝐸 , 𝐸 , 𝐸); thus, 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒(𝐸) = 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒(𝐸) = 2 and 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒(𝐸) = ⋯ = 1 . The values can be also
represented in a table as shown in Figure 3b; note that only half of the values in the table in Figure 3b
(the values shaded in grey) are used to calculate entropy (because 𝐸 = 𝐸). The probabilities 𝑝
are calculated in the table in Figure 3c, and the entropy for this population is 𝐻 = 2.922.

V 1 2 3 4 5 V 1 2 3 4 5
1 0 2 1 0 1 1 0 0.2 0.1 0 0.1
2 2 0 1 1 0 2 0.2 0 0.1 0.1 0
3 1 1 0 1 1 3 0.1 0.1 0 0.1 0.1
4 0 1 1 0 2 4 0 0.1 0.1 0 0.2
5 1 0 1 2 0 5 0.1 0 0.1 0.2 0

(a) (b) (c)

Figure 3. Principle of entropy calculation: (a) TSP example; (b) edge occurrences; (c) edge
probabilities.

It is also easy to calculate the minimum and maximum limits of entropy for each instance and
population size (see Formulas (13) and (14)). The minimum entropy 𝐻 represents the population
in which all solutions are exactly the same (for example, 𝑟 = 𝑟 = 1, 2, 3, 4, 5, 1 in case of the TSP
in Figure 3; 𝐻 = 2.322). On the other hand, the maximum entropy 𝐻 represents the
population in which no edge appears two or more times in every solution (for example, 𝑟 =1, 2, 3, 4, 5, 1 and 𝑟 = 1, 3, 5, 2, 4, 1 in the case of the TSP in Figure 3; 𝐻 = 3.322). 𝐻 = log 1𝑁 (13)

2
3

5

1
4

r1 = { 1, 2, 3, 4, 5, 1 }
r2 = { 1, 2, 4, 5, 3, 1 }

H = 2.922
Hmin = 2.322
Hmax = 3.322

Figure 3. Principle of entropy calculation: (a) TSP example; (b) edge occurrences; (c) edge probabilities.

It is also easy to calculate the minimum and maximum limits of entropy for each instance and
population size (see Formulas (13) and (14)). The minimum entropy Hmin represents the population in
which all solutions are exactly the same (for example, r1 = r2 = {1, 2, 3, 4, 5, 1} in case of the TSP in
Figure 3; Hmin = 2.322). On the other hand, the maximum entropy Hmax represents the population in
which no edge appears two or more times in every solution (for example, r1 = {1, 2, 3, 4, 5, 1} and
r2 = {1, 3, 5, 2, 4, 1} in the case of the TSP in Figure 3; Hmax = 3.322).

Hmin = log2
1
N

(13)

Hmax = log2
1

Na ·N
(14)

The development of entropy during optimization in case of instance gr202 is shown in Figure 4;
the minimum and maximum limits of entropy are also emphasized. The blue curve is the averaged
value computed from 60 optimization trials using the ACO-SA algorithm, the light blue area represents
the range of entropy in these 60 trials. At the beginning, the entropy is close to its maximum limit, then it
drops fast to the point where it decreases almost linearly towards its minimum limit. Indeed, a value
of entropy close to the minimum limit is reached in some cases; and in some of them, this minimum
entropy was reached at somewhere around the 500th generation, which is about one quarter of
optimization. The dashed violet curve shows the same task but this time using the ACO algorithm
for optimization (i.e., without simulated annealing). It is clear that the diversity of the population
drops faster in this case. Thus, the simulated annealing also contributes to maintaining the diversity of
the population.

In trials where the entropy drops very close to its minimum limit, the solution converges to a local
(or global) optimum, and the probability that it would be further improved in the next generations is
very low. Therefore, the entropy can be used as a good criterion to terminate the optimization before it
reaches the last generation Ng. This idea was tested on instance gr202; the optimization was terminated
when the entropy was less than 1% away from the minimum limit. The average optimization time
in 60 trials was reduced by 68% (from 28.5 s to 9.1 s) while, at the same time, the average solution
remained the same. This means that the average number of generations used in a trial was reduced
from 2048 to 655. This big speedup is caused particularly in DTSP iterations (I1 to I10) in which the
speed of convergence is faster than in iteration I0 due to the pheromone matrix initialization.

