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Abstract: This paper presents the results of numerical computations for a large-scale OFz-425 CFB
(circulating fluidized bed) boiler utilizing coal and syngas. Four different operating scenarios are
considered, including the reference variant, corresponding to the conventional, mono-combustion
of bituminous coal, and three tests involving replacement of secondary air and part of the coal
stream with syngas fed by start-up burners. Pressure, gas velocity, temperature, and carbon dioxide
distribution in the combustion chamber are discussed in the paper. The results indicate that the syngas
supply leads to an increase in local temperature and carbon dioxide concentrations. The proposed
concept is not advisable as it may lead to frequent emergency stops of the CFB boiler.
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1. Introduction

The performance of engineering devices is degraded by the presence of irreversibilities, and entropy
generation constitutes their measure [1]. Since entropy generation is used for establishing criteria
for the performance of engineering devices, the irreversibilities associated with a process should be
reduced in order to increase engine performance [1,2]. Analysis and optimization via modeling can
lead to an increase in a system’s performance [2–4]. Computational fluid dynamics (CFD) models are
considered to be the most comprehensive due to 3D, detailed consideration of chemical kinetics and
individual physical processes, gas and solids continuity formulas, as well as momentum balances,
and appropriate constitutive equations [5]. The CFD models can be used for complex analysis of
multi-fuel CFB (circulating fluidized bed) unit operation concepts [6–9]. Various 3D-CFB models can be
found in the literature [10–15], some of which consider the multi-fuel, CFB concept; however, the use
of gaseous fuel, with a properly organized gas supply system, cannot be found in said literature. Such
an idea may be beneficial for a power unit’s flexibility and provides the stable operation of a boiler
furnace with a substantial demand reduction in its capacity.

On the other hand, acceptable boiler design parameters may be exceeded due to changes in
flue gas velocity and temperature profiles. Such cases may result in the destruction of some boiler
components or a reduction in their service life [16–19].
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The generated CFD model described in Part I of this paper was applied to study the influence of
multi-fuel coal and syngas combustion on some operation issues of the large scale OFz-425 CFB boiler.

To the best of our knowledge, there are no reports in pertinent literature regarding comprehensive
3D-CFD modeling of a large-scale, multi-fuel, CFB boiler, burning coal and syngas.

2. Materials and Methods

The model was developed in the ANSYS Workbench environment for Fluent Solver. The two-phase,
3D model of homogenous and heterogeneous combustion employs CFD methods for the flow of a
reactive mixture. The equations for mass, enthalpy, momentum, and selected gaseous components
relevant to the combustion process were applied using the finite volume method. Reynolds-averaged
Navier–Stokes equations (RANS) with the k-omega BSL turbulence model were used in the study.
The heat transfer between the bed and the combustion chamber walls was considered using convection
and radiation models.

Computations and validation of the model were successfully performed on data from an existing,
large-scale, two-pass OFz-425 CFB boiler at 100% load, produced by RAFAKO S.A., Poland. The main
parts of the boiler are the riser with the combustion chamber made of membrane-walls, superheater II
(SH II), reheater II (RH II), cyclones, and the second pass in the convection cage, consisting of built-in
superheaters and reheaters, as well as an economizer and a rotary air heater.

The dimensions of the cross-sectional area of the combustion chamber in its lower part, immediately
above the grid, are 4.6 m × 11.6 m and 8.6 m × 11.6 m, at the height of 6.5 m above the gas distributor
level. The total height of the combustion chamber is 37.2 m. Two outlet windows, each with a
dimension of 5.7 m × 2.0 m, are located in the upper part of the furnace at a level of 38 m.

Four different operating scenarios were considered in this study. The first (Variant K0) was
the reference case, which corresponded to the conventional mono-combustion of bituminous coal.
The other three tests corresponded to cases with the replacement of secondary air and part of the coal
stream with syngas, fed by start-up burners, as follows:

1. Variant K1 corresponds to the use of Nozzle No. 1, with a total 4.6 kg/s of syngas supplied
through two side, start-up burners,

2. Variant K2 considers the simultaneous use of Nozzles No. 1 and No. 2, with a total of 9.2 kg/s of
syngas supplied to the combustion chamber through four side, start-up burners, and

3. Variant K3 matches the simultaneous use of Nozzles No’s. 1, 2 and 3, with a total of 13.8 kg/s of
syngas supplied to the combustion chamber through four side and two front, start-up burners.

