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Abstract: The vibrational and rovibrational partition functions of diatomic molecules are considered
in the regime of intermediate temperatures. The low temperatures are those at which the harmonic
oscillator approximation is appropriate, and the high temperatures are those at which classical
partition function (with Wigner–Kirkwood correction) is applicable. The complementarity of the
harmonic oscillator and classical integration over the phase space approaches is investigated for the
CO and H+

2 molecules showing that those two approaches are complementary in the sense that they
smoothly overlap.
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1. Introduction

In certain applications such as the investigation of the equation of state, a very large temperature
range is considered. In some research [1,2], even though the extremely high and extremely low
temperatures are considered, the harmonic oscillator is used for the description of vibrations (with a
cut-off to describe dissociation); moreover, the effect of rovibrational coupling is not mentioned despite
the fact that it exerts a profound and nonlinear effect on the partition function at high temperatures [3].

Some studies neglect dissociation and consider only bound states at high temperatures in the
rovibrational partition function because of the unrealistic (harmonic) potential energy curve [4].
Some other studies take into account anharmonicity and rovibrational coupling [5,6], but still do
not consider unbound states [7], which are easily included in the partition function in the classical
approach [8–13]; thermodynamical data assume the ideal-gas approach, and the unbound states’ effect
is not negligible at high temperatures common in plasma science and hypersonic flows.

In principle, none of the above simplifications of the partition function for diatomic molecules are
needed, but a high quality partition function can be obtained from the quantum corrected classical
approach. The condition for that statement is the availability of exact potential energy curves, which
in practice are not always available, especially for excited electronic states of molecules.

The Wigner–Kirkwood expansion [14,15] some years ago was claimed to be impractical to use for
the vibrational partition function [16]. I will show, despite the fact that the low temperature limit is
indeed incorrect, that the three terms of expansion can be used effectively (and are complementary to
the harmonic oscillator model) for both vibrational and rovibrational partition functions.

Arbitrary high temperatures were considered in the already mentioned publications [11,13].
At low temperatures, the harmonic oscillator model (HO, for the vibrational partition function) and
the rigid rotor harmonic oscillator model (RRHO, for the rovibrational partition function) can be used
unless the temperature is not very low and the anharmonicity of zero point energy is not significant.
In this study, this effect is very small, and the multiplicative correction factor e−βE0 eβω/2 (to remove
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harmonic zero point energy ω/2 and replace it with the exact zero point energy E0 in harmonic
approximation; atomic units are utilized) is not used. In the case of the CO molecule, this correction is
around 0.5% at temperatures of 800K-1000K and almost 2% at 100K. Note that higher vibrational states
are less important with decreasing temperature so that the above described correction works in a wide
range of temperatures.

The aim of this paper is to show that the results of the harmonic oscillator method and classical
Wigner–Kirkwood corrected method give almost the same results in a certain temperature range.
This overlap means that those methods are complementary and together are able to give ideal-gas
partition functions in a very broad range of temperatures.

2. Methods

The partition function of CO was calculated on the Liu potential energy curve [17]:

VLiu = −De[1 + a1(r− re) + a2(r− re)2

+ a3(r− re)3]exp[−a1(r− re)] + De,
(1)

where De = 0.4113827a.u., re = 2.13955a.u., a1 = 2.20355a.u., a2 = 0.962467a.u., a3 = 0.408807a.u.
(atomic units are used). The angular frequency for this PECis ω = 0.00982934a.u., and the reduced
mass for the 12C16O isotope is µ = 12498.1a.u..

The potential energy curve for H+
2 according to [18] is:

VXG(r) = 0.1026 +
(exp(−4.5r)(1 + 1

r ) + exp(−1.05111r)( 1
r − 0.917034r))

(1 + exp(−r)(1 + r + r2/3))
, (2)

with ω = 0.0104506a.u, reduced mass µ = 918.576.
The partition functions are calculated according to the ideal gas approach, which takes into

account bound, metastable, and scattering states [7]. The vibrational partition function [13]:

QHD,wk
vib =

1
2π

√
2πµ

β

∫ ∞

0
[exp(−βV)wk(r)− exp(−βDe)]dr, (3)

and the rovibrational partition function [10,11] (the symmetry number 1/2 has to be included for
homonuclear molecules):

QHD,wk
rovib =

1
2
√

π

(
2µ

β

)3/2 ∫ ∞

0
[exp(−βV)wk(r)− exp(−βDe)]r2dr, (4)

where β = 1/(kBT) is the inverse temperature, V the potential energy function of the molecule under
consideration, and De the depth of the potential energy curve. In both formulas, exp(−βV) was
multiplied by wk(r), which is the Wigner–Kirkwood quantum correction; for the vibrational partition
function (one-dimensional case), it reads [19]:

wkvib(r) = 1− β3

24µ
(V′)2 +

β4

5760µ2 [β
2 (V′)4 − 8β (V′)2 V′′ + 12 (V′′)2] +

1
362880

(
β

2µ

)3
[3β6(V′)6+

+ 12β4(V′)2(V′′)2 − 216β2(V′′′)2 − 50β5(V′)4V′′ + 480β3V′V′′V′′′],
(5)
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and for the rovibrational partition function, the correcting factor is [19,20]:

wkrovib(r) = 1− β3

24µ
(V′)2 +

β4

5760µ2 [β
2 (V′)4 − 8β (V′)2 r−2d[r2(V′)]/dr + 12(r−2d[r2(V′)]/dr)2]+

+
β5

16µ3 [
V′′′

840
+

(V′′)2

140r2 +
β

726
(V′′)3 +

β

180
V′(V′′)2

r
+

β

945
(V′)3

r3 −

− β2

720
(V′)2(V′′)2 − β2

6480
(V′)4

r2 − β3

2160
(V′)5

r
+

β4

25920
(V′)6].