Entropy 2020, 22, 884 22 of 28

Entropy 2020, 22, x FOR PEER REVIEW 20 of 26

𝐻 = log 1𝑁 ∙ 𝑁 (14)

The development of entropy during optimization in case of instance gr202 is shown in Figure 4;
the minimum and maximum limits of entropy are also emphasized. The blue curve is the averaged
value computed from 60 optimization trials using the ACO-SA algorithm, the light blue area
represents the range of entropy in these 60 trials. At the beginning, the entropy is close to its
maximum limit, then it drops fast to the point where it decreases almost linearly towards its
minimum limit. Indeed, a value of entropy close to the minimum limit is reached in some cases; and
in some of them, this minimum entropy was reached at somewhere around the 500th generation,
which is about one quarter of optimization. The dashed violet curve shows the same task but this
time using the ACO algorithm for optimization (i.e., without simulated annealing). It is clear that the
diversity of the population drops faster in this case. Thus, the simulated annealing also contributes
to maintaining the diversity of the population.

Figure 4. Population diversity (instance gr202).

In trials where the entropy drops very close to its minimum limit, the solution converges to a
local (or global) optimum, and the probability that it would be further improved in the next
generations is very low. Therefore, the entropy can be used as a good criterion to terminate the
optimization before it reaches the last generation 𝑁 . This idea was tested on instance gr202; the
optimization was terminated when the entropy was less than 1% away from the minimum limit. The
average optimization time in 60 trials was reduced by 68% (from 28.5 s to 9.1 s) while, at the same
time, the average solution remained the same. This means that the average number of generations
used in a trial was reduced from 2048 to 655. This big speedup is caused particularly in DTSP
iterations (𝐼 to 𝐼) in which the speed of convergence is faster than in iteration 𝐼 due to the
pheromone matrix initialization.

4.4.3. Simulated Annealing Improvements

In this section, the role of simulated annealing in the ACO-SA algorithm is examined. The SA
algorithm is applied to the best solution in a generation which is then used to update the pheromone
matrix (see points 31 and 32 of Algorithm 1). The best solution can be improved or, if not, it remains
the same.

The average improvements of the best solution in dependence on a current generation for
instances gr666 (𝑁 = 6144), pcb442 (𝑁 = 4352), and gr202 (𝑁 = 2048) are shown in Figure 5. The

7

8

9

10

11

12

13

14

15

0 200 400 600 800 1000 1200 1400 1600 1800 2000

En
tr

op
y

Generations

Range ACO-SA ACO Min entropy Max entropy

Hmax = 14.3164

Hmin = 7.6582

Figure 4. Population diversity (instance gr202).

4.4.3. Simulated Annealing Improvements

In this section, the role of simulated annealing in the ACO-SA algorithm is examined. The SA
algorithm is applied to the best solution in a generation which is then used to update the pheromone
matrix (see points 31 and 32 of Algorithm 1). The best solution can be improved or, if not, it remains
the same.

The average improvements of the best solution in dependence on a current generation for instances
gr666 (Ng = 6144), pcb442 (Ng = 4352), and gr202 (Ng = 2048) are shown in Figure 5. The improvement
is high in the first phases of the optimization (it is higher than 20% in the first generations for instances
gr202 and gr666), the effect of which is the fast convergence. Then, the improvement decreases at
different speeds for individual instances. In case of instances gr202 and pcb442, the improvement
is non-zero during the entire optimization. In the case of instance gr666, it is zero in the last third
of the optimization (note the purpose of parameter sanum; for this reason, in case of instance gr666,
this parameter was set to sanum = 2

3 ·Ng in order to save the execution time). In general, the behavior
of simulated annealing varies for each instance to be solved.

4.4.4. Time Dependence

The linear dependence of the algorithm on the number of generations was shown in Section 4.3
(see Figure 1). In this section, the dependence on the number of vertices is presented. For all six
benchmark instances, the average time T1 needed for a single generation was calculated, and its
dependence on the number of vertices N is shown in Figure 6. The quadratic dependence is obvious;
this confirms Formula (10) in Section 3.