A detailed description of the methodology used in this study can be found in Part I.

3. Results

3.1. Validation

Various methods available within the ANSYS CFD-Post post-processor module are used to
conduct the calculations. Selected sections were generated in two perpendicular planes: X-Y and Y-Z
(Figure 1). The results are presented in cuts, as follows:

1. Sectional view X-Y parallel to the model’s plane of symmetry, cut X-Y-1, 1.2 m away from the
plane of symmetry, then subsequent cuts every 1 m,

2. Sectional view Y-Z parallel to the front/rear wall of the boiler, cut Y-Z-1 1.26 m away from the
front wall, then cuts arranged accordingly: 1.76 m; 4.26 m (at equal distance from the front and
rear wall), 6.76 m and 7.26 m from the front wall.

Pressure, velocity, temperature, and CO2 concentration profiles in the combustion chamber are
discussed in the paper. The results are depicted successively for all considered variants of a given cut.
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Figure 1. Visualization of sectional views used in the study. 

  

Figure 1. Visualization of sectional views used in the study.

Calculations by model and accessible experimental pressures and temperatures are compared in
Tables 1 and 2. Based on measured data, it can be stated that high predictive accuracy was achieved by
the model. The maximum relative error is below 7%.

Table 1. Comparison of measured and calculated temperatures.

Height above the Grid m Measured Temperature ◦C Calculated Temperature ◦C Relative Error %

0.2 834.1 859.1 −3.0
1.2 817.3 830.2 −1.6
6.0 779.2 795.9 −2.1

Table 2. Comparison of measured and calculated pressures.

Height above the Grid m Measured Pressure kPa Calculated Pressure kPa Relative Error %

0.2 7.03 7.38 −4.99
1.2 2.57 2.70 −5.06
6.0 0.32 0.34 −6.25

Such performed CFD models are used for further calculations. As the measured data are mostly
confidential, the paper shows a limited number of measuring points located in the lower part of the
combustion chamber (Tables 1 and 2).

However, because they were all located in the most computationally demanding, dense fluidized
bed zone, which is additionally the main focus in the present study, the reported error shows the high
accuracy of the CFD model [20].

3.2. Pressure Distribution in the Combustion Chamber

Figures 2 and 3 show pressure distribution in the X-Y-3 section. Some discrepancies can be found
in the lower part of the wind box. Experimental data indicated a pressure ~2.7 kPa at a height of 1.2 m,
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while a calculated value, averaged over the cross-sectional domain area, was ~1.4 kPa. This discrepancy
results from the simplifications made for the primary air inlet, which were beneficial for shortening the
computational time.Entropy 2020, 22, x FOR PEER REVIEW 5 of 58 
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Figure 2. Pressure distribution, sectional view X-Y-3, variants K0 (a) and K1 (b). 

  

Figure 2. Pressure distribution, sectional view X-Y-3, variants K0 (a) and K1 (b).
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Figure 3. Pressure distribution, sectional view X-Y-3, variants K2 (a), K3 (b). 

  

Figure 3. Pressure distribution, sectional view X-Y-3, variants K2 (a), K3 (b).

It should be noted that the boundary condition for the primary air inlet as the mass flow source
was assumed, corresponding to a uniform mass flow over the whole cross-sectional area. The assumed
uniform particle size distribution of inert material and fuel also influenced the obtained results. In the
upper part of the riser (level 6 m and above), clear analogies to the experimental data can be found.
At level 6 m, the pressure averaged over the cross-sectional area was equal to 682 Pa.
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The situation is also similar in the case of the exit zone of the combustion chamber, where,
analogously to the experiment, negative pressures from −130 to −350 Pa are registered. Again, it should
be emphasized that due to the simplified approach, there is a homogeneous pressure field on the
outlet surface of the computational domain. As expected, pressure distribution differed slightly,
depending on the considered variant, which was visible on Y-Z sectional views (Figures 4 and 5).
These differences are related to the defined syngas properties supplied to the furnace, as well as the
applied radiation model, assuming the absorption of radiation by gas components (carbon dioxide,
water vapor, methane).
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Figure 5. Pressure distribution, sectional view Y-Z-3, variants K2 (a), K3 (b). 