(6)

The correcting expression wk(r) is a series in which consecutive terms can be added for quantum
correction of the classical partition function: wk0(r) = 1 (classical case), where wk1(r) means using
one correcting term, wk2(r) two correcting terms, and wk3(r) three correcting terms.

Finally, even if Wigner–Kirkwood correcting terms are used, the whole calculation amounts to a
single one-dimensional numerical integration. The energy level based calculation, being preferable at
lower temperatures, is more involved at the higher temperatures, and the question of the cut-off and
quality of the high energy levels is crucial [21].

3. Results

3.1. Vibrational Partition Function of CO

In Figure 1, the vibrational partition functions for carbon monoxide are compared: the quantum
harmonic approximation (QQHO

vib ), the fully classical value (QHD,wk0
vib ; no correction), the two term

quantum Wigner–Kirkwood correction (QHD,wk2
vib ), and finally, the three term correction (QHD,wk3

vib ).
The plot shows that classical value deviates from all others (it would be adequate at much
higher temperatures).

The quantum harmonic oscillator values and two and three term corrected values are very close
between 900 K and 1400 K, confirming that in this range of temperatures, the anharmonicity is
negligible. The unbound states are also negligible, but for the vibrational partition function, much
higher temperatures are needed for this effect [13]. At the highest temperatures of the plot, it is seen
that the harmonic oscillator values depart from two and three term corrected classical values (they are
the same; at those temperatures, two term correction is sufficient), and that effect shows the growing
role of anharmonicity. At the lowest temperatures of the plot, it is seen that three term corrected
classical values are in better agreement with the harmonic approximation below 1000 K than the
two term corrected values; two terms do not provide the sufficient inclusion of quantum effects at
around 1000 K.

The overall conclusion is the complementarity of the quantum harmonic approximation and three
term corrected classical results (for reference, those values are given in Table 1).

Table 1. Vibrational partition function of carbon monoxide in harmonic approximation QQHO
vib and

three term corrected classical values QHD,WK3
vib .

T (K) QQHO
vib QHD,WK3

vib

600 K 7.571× 10−2 2.647× 10−2

700 K 1.102× 10−1 9.198× 10−2

800 K 1.467× 10−1 1.396× 10−1

900 K 1.841× 10−1 1.816× 10−1

1000 K 2.218× 10−1 2.215× 10−1

1500 K 4.067× 10−1 4.098× 10−1

2000 K 5.840× 10−1 5.895× 10−1

3000 K 9.247× 10−1 9.369× 10−1
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Figure 1. The vibrational partition functions of CO in the quantum harmonic approximation (QQHO
vib ),

the classical values (QHD,wk0
vib ), the two term quantum Wigner–Kirkwood correction (QHD,wk2

vib ), and the
three term correction (QHD,wk3

vib ).

Table 2 compares the harmonic vibrational partition function (QQHO
vib ) with the harmonic value

e−βE0 eβω/2 corrected for exact zero point energy (QQHO,ZPE
vib ) and the single term partition function

based only on zero point energy (e−βE0); E0 is the exact lowest vibrational level (zero point energy).
At low temperatures only, the zero point energy is sufficient or almost sufficient for the vibrational
partition function.

Table 2. The carbon monoxide harmonic vibrational partition function (QQHO
vib ), the harmonic

corrected for exact zero point energy (QQHO,ZPE
vib ), and the partition function based only on zero

point energy (e−βE0 ).

T (K) QQHO
vib QQHO,ZPE

vib e−βE0

200 K 4.267× 10−4 4.382× 10−4 4.382× 10−4

300 K 5.667× 10−3 5.769× 10−3 5.769× 10−3

400 K 2.066× 10−2 2.094× 10−2 2.093× 10−2

500 K 4.497× 10−2 4.545× 10−2 4.536× 10−2

600 K 7.571× 10−2 7.639× 10−2 7.595× 10−2

700 K 1.102× 10−1 1.111× 10−1 1.098× 10−1

800 K 1.467× 10−1 1.477× 10−1 1.446× 10−1

900 K 1.841× 10−1 1.852× 10−1 1.793× 10−1

3.2. Rovibrational Partition Function of CO

The vibrational partition function exhibits the same behavior as the vibrational partition function.
In Figure 2, the region of the classical corrected and harmonic approximation’s best agreement is
900–1100 K; the same kind of complementarity is present.
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Figure 2. The rovibrational partition functions of CO in the quantum harmonic approximation (QQHO
rovib ),

the classical values (QHD,wk0
rovib ), the two term quantum Wigner–Kirkwood correction (QHD,wk2

rovib ), and the
three term correction (QHD,wk3

rovib ).