Entropy 2020, 22, 884 23 of 28

Entropy 2020, 22, x FOR PEER REVIEW 21 of 26

improvement is high in the first phases of the optimization (it is higher than 20% in the first
generations for instances gr202 and gr666), the effect of which is the fast convergence. Then, the
improvement decreases at different speeds for individual instances. In case of instances gr202 and
pcb442, the improvement is non-zero during the entire optimization. In the case of instance gr666, it
is zero in the last third of the optimization (note the purpose of parameter 𝑠𝑎 ; for this reason, in
case of instance gr666, this parameter was set to 𝑠𝑎 = ∙ 𝑁 in order to save the execution time).
In general, the behavior of simulated annealing varies for each instance to be solved.

Figure 5. Solution improvements by simulated annealing.

4.4.4. Time Dependence

The linear dependence of the algorithm on the number of generations was shown in Section 4.3
(see Figure 1). In this section, the dependence on the number of vertices is presented. For all six
benchmark instances, the average time 𝑇 needed for a single generation was calculated, and its
dependence on the number of vertices 𝑁 is shown in Figure 6. The quadratic dependence is obvious;
this confirms Formula (10) in Section 3.

Figure 6. Dependence of optimization time on the number of vertices.

0%

1%

2%

3%

4%

5%

0 1000 2000 3000 4000 5000 6000

Im
pr

ov
em

en
t [

%
]

Generations

gr666 pcb442 gr202

R² = 0.9989

0

20

40

60

80

100

120

140

160

0 100 200 300 400 500 600 700

Ge
ne

ra
tio

n
tim

e
T 1

(m
s)

Number of vertices N

gr666

pcb442

gr202

kroA200kroA100berlin52

Figure 5. Solution improvements by simulated annealing.

Entropy 2020, 22, x FOR PEER REVIEW 21 of 26

improvement is high in the first phases of the optimization (it is higher than 20% in the first
generations for instances gr202 and gr666), the effect of which is the fast convergence. Then, the
improvement decreases at different speeds for individual instances. In case of instances gr202 and
pcb442, the improvement is non-zero during the entire optimization. In the case of instance gr666, it
is zero in the last third of the optimization (note the purpose of parameter 𝑠𝑎 ; for this reason, in
case of instance gr666, this parameter was set to 𝑠𝑎 = ∙ 𝑁 in order to save the execution time).
In general, the behavior of simulated annealing varies for each instance to be solved.

Figure 5. Solution improvements by simulated annealing.

4.4.4. Time Dependence

The linear dependence of the algorithm on the number of generations was shown in Section 4.3
(see Figure 1). In this section, the dependence on the number of vertices is presented. For all six
benchmark instances, the average time 𝑇 needed for a single generation was calculated, and its
dependence on the number of vertices 𝑁 is shown in Figure 6. The quadratic dependence is obvious;
this confirms Formula (10) in Section 3.

Figure 6. Dependence of optimization time on the number of vertices.

0%

1%

2%

3%

4%

5%

0 1000 2000 3000 4000 5000 6000

Im
pr

ov
em

en
t [

%
]

Generations

gr666 pcb442 gr202

R² = 0.9989

0

20

40

60

80

100

120

140

160

0 100 200 300 400 500 600 700

Ge
ne

ra
tio

n
tim

e
T 1

(m
s)

Number of vertices N

gr666

pcb442

gr202

kroA200kroA100berlin52

Figure 6. Dependence of optimization time on the number of vertices.

4.4.5. Further Possibilities to Improve the Solution

Although the ACO-SA algorithm executed on the benchmark instances outperforms the other
metaheuristic algorithms, there are more ways to improve the results. One of them is the application
of exact optimization techniques to the results after the optimization. In this section, this idea is
tested using the well-known k-opt optimization technique [50]. This technique was applied to all
solutions (i.e., 60 solutions per instance and number of generations) provided by the ACO-SA algorithm
(see Table 12).

Table 14 shows the results for k = 2, 3, 4, 5. The improvement in the solutions is tangible. In the
case of instance gr202, for example, the 2-opt optimization improved solution Cavg% from 2.215% to
1.523%. In general, the size of improvement corresponds to the size of the solution gap to the optimum.
It seems that using k = 2 or k = 3 is reasonable enough; higher values (k > 3) have only a small further
effect. Table 15 shows the average execution time needed for k-opt post-processing of a single TSP
iteration (in seconds). For the small and medium instances, the execution time is insignificant; for the

Entropy 2020, 22, 884 24 of 28

large instances (pcb442 and gr666), it is minor compared to the total optimization time (e.g., about 3%
of the total time in case of instance gr666, Ng = 6144 and k = 2). However, this process could be made
significantly faster with the help of a few simple improvements (e.g., limiting the search to a number
of the nearest neighbors) [51].