  

Figure 5. Pressure distribution, sectional view Y-Z-3, variants K2 (a), K3 (b).
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3.3. Velocity Distribution in the Combustion Chamber

Figures 6–9 show the velocity distributions of the reactive gas mixture in the computational
domain. In reference case K0 (Figure 6a), the velocity varied in the range 4 to 12 m/s, excluding the
areas near individual air inlets, due to significant disturbances. The sectional views X-Y allow noticing
of slight flow turbulence, which results mainly from the spatial configuration of air nozzles.

The velocity increase in each of the examined cases is observed in the platen superheater zones,
corresponding to the reduced cross-sectional area. Such conditions favored the erosion process in
this part of the furnace [21]. The flow characteristics were mainly the result of air and gas flows and
negative pressure in the upper part of the combustion chamber. The gas supply affected, to some extent,
the velocity distribution in the calculation domain due to the direct physicochemical relationship of
the reactive mixture with its local composition and temperature. The supply of additional syngas
to the combustion chamber in Variants K1, K2, and K3, caused the manifestation of additional gas
sources in the combustion chamber. Moreover, the addition of dioxide-rich fuel gas led to an increase in
temperature inside the furnace and CO2 concentration inside the lower part of the combustion chamber.

Figures 8 and 9 show data on Y-Z cuts indicated upward flow direction, and moderate velocity in
the central part of the furnace in each of the examined cases, which is consistent with the real behavior
of the system, and allows us to state that the model is fully applicable for case studies of heat transfer by
convection and radiation within said domain. The modification of boundary conditions (including the
composition of the mixture at the domain inlets) allows obtaining clear and unambiguous information
on the influence of such changes on the thermodynamic state of the system. Therefore, it is possible
to exclude the influence of instability (caused by the change of boundary conditions) in solving the
continuity and momentum conservation equations.
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Figure 9. Gas velocity profiles, sectional view Y-Z-3, (a) Variant K2, (b) Variant K3. 

  

Figure 9. Gas velocity profiles, sectional view Y-Z-3, (a) Variant K2, (b) Variant K3.

3.4. Combustion Chamber Temperature Distribution

In the reference case K0, a slight anisotropy of temperature distribution was visible in the X-Y and
Y-Z sectional views. Conditions were much more homogeneous along the X-axis of the system, while
local temperature changes resulted from the stationary model application. In the considered sectional
views, temperature of a fluidized bed varied in the range of 750–850 ◦C. Due to the nature of the
boundary conditions of the primary air inlet (homogeneous mass flux), a narrow area of local, relatively
low temperatures, close to the air feed point, could be reported. Thus, the calculated temperature
profile, in comparison to the experimental one, was shifted down towards the grid. However, the local
temperatures, consistent with the experimental data equal to ~850 ◦C, were also registered.

The X-Y cuts indicated a shift of the area with the highest combustion intensity slightly towards
the rear wall of the boiler, which was undoubtedly related to the location of the fuel feeders in this
zone. An increase in temperature above the fuel feeding zone was observed. The central feeders
supply fuel, and due to the impact of air inflow (Variant K0) on the front wall of the boiler, it slightly
deviated from the original flight path towards the sidewalls, which was also visible in gas velocity
profiles. This interaction was essential when considering the syngas supplied by this burner, as the
spatial air concentration changed. The results obtained for cut Y-Z-3 indicated that in Variant K0,
the air supplied by two start-up burners closest to the coal feeders (sidewall) had a positive effect on
combustion efficiency, which was expressed in higher-temperature fields in the mixing zone of fuel and
air. Therefore, these airstreams were not considered for replacement with syngas in further calculations.

