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Abstract: High dynamic range (HDR) images give a strong disposition to capture all parts of natural
scene information due to their wider brightness range than traditional low dynamic range (LDR)
images. However, to visualize HDR images on common LDR displays, tone mapping operations
(TMOs) are extra required, which inevitably lead to visual quality degradation, especially in the bright
and dark regions. To evaluate the performance of different TMOs accurately, this paper proposes
a blind tone-mapped image quality assessment method based on regional sparse response and
aesthetics (RSRA-BTMI) by considering the influences of detail information and color on the human
visual system. Specifically, for the detail loss in a tone-mapped image (TMI), multi-dictionaries are
first designed for different brightness regions and whole TMI. Then regional sparse atoms aggregated
by local entropy and global reconstruction residuals are presented to characterize the regional and
global detail distortion in TMI, respectively. Besides, a few efficient aesthetic features are extracted
to measure the color unnaturalness of TMI. Finally, all extracted features are linked with relevant
subjective scores to conduct quality regression via random forest. Experimental results on the
ESPL-LIVE HDR database demonstrate that the proposed RSRA-BTMI method is superior to the
existing state-of-the-art blind TMI quality assessment methods.

Keywords: high dynamic range image; tone-mapping; image quality assessment; regional sparse
response; aesthetics; entropy weighting

1. Introduction

High dynamic range (HDR) imaging, as a popular image enhancement technology, aims at
recovering the detail information in bright and dark regions of images by fusing multiple low dynamic
range (LDR) images with varying exposure levels [1]. Consequently, HDR images have a powerful
ability to acquire almost all brightness ranges in natural scenes, and have attracted attention from
various multimedia signal processing fields, such as HDR compression, streaming and display [2].
Moreover, due to the limitations on popularization of HDR display devices, tone-mapping operators
(TMOs) have been successively developed to ensure the visualization of HDR images on traditional
LDR displays, which reduce brightness dynamic range of images as much as possible without
destroying the original structure of scenes [3]. Unfortunately, there are no completely suitable TMOs
for converting HDR images, so that the relevant visual quality degradation phenomena (e.g., detail loss
especially in the bright and dark regions and color unnaturalness) will be inevitably introduced into
tone-mapped images (TMIs) [4]. To distinguish the generalization ability of different TMOs accurately,
objective image quality assessment (IQA) of TMIs is one of the most challenging problems to optimize
the HDR processing pipeline.
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Up to now, a large number of perceptual IQA methods designed for LDR images have been
proposed [5,6], and can be usually divided into three categories: full-reference (FR), reduced-reference (RR)
and no-reference/blind (NR). The FR methods are guided by a distortion-free reference image. The RR
methods only require a part of the reference image, while the NR/blind methods do not. Among the
classical FR-IQA methods, the structural similarity method (SSIM) [5] is one of the most influential
methods in academic communities, which measures the difference between the reference image and
distorted image from brightness, contrast and structure. Evidently, these IQA methods for LDR images are
not applicable to TMIs due to the specific truth that reference and distorted images have different dynamic
range. To solve this problem, Yeganeh et al. [7] proposed the tone-mapped quality index (TMQI) by
combining multi-scale structure fidelity and statistical naturalness in the grayscale domain. Although the
TMQI method outperforms the existing IQA methods designed for LDR images in terms of predicting
the quality of TMIs, there is still large room for further improvement, such as perceptual analysis in
chrominance domain. Afterwards, a few improved versions based on the TMQI method were put forward.
Ma et al. [8] revised the related feature components in the TMQI method for the accuracy of evaluation.
Nasrinpour et al. [9] integrated the importance of salient regions into the TMQI method to further improve
the evaluation performance. Besides, Nafchi et al. [10] expended the existing feature similarity (FSIM) [11]
method to form the feature similarity index for tone-mapped images (FSITM). Song et al. [12] utilized
the exposure condition segmentation and extracted perceptual features to predict the quality of TMIs.
Unfortunately, considering that the reference HDR images are usually unavailable and unintelligible
in many practical cases, the above FR-IQA methods designed for TMIs are prone to defeat despite the
advanced performance on the benchmark TMIs database.

Obviously, the development of blind IQA (BIQA) methods is more challenging compared with
FR-IQA methods due to the lack of a reference image. Generally, most BIQA methods designed
for ordinary 2D images (2D-BIQA) are based on the framework of supervised learning, that is,
several quality-aware features are extracted from images and quality regression is conducted via
the model trained by machine learning or deep learning algorithms [13–16]. Among the diverse
quality-aware features, natural scene statistics (NSS) based features play a significant role in evaluating
2D images degraded with single distortion or multiple distortions. Moorthy et al. [13] presented the
distortion identification-based image verity and integrity evaluation (DIIVINE) method by exploring
the statistics between the sub-band coefficients obtained from steerable pyramid decomposition.
Zhang et al. [14] extracted the additional complex phase statistics on the basis of the DIIVINE