Table 14. Results after k-opt optimization.

Instance Ng ACO-SA 2-opt 3-opt 4-opt 5-opt

berlin52
104 0.057% 0.032% 0.030% 0.030% 0.030%
416 0.006% 0.006% 0.004% 0.004% 0.004%

1664 0.000% 0.000% 0.000% 0.000% 0.000%

kroA100
100 0.745% 0.470% 0.385% 0.375% 0.372%
400 0.287% 0.227% 0.201% 0.199% 0.199%

1600 0.168% 0.163% 0.154% 0.154% 0.154%

kroA200
160 1.186% 0.858% 0.828% 0.817% 0.816%
640 0.811% 0.672% 0.656% 0.638% 0.638%

2560 0.627% 0.507% 0.492% 0.488% 0.488%

gr202
128 2.215% 1.523% 1.465% 1.454% 1.447%
512 1.335% 1.041% 1.009% 1.000% 0.999%

2048 0.973% 0.790% 0.770% 0.766% 0.762%

pcb442
272 3.071% 2.249% 2.186 2.164% 2.156%

1088 2.826% 2.069% 2.029% 2.016% 2.013%
4352 2.564% 1.921% 1.869% 1.846% 1.842%

gr666

384 4.457% 3.335% 3.230% 3.190% 3.166%
768 3.572% 2.831% 2.763% 2.738% 2.723%

1536 3.487% 3.018% 2.970% 2.946% 2.923%
3072 3.224% 2.780% 2.723% 2.705% 2.691%
6144 3.058% 2.567% 2.526% 2.510% 2.501%

Average values 1.733% 1.353% 1.315% 1.302% 1.296%

Table 15. Execution time of k-opt optimization.

Instance 2-opt (s) 3-opt (s) 4-opt (s) 5-opt (s)

berlin52 0.004 0.005 0.005 0.006
kroA100 0.012 0.020 0.025 0.030
kroA200 0.127 0.181 0.228 0.274

gr202 0.189 0.255 0.303 0.352
pcb442 5.214 6.124 6.858 7.459
gr666 28.793 33.891 37.807 40.520

5. Conclusions

The ACO-SA algorithm proposed in this article uniquely combines two metaheuristic principles:
ant colony optimization and simulated annealing. Four different experiments on selected benchmark
instances (A, B, C, D) were conducted. The significant improvement in solutions when using the
hybridized ACO-SA algorithm instead of the original ACO is apparent (compare the results in
Section 4.2 of experiment A or B with C or D). On the other hand, the comparison of results from
experiment A or C with B or D clearly proves the importance of incorporating the information about the
changes in dynamic environment into the algorithm in the form of the pheromone matrix initialization.

The results achieved by the proposed ACO-SA algorithm significantly outperform the results of
the four other metaheuristic approaches based on ant colony optimization or discrete particle swarm
optimization. From the time point of view, for the small and medium problems, the time needed
for optimization is comparable with these methods; this is true even for large problems with low
numbers of generations. However, for large problems with higher numbers of generations, the time

Entropy 2020, 22, 884 25 of 28

needed for optimization is longer than in the case of rival methods. This is caused by the quadratic
dependence of the ACO-SA algorithm on the problem size. Because of the time as well as memory
reasons (memory requirements are also quadratic dependent on the number of vertices), the proposed
ACO-SA algorithm is not suitable for very large problems where N > 1000.

The behavior of the ACO-SA algorithm can be controlled by several key parameters (the one most
significantly influencing the behavior is the pheromone evaporation coefficient—see Section 4.4.1).
Unfortunately, the optimal settings of the values of these parameters cannot be determined analytically
in most cases as they are problem dependent (this can be true even for problems of the same or similar
size and, to some extent, even for different iterations of the same DTSP). This means that finding the
best values of parameters for a given problem sometimes requires a massive number of trials, which is,
of course, time-consuming (although the empirical knowledge can shorten this time significantly).
For this reason, it is still possible (and even probable) that the values of the parameters used to provide
results in Section 4.2 (see Table 8) are still not optimally selected; thus, different values may be found
so that the algorithm would provide even better results.