A slight decrease in temperature in the wall regions was demonstrated in each sectional view as an
effect of bed-to-wall heat transfer, mainly due to high suspension density on the membrane-walls [22].
However, the higher solids concentration on the walls (inert material, fuel, ash after fuel burnout)
resulted in slight convergence problems in the CFD model [23,24]. Despite the high density of the
grid, its cells were still large, which means that there was a relatively significant distance between
the wall and the first node closest to the wall, where it was necessary to interpolate the temperature
profile [25,26]. In some cases, it manifested a local increase in temperature next to the walls (visible
also in the section of platen superheaters). For a smaller scale of the system, a solution might be the use
of a higher-density grid in the wall layer, which, nevertheless, always results in a significant increase in
the total number of control cells and drastically extends the computational time [27]. These problems
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do not exist in zones of greater distance from the walls, so the discussed effect did not influence the
obtained results.

Due to the local character of changes resulting from the modification in air and fuel supply,
the temperature distributions in Variants K1–K3 were best demonstrated by the sections containing the
start-up burners or adjacent areas, especially Y-Z-2 and Y-Z-3, as well as X-Y-4 or X-Y-5 sectional views.

The results demonstrate a significant influence of the syngas supply by the start-up burners on
local temperature increase in the domain (Figures 10–30). The effect is observed as reaction zones of
flammable gas components at short distances from the inlet to the combustion chamber (e.g., sectional
views Y-Z: Figure 13, and X-Y: Figures 23–30).Entropy 2020, 22, x FOR PEER REVIEW 14 of 58 
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Figure 10. Temperature distribution, sectional view Y-Z-1, (a) Variant K0, (b) Variant K1. 

  

Figure 10. Temperature distribution, sectional view Y-Z-1, (a) Variant K0, (b) Variant K1.
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Figure 11. Temperature distribution, sectional view Y-Z-1, (a) Variant K2, (b) Variant K3.
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Figure 12. Temperature distribution, sectional view Y-Z-2, (a) Variant K0, (b) Variant K1. 

  

Figure 12. Temperature distribution, sectional view Y-Z-2, (a) Variant K0, (b) Variant K1.
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Figure 13. Temperature distribution, sectional view Y-Z-2, (a) Variant K2, (b) Variant K3. 

  

Figure 13. Temperature distribution, sectional view Y-Z-2, (a) Variant K2, (b) Variant K3.
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Figure 14. Temperature distribution, sectional view Y-Z-3, (a) Variant K0, (b) Variant K1. 

  

Figure 14. Temperature distribution, sectional view Y-Z-3, (a) Variant K0, (b) Variant K1.
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Figure 15. Temperature distribution, sectional view Y-Z-3, (a) Variant K2, (b) Variant K3. 

  

Figure 15. Temperature distribution, sectional view Y-Z-3, (a) Variant K2, (b) Variant K3.
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Figure 16. Temperature distribution, sectional view Y-Z-4, (a) Variant K0, (b) Variant K1. 

  

Figure 16. Temperature distribution, sectional view Y-Z-4, (a) Variant K0, (b) Variant K1.
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Figure 17. Temperature distribution, sectional view Y-Z-4, (a) Variant K1, (b) Variant K2. 

  

Figure 17. Temperature distribution, sectional view Y-Z-4, (a) Variant K1, (b) Variant K2.
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Figure 18. Temperature distribution, sectional view Y-Z-4, (a) Variant K2, (b) Variant K3. 

  

Figure 18. Temperature distribution, sectional view Y-Z-4, (a) Variant K2, (b) Variant K3.
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Figure 19. Temperature distribution, sectional view Y-Z-5, (a) Variant K0, (b) Variant K1. 

  

Figure 19. Temperature distribution, sectional view Y-Z-5, (a) Variant K0, (b) Variant K1.
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Figure 20. Temperature distribution, sectional view Y-Z-5, (a) Variant K2, (b) Variant K3. 