In Table 3, the data of the rigid-rotor harmonic approximation and classical corrected method are
given alongside the HITRANdatabase values. The agreement of rigid-rotor harmonic approximation
with HITRAN values shows that anharmonicity and rovibrational coupling are very small effects
below 1000 K for the CO molecule (classical corrected values do not include all the quantum effects
below 1000 K, resulting in disagreement with the other values).

Table 3. The carbon monoxide rovibrational partition function: rigid-rotor harmonic approximation
QRRQHO

rovib , three term corrected classical value QHD,WK3
rovib , and values from the HITRAN database

(HITRAN). For the sake of comparison with HITRAN, the zero point energy was removed; in
parenthesis, the values with zero point energy are given.

T (K) QRRQHO
rovib QHD,WK3

rovib HITRAN

600 K 2.187× 102 (1.646× 101) 7.979× 101 (6.001× 100) 2.188× 102

700 K 2.567× 102 (2.796× 101) 2.168× 102 (2.361× 101) 2.570× 102

800 K 2.960× 102 (4.254× 101) 2.843× 102 (4.086× 101) 2.964× 102

900 K 3.368× 102 (6.005× 101) 3.351× 102 (5.975× 101) 3.375× 102

1000 K 3.794× 102 (8.037× 101) 3.821× 102 (8.094× 101) 3.803× 102

1500 K 6.221× 102 (2.211× 102) 6.332× 102 (2.250× 102) 6.256× 102

2000 K 9.195× 102 (4.232× 102) 9.397× 102 (4.325× 102) 9.283× 102

3000 K 1.686× 103 (1.005× 103) 1.738× 103 (1.036× 103) 1.717× 103

3.3. Vibrational and Rovibrational Partition Functions of H+
2

To confirm that the complementarity of harmonic and corrected classical values is not a
random effect in the case of the carbon monoxide molecule, another molecule was also investigated.
The molecular hydrogen ion H+

2 was chosen because it consists of hydrogen atoms and its bond is
weak; all possible effects such as the quantum nature of the molecule, anharmonicity, and rovibrational
coupling are more pronounced than in carbon monoxide.
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Figure 3 for the vibrational partition function shows that the complementarity is less pronounced,
as could be expected: the regions of the harmonic approximation and three term corrected classical
value overlap only in a very narrow range of temperatures.

In the case of this anharmonic molecular ion, the correction of zero point energy is more important
than it is for carbon monoxide. Figure 4 repeats Figure 3, but the harmonic approximation is corrected
with the accurate zero point energy; this correction causes the increased agreement of the harmonic
approximation and the corrected classical results.

In Figure 5, the rovibrational partition functions are compared, and the rigid-rotor harmonic
approximation is zero point energy corrected. The complementarity region is very narrow.
The uncorrected case of the rovibrational partition function (with slightly worse complementarity) is
not shown.

It can be noted in general that for the H+
2 molecule, the two term quantum correction disagrees

much more with the three term correction because of the greater quantum nature of that molecule in
the same temperature range.

Qvib
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T(K)0.10

0.15

0.20

0.25

0.30

0.35

0.40
Qvib

Figure 3. The vibrational partition functions of H+
2 in the quantum harmonic approximation (QQHO

vib ),
the classical values (QHD,wk0

vib ), the two term quantum Wigner–Kirkwood correction (QHD,wk2
vib ), and the

three term correction (QHD,wk3
vib ).
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Figure 4. The vibrational partition functions of H+
2 in the quantum harmonic approximation with

zero point energy correction (QQHO,ZPE
vib ), the classical values (QHD,wk0

vib ), the two term quantum
Wigner–Kirkwood correction (QHD,wk2

vib ), and the three term correction (QHD,wk3
vib ).
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Figure 5. The rovibrational partition functions of H+
2 in the quantum rigid-rotor harmonic

approximation with zero point energy correction (QQHO,ZPE
rovib ), the classical values (QHD,wk0

rovib ), the two
term quantum Wigner–Kirkwood correction (QHD,wk2

rovib ), and the three term correction (QHD,wk3
rovib ).
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4. Conclusions

It is concluded that the partition functions of typical diatomic molecules exhibits the good
complementarity of the harmonic oscillator approximation and Wigner–Kirkwood corrected classical
method. Note especially that without the Wigner–Kirkwood correction, complementarity would not be
achieved. In more loosely bounded diatomics (in particular molecular cations are bound more loosely
than respective neutral molecules), the methods under consideration may be less complementary, and
each temperature range needs more careful consideration when vibrational and rovibrational partition
functions are calculated.

The Mathematica notebook with classical and Wigner–Kirkwood corrected vibrational and
rovibrational partition functions of carbon monoxide in the 600–3000 K temperature range are
deposited at the www.notebookarchive.org (accessed on 20 July 2020).
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