Future research of the authors, besides that dealing with other issues, will be devoted to resolving
the drawback mentioned in the previous paragraph. In particular, the following issues will be pursued:

• Examination of the possibility of heterogeneous parameters. This means that the parameters
would not have constant values during the whole optimization, but their values may change if
necessary, based on the current situation. As an example, the pheromone evaporation coefficient
will serve: at the beginning of the optimization, the higher values would ensure faster convergence;
then, its value would gradually decrease based on the current state of the optimization (which
can be, for example, assessed based on the value of entropy in the population—see Section 4.4.2).
Both the upper and bottom limits of the coefficient will be adjusted automatically so that the user
does not have to search for them.

• Examination of the influence of the time devoted to the SA part of the algorithm on the quality of
the results. In this article, the parameters of the SA were set for all benchmark instances in such
a way that the simulated annealing would take about 40% of the whole optimization time (this
was the condition determined by the authors before the experiments). It is expected that better
solutions would be provided if a longer time were reserved for the SA (e.g., 50%, 60%, 80%)—but
of course at the expense of a longer execution time. The improvement in solutions in dependence
on the time distribution between the ACO and SA parts requires further study.

• Hybridization of the ACO-SA algorithm with the local search optimization (e.g., k-opt optimization
technique). This means that the local search optimization is used not only at the end of the
algorithm as shown in Section 4.4.5 but also during the optimization process in selected generations.
The local search and the SA process might complement each other.

• Extension of the ACO-SA algorithm for other optimization problems related to the TSP.
The algorithm can be relatively easily modified to solve NP-hard problems such as vehicle
routing problems (VRP), the multi-depot vehicle routing problem (MDVRP), and their variants.

Author Contributions: Conceptualization, P.S.; methodology, P.S.; software, P.S.; validation, K.M., J.N., and M.R.;
formal analysis, K.M.; investigation, K.M. and M.R.; resources, P.S.; data curation, J.N.; writing—original draft
preparation, P.S. and K.M.; writing—review and editing, P.S.; visualization, P.S.; supervision, M.R.; project
administration, P.S.; funding acquisition, P.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Li, W. A Parallel Multi-Start Search Algorithm for Dynamic Traveling Salesman Problem. In Proceedings of
the International Symposium on Experimental Algorithms, Crete, Greece, 5–7 May 2011; pp. 65–75.

Entropy 2020, 22, 884 26 of 28

2. Stodola, P.; Mazal, J. Tactical Decision Support System to Aid Commanders in their Decision-Making.
In Proceedings of the Modelling and Simulation for Autonomous Systems, Rome, Italy, 15–16 June 2016;
pp. 396–406.

3. Stodola, P.; Mazal, J. Model of Optimal Cooperative Reconnaissance and its Solution using Metaheuristic
Methods. Def. Sci. J. 2017, 67, 529–535. [CrossRef]

4. Drozd, J.; Neubauer, J. Use of an aerial reconnaissance model during the movement of oversized loads.
J. Déf. Model. Simul. Appl. Methodol. Technol. 2019. [CrossRef]

5. Drozd, J. Experiment of the Tactical Decision Support System within Company Defensive Operation.
In Proceedings of the Modelling and Simulation for Autonomous Systems, Prague, Czech Republic,
17–19 October 2018; pp. 544–552.

6. Rolenec, O.; Silinger, K.; Palasiewicz, T.; Zizka, P. Supporting the decision-making process in the planning
and controlling of engineer task teams to support mobility in a combat operation. Int. J. Educ. Inf. Technol.
2019, 13, 33–40.

7. Hodicky, J.; Prochazka, D.; Prochazka, J. Training with and of Autonomous System—Modelling and
Simulation Approach. In Proceedings of the Modelling and Simulation for Autonomous Systems, Rome,
Italy, 24–26 October 2017; pp. 383–391.