  

Figure 20. Temperature distribution, sectional view Y-Z-5, (a) Variant K2, (b) Variant K3.
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Figure 21. Temperature distribution, sectional view X-Y-1, Variants (a) K0 and (b) K1. 

  

Figure 21. Temperature distribution, sectional view X-Y-1, Variants (a) K0 and (b) K1.
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Figure 22. Temperature distribution, sectional view X-Y-1, Variants (a) K2 and (b) K3. 

  

Figure 22. Temperature distribution, sectional view X-Y-1, Variants (a) K2 and (b) K3.
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Figure 23. Temperature distribution, sectional view X-Y-2, Variants (a) K0 and (b) K1. 

  

Figure 23. Temperature distribution, sectional view X-Y-2, Variants (a) K0 and (b) K1.
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Figure 24. Temperature distribution, sectional view X-Y-2, Variants (a) K2 and (b) K3. 

  

Figure 24. Temperature distribution, sectional view X-Y-2, Variants (a) K2 and (b) K3.
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Figure 25. Temperature distribution, sectional view X-Y-3, Variants (a) K0 and (b) K1. 

  

Figure 25. Temperature distribution, sectional view X-Y-3, Variants (a) K0 and (b) K1.
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Figure 26. Temperature distribution, sectional view X-Y-3, Variants (a) K2 and (b) K3. 

  

Figure 26. Temperature distribution, sectional view X-Y-3, Variants (a) K2 and (b) K3.
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Figure 27. Temperature distribution, sectional view X-Y-4, Variants (a) K0 and (b) K1. 

  

Figure 27. Temperature distribution, sectional view X-Y-4, Variants (a) K0 and (b) K1.
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Figure 28. Temperature distribution, sectional view X-Y-4, Variants (a) K2 and (b) K3. 

  

Figure 28. Temperature distribution, sectional view X-Y-4, Variants (a) K2 and (b) K3.
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Figure 29. Temperature distribution, sectional view X-Y-5, Variants (a) K0 and (b) K1. 

  

Figure 29. Temperature distribution, sectional view X-Y-5, Variants (a) K0 and (b) K1.
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Figure 30. Temperature distribution, sectional view X-Y-5, Variants (a) K2 and (b) K3. 

  

Figure 30. Temperature distribution, sectional view X-Y-5, Variants (a) K2 and (b) K3.

The unreacted or partially reacted (CH4→CO) syngas moved to the lower parts of the combustion
chamber, where it reacted with primary air. It caused a local temperature increase and shifted down
the combustion zone of solid fuel due to its temperature rise. The effect was visible in the form of
a local temperature rise reaching and even locally exceeding 1000 ◦C. Such a situation may lead to
de-fluidization due to the melting or fusion of bed solids [16].

Moreover, a significant reduction in oxidant access to solid fuel was demonstrated, despite the
reduction in coal and being supplanted by syngas. Differences in the combustion kinetics in the
gaseous (homogeneous) phase, and coal combustion (heterogeneous phase) resulted in the favoring
of combustible gas in the global chemistry of the processes taking place in the combustion zone.
This may be explained by the fact that the combustion of char is a two-step process comprising of
oxygen transportation to the carbon surface and the reaction of carbon with oxygen on said carbon
surface [28–31]. This effect is visible even in the case of such a simple combustion mechanism as that
used in the developed CFD model.

It is also worth emphasizing that due to the relatively low complexity of the model, the analysis
did not cover many additional aspects related to the condition changes in the combustion chamber.
The issues of NOx emissions directly related to the temperature distribution in the combustion chamber
was also essential in the considered cases [32–36].