8. Bruzzone, A.G.; Massei, M.; Di Matteo, R.; Kutej, L. Introducing Intelligence and Autonomy into Industrial
Robots to Address Operations into Dangerous Area. In Proceedings of the Modelling and Simulation for
Autonomous Systems, Prague, Czech Republic, 17–19 October 2018; pp. 433–444.

9. Otrisal, P.; Obsel, V.; Buk, J.; Švorc, L. Preparation of Filtration Sorptive Materials from Nanofibers, Bicofibers,
and Textile Adsorbents without Binders Employment. Nanomaterials 2018, 8, 564. [CrossRef]

10. Blaha, M.; Silinger, K. Application support for topographical-geodetic issues for tactical and technical control
of artillery fire. Int. J. Circuits Syst. Signal Process. 2018, 12, 48–57.

11. Flood, M.M. The Traveling-Salesman Problem. Oper. Res. 1956, 4, 61–75. [CrossRef]
12. Dantzig, G.; Fulkerson, R.; Johnson, S. Solution of a Large-Scale Traveling-Salesman Problem. J. Oper. Res.

Soc. Am. 1954, 2, 393–410. [CrossRef]
13. Applegate, D.L.; Bixby, R.E.; Chvátal, V.; Cook, W.J. The Travelling Salesman Problem: A Computational Study;

Princeton University Press: Princeton, NJ, USA, 2006.
14. Reinelt, G. TSPLIB—A Traveling Salesman Problem Library. ORSA J. Comput. 1991, 3, 376–384. [CrossRef]
15. Applegate, D.; Bixby, R.E.; Chvátal, V.; Cook, W.; Espinoza, D.G.; Goycoolea, M.; Helsgaun, K. Certification

of an optimal TSP tour through 85,900 cities. Oper. Res. Lett. 2009, 37, 11–15. [CrossRef]
16. Lin, S.; Kernighan, B.W. An Effective Heuristic Algorithm for the Traveling-Salesman Problem. Oper. Res.

1973, 21, 498–516. [CrossRef]
17. Applegate, D.; Cook, W.; Rohe, A. Chained Lin-Kernighan for Large Traveling Salesman Problems. INFORMS

J. Comput. 2003, 15, 82–92. [CrossRef]
18. Helsgaun, K. An effective implementation of the Lin–Kernighan traveling salesman heuristic. Eur. J. Oper.

Res. 2000, 126, 106–130. [CrossRef]
19. Solving TSPs: World TSP. Available online: http://www.math.uwaterloo.ca/tsp/world/index.html. (accessed

on 30 June 2020).
20. Dahan, F.; El Hindi, K.; Mathkour, H.; Alsalman, H.; Hindi, E. Dynamic Flying Ant Colony Optimization

(DFACO) for Solving the Traveling Salesman Problem. Sensors 2019, 19, 1837. [CrossRef] [PubMed]
21. Ahmed, A.K.M.F.; Sun, J.U. An Improved Particle Swarm Optimization Algorithm for the Travelling Salesman

Problem. Adv. Sci. Lett. 2016, 22, 3318–3322. [CrossRef]
22. Shirdel, G.H.; Abdolhosseinzadeh, M. A simulated annealing heuristic for the online symmetric traveling

salesman problem. J. Inf. Optim. Sci. 2018, 39, 1–14. [CrossRef]
23. Jafarzadeh, H.; Moradinasab, N.; Elyasi, M. An Enhanced Genetic Algorithm for the Generalized Traveling

Salesman Problem. Eng. Technol. Appl. Sci. Res. 2017, 7, 2260–2265.
24. Akhand, M.A.H.; Ayon, S.I.; Shahriyar, S.; Siddique, N.; Adeli, H. Discrete Spider Monkey Optimization for

Travelling Salesman Problem. Appl. Soft Comput. 2020, 86, 105887. [CrossRef]
25. Khan, I.; Pal, S.; Maiti, M.K. A Hybrid PSO-GA Algorithm for Traveling Salesman Problems in Different

Environments. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 2019, 27, 693–717. [CrossRef]
26. Yu, M. A solution of TSP based on the ant colony algorithm improved by particle swarm optimization.

Discret. Contin. Dyn. Syst. S 2019, 12, 979–987. [CrossRef]

http://dx.doi.org/10.14429/dsj.67.10530
http://dx.doi.org/10.1177/1548512919866928
http://dx.doi.org/10.3390/nano8080564
http://dx.doi.org/10.1287/opre.4.1.61
http://dx.doi.org/10.1287/opre.2.4.393
http://dx.doi.org/10.1287/ijoc.3.4.376
http://dx.doi.org/10.1016/j.orl.2008.09.006
http://dx.doi.org/10.1287/opre.21.2.498
http://dx.doi.org/10.1287/ijoc.15.1.82.15157
http://dx.doi.org/10.1016/S0377-2217(99)00284-2
http://www.math.uwaterloo.ca/tsp/world/index.html.
http://dx.doi.org/10.3390/s19081837
http://www.ncbi.nlm.nih.gov/pubmed/30999688
http://dx.doi.org/10.1166/asl.2016.7864
http://dx.doi.org/10.1080/02522667.2017.1367494
http://dx.doi.org/10.1016/j.asoc.2019.105887
http://dx.doi.org/10.1142/S0218488519500314
http://dx.doi.org/10.3934/dcdss.2019066

Entropy 2020, 22, 884 27 of 28

27. Hertono, G.F.; Handari, B.D. The Modification of Hybrid Method of Ant Colony Optimization, Particle Swarm
Optimization and 3-OPT Algorithm in Traveling Salesman Problem. In Proceedings of the International
Conference on Mathematics: Pure, Applied and Computation, Surabaya, Indonesia, 1 November 2017.

28. Mavrovouniotis, M.; Yang, S. Ant colony optimization with immigrants schemes for the dynamic travelling
salesman problem with traffic factors. Appl. Soft Comput. 2013, 13, 4023–4037. [CrossRef]

29. Ma, A.X.; Zhang, X.H.; Zhang, C.S.; Zhang, B.; Gao, Y. An Adaptive Ant Colony Algorithm for Dynamic
Traveling Salesman Problem. J. Inf. Sci. Eng. 2019, 35, 1263–1277.

30. Chowdhury, S.; Marufuzzaman, M.; Tunc, H.; Bian, L.; Bullington, W. A modified Ant Colony Optimization
algorithm to solve a dynamic traveling salesman problem: A case study with drones for wildlife surveillance.
J. Comput. Des. Eng. 2018, 6, 368–386. [CrossRef]

31. Mavrovouniotis, M.; Van, M.; Yang, S.X. Pheromone Modification Strategy for the Dynamic Travelling
Salesman Problem with Weight Changes. In Proceedings of the IEEE Symposium Series on Computational
Intelligence, Honolulu, HI, USA, 27 November–1 December 2017.

32. Sieminski, A. Solving Dynamic Traveling Salesman Problem with Ant Colony Communities. In Proceedings
of the International Conference on Computational Collective Intelligence, Nicosia, Cyprus, 27–29
September 2017.

33. Schmitt, J.P.; Baldo, F.; Parpinelli, R.S. A MAX-MIN Ant System with Short-term Memory Applied to the
Dynamic and Asymmetric Traveling Salesman Problem. In Proceedings of the Brazilian Conference on
Intelligent Systems, Sao Paulo, Brazil, 22–25 October 2018.

34. Strąk, Ł.; Skinderowicz, R.; Boryczka, U.; Nowakowski, A. A Self-Adaptive Discrete PSO Algorithm with
Heterogeneous Parameter Values for Dynamic TSP. Entropy 2019, 21, 738. [CrossRef]

35. Strąk, Ł.; Skinderowicz, R.; Boryczka, U. Adjustability of a discrete particle swarm optimization for the
dynamic TSP. Soft Comput. 2017, 22, 7633–7648. [CrossRef]

36. Simoes, A.; Costa, E. Extended Virtual Loser Genetic Algorithm for the Dynamic Traveling Salesman Problem.
In Proceedings of the Genetic and Evolutionary Computation Conference, Amsterdam, The Netherlands,
6–10 July 2013.

37. Groba, C.; Sartal, A.; Vázquez, X.H. Solving the dynamic traveling salesman problem using a genetic
algorithm with trajectory prediction: An application to fish aggregating devices. Comput. Oper. Res. 2015,
56, 22–32. [CrossRef]

38. Boryczka, U.; Strak, L. A Hybrid Discrete Particle Swarm Optimization with Pheromone for Dynamic
Traveling Salesman Problem. In Proceedings of the International Conference on Computational Collective
Intelligence, Ho Chi Minh City, Vietnam, 28–30 November 2012.