Therefore, it should be concluded that the discussed idea is not recommended for use in the
considered CFB unit. The obtained results confirm the statement underlined in [6,37], that the fuel
range of an individual boiler depends on various factors, including fuel properties and furnace
design parameters.
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3.5. Combustion Chamber Carbon Dioxide Concentrations

Because the syngas supplied in the K1–K3 variants is rich in carbon dioxide, the concentration of
this compound in the calculation domain increased in individual cases, not only due to the formation
of additional combustion zones, but also through the distribution of CO2 from the gas flowing into
the furnace. The effect was visible in the presented sectional views (Figures 31–50). Due to different
properties (specific heat, density, thermal conductivity) of the reactive mixture and the gas supplied,
changes in local CO2 concentrations were observed, generating local zones rich in this compound.Entropy 2020, 22, x FOR PEER REVIEW 36 of 58 
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Figure 31. CO2 concentration in the chamber for sectional view Y-Z-1, (a) Variant K0, (b) Variant K1. 
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Figure 32. CO2 concentration in the chamber for sectional view Y-Z-1, (a) Variant K2, (b) Variant K3. 
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Figure 33. CO2 concentration in the chamber for sectional view Y-Z-2, (a) Variant K0, (b) Variant K1. 

  

Figure 33. CO2 concentration in the chamber for sectional view Y-Z-2, (a) Variant K0, (b) Variant K1.

Entropy 2020, 22, x FOR PEER REVIEW 39 of 58 

 

 

  
(a) (b) 

Figure 34. CO2 concentration in the chamber for sectional view Y-Z-2, (a) Variant K2, (b) Variant K3. 

  

Figure 34. CO2 concentration in the chamber for sectional view Y-Z-2, (a) Variant K2, (b) Variant K3.
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Figure 35. CO2 concentration in the chamber for sectional view Y-Z-3, (a) Variant K0, (b) Variant K1. 

  

Figure 35. CO2 concentration in the chamber for sectional view Y-Z-3, (a) Variant K0, (b) Variant K1.
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Figure 36. CO2 concentration in the chamber sectional view Y-Z-3, (a) Variant K2, (b) Variant K3. 

  

Figure 36. CO2 concentration in the chamber sectional view Y-Z-3, (a) Variant K2, (b) Variant K3.
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Figure 37. CO2 concentration in the chamber for sectional view Y-Z-4, (a) Variant K0, (b) Variant K1. 

  

Figure 37. CO2 concentration in the chamber for sectional view Y-Z-4, (a) Variant K0, (b) Variant K1.
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Figure 38. CO2 concentration in the chamber for sectional view Y-Z-4, (a) Variant K2, (b) Variant K3. 

  

Figure 38. CO2 concentration in the chamber for sectional view Y-Z-4, (a) Variant K2, (b) Variant K3.
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Figure 39. CO2 concentration in the chamber for sectional view Y-Z-5, (a) Variant K0, (b) Variant K1. 

  

Figure 39. CO2 concentration in the chamber for sectional view Y-Z-5, (a) Variant K0, (b) Variant K1.
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Figure 40. CO2 concentration in the chamber for sectional view Y-Z-5, (a) Variant K2, (b) Variant K3. 

  

Figure 40. CO2 concentration in the chamber for sectional view Y-Z-5, (a) Variant K2, (b) Variant K3.
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Figure 41. CO2 concentration in the chamber for sectional view X-Y-1, (a) Variant K0, (b) Variant K1. 

  

Figure 41. CO2 concentration in the chamber for sectional view X-Y-1, (a) Variant K0, (b) Variant K1.
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Figure 42. CO2 concentration in the chamber sectional view X-Y-1, (a) Variant K2, (b) Variant K3. 

  

Figure 42. CO2 concentration in the chamber sectional view X-Y-1, (a) Variant K2, (b) Variant K3.
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Figure 43. CO2 concentration in the chamber for sectional view X-Y-2, (a) Variant K0, (b) Variant K1. 

  

Figure 43. CO2 concentration in the chamber for sectional view X-Y-2, (a) Variant K0, (b) Variant K1.
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Figure 44. CO2 concentration in the chamber for sectional view X-Y-2, (a) Variant K2, (b) Variant K3. 

  

Figure 44. CO2 concentration in the chamber for sectional view X-Y-2, (a) Variant K2, (b) Variant K3.
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Figure 45. CO2 concentration in the chamber for sectional view X-Y-3, (a) Variant K0, (b) Variant K1. 