39. Mavrovouniotis, M.; Muller, F.M.; Yang, S. Ant Colony Optimization With Local Search for Dynamic Traveling
Salesman Problems. IEEE Trans. Cybern. 2017, 47, 1743–1756. [CrossRef]

40. Saian, R.; Ku-Mahamud, K.R. Hybrid Ant Colony Optimization and Simulated Annealing for Rule Induction.
In Proceedings of the European Symposium on Computer Modeling and Simulation, Madrid, Spain,
16–18 November 2011.

41. Saian, R. A Hybrid of Ant Colony Optimization Algorithm and Simulated Annealing for Classification Rules.
Ph.D. Thesis, Universiti Utara Malaysia, Changlun, Malaysia, 2013.

42. Hoseini, P.; Shayesteh, M.G. Hybrid Ant Colony Optimization, Genetic Algorithm, and Simulated Annealing
for image contrast enhancement. In Proceedings of the IEEE Congress on Evolutionary Computation,
Barcelona, Spain, 18–23 July 2010.

43. Hoseini, P.; Shayesteh, M.G. Efficient contrast enhancement of images using hybrid ant colony optimisation,
genetic algorithm, and simulated annealing. Digit. Signal Process. 2013, 23, 879–893. [CrossRef]

44. Liu, B.; Meng, P. Simulated annealing-based ant colony algorithm for traveling salesman problems.
J. Huazhong Univ. Sci. Technol. 2009, 37, 26–30.

45. Mohsen, A.M. Annealing Ant Colony Optimization with Mutation Operator for Solving TSP. Comput. Intell.
Neurosci. 2016, 2016, 1–13. [CrossRef]

46. Mazal, J.; Stodola, P. Applying the ant colony optimisation algorithm to the capacitated multi-depot vehicle
routing problem. Int. J. Bio-Inspired Comput. 2016, 8, 228. [CrossRef]

47. Discrete and Combinatorial Optimization. Available online: http://comopt.ifi.uni-heidelberg.de/software/

TSPLIB95/tsp/ (accessed on 30 June 2020).

http://dx.doi.org/10.1016/j.asoc.2013.05.022
http://dx.doi.org/10.1016/j.jcde.2018.10.004
http://dx.doi.org/10.3390/e21080738
http://dx.doi.org/10.1007/s00500-017-2738-9
http://dx.doi.org/10.1016/j.cor.2014.10.012
http://dx.doi.org/10.1109/TCYB.2016.2556742
http://dx.doi.org/10.1016/j.dsp.2012.12.011
http://dx.doi.org/10.1155/2016/8932896
http://dx.doi.org/10.1504/IJBIC.2016.10000256
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/

Entropy 2020, 22, 884 28 of 28

48. Wang, Y.; Gao, S.; Todo, Y. Ant colony systems for optimization problems in dynamic environments. In
Swarm Intelligence—Volume 1: Principles, Current Algorithms and Methods; The Institution of Engineering and
Technology: London, UK, 2018.

49. Skinderowicz, R. Implementing Population-Based ACO. In Proceedings of the International Conference on
Computational Collective Intelligence, Seoul, Korea, 23–26 September 2014; pp. 603–612.

50. Ma, Z.B.; Liu, L.T.; Sukhatme, G.S. An Adaptive k-opt Method for Solving Traveling Salesman Problem.
In Proceedings of the IEEE Conference on Decision and Control, Las Vegas, NV, USA, 12–14 December 2016.

51. Bentley, J.J. Fast Algorithms for Geometric Traveling Salesman Problems. INFORMS J. Comput. 1992,
4, 387–411. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1287/ijoc.4.4.387
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Dynamic Traveling Salesman Problem
	Motivation
	Contributions

	Literature Review
	Hybrid ACO Algorithm
	Ant Colony Optimization
	Simulated Annealing
	Hybridization
	Computational Complexity

	Experiments and Results
	Benchmarks
	Experiments
	Comparison
	Analysis and Discussion
	Convergence
	Population Diversity
	Simulated Annealing Improvements
	Time Dependence
	Further Possibilities to Improve the Solution

	Conclusions
	References