  

Figure 45. CO2 concentration in the chamber for sectional view X-Y-3, (a) Variant K0, (b) Variant K1.
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Figure 46. CO2 concentration in the chamber for sectional view X-Y-3, (a) Variant K2, (b) Variant K3. 

  

Figure 46. CO2 concentration in the chamber for sectional view X-Y-3, (a) Variant K2, (b) Variant K3.
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Figure 47. CO2 concentration in the chamber for sectional view X-Y-4, (a) Variant K0, (b) Variant K1. 

  

Figure 47. CO2 concentration in the chamber for sectional view X-Y-4, (a) Variant K0, (b) Variant K1.
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Figure 48. CO2 concentration in the chamber for sectional view X-Y-4, (a) Variant K2, (b) Variant K3. 

  

Figure 48. CO2 concentration in the chamber for sectional view X-Y-4, (a) Variant K2, (b) Variant K3.
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Figure 49. CO2 concentration in the chamber for sectional view X-Y-5, (a) Variant K0, (b) Variant K1. 

  

Figure 49. CO2 concentration in the chamber for sectional view X-Y-5, (a) Variant K0, (b) Variant K1.
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Figure 50. CO2 concentration in the chamber for sectional view X-Y-5, (a) Variant K2, (b) Variant K3. 

  

Figure 50. CO2 concentration in the chamber for sectional view X-Y-5, (a) Variant K2, (b) Variant K3.

The fields of CO2 concentrations in the furnace were closely related to the reactivity zones of the
reactants in the calculation domain. Moreover, the fact of the participation of carbon dioxide molecules
in the radiation heat transfer mechanism is also noteworthy. Being a compound absorbing radiation,
CO2 influenced temperature distributions in the furnace [30,38,39].
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4. Discussion and Concluding Remarks

Model research of a large-scale, OFZ-425, CFB boiler was carried out in this paper using a
comprehensive 3D-CFD model. Models built using the CFD approach are the most comprehensive,
numerically sophisticated, and advanced, based on detailed consideration of chemical kinetics
and individual physical processes, gas, and solids continuity equations, momentum balances,
and appropriate constitutive equations [2,40]. The purpose of the model was to identify the thermal-flow
phenomena occurring in the fluidized bed under its standard operating configuration and modified
conditions, i.e., with additional gaseous fuel supply. The influence of the introduced syngas on the
distribution of pressures, temperatures, gas flow rate, and CO2 concentrations in the furnace of the
CFB boiler was evaluated. This undertaking emerges from an awareness of the growing environmental
pollution and climate change, and it constitutes another attempt to find a method to reduce emissions
from fossil fuel combustion [41–43].

In the case of the mono-combustion case, the distribution of pressures inside the furnace was
similar to the experimental data. All the discrepancies resulted from the simplifications in the defined
hydrodynamic and reactions model. In the reference case K0, the flow velocity in the bed varied
between 4 and 12 m/s. A significant velocity increase was observed in each of the examined cases in the
zones of paten superheaters. The supply of additional syngas to the combustion chamber in Variants
K1, K2, and K3, did not cause any changes in the pressure distribution and velocities compared to the
reference case K0.

The syngas supply affected CO2 concentration profiles in the furnace. In all considered cases
(K1, K2, K3), the CO2 concentrations in the combustion chamber increased, not only due to the
formation of additional combustion areas, but also via the distribution of CO2 directly from the carbon
dioxide-rich gas flowing into the furnace.

For each case (K1, K2, K3), the syngas supply led to an increase in temperature inside the furnace
to over 1000 ◦C, mainly in the lower parts of the combustion chamber. Such a significant increase in
temperature may lead to forming agglomerates, which can cause de-fluidization [16].

It is also worth emphasizing that due to the relatively low complexity of the model, the analysis
did not cover many additional aspects related to the condition changes in the combustion chamber.
The issues of NOx emissions directly related to the temperature distribution in the combustion chamber
was also essential in the considered cases.

The evaluation carried out in the paper clearly showed that the syngas supply into the furnace
chamber of the OFz-425, CFB boiler is not advisable and may lead to frequent emergency stops of
the boiler.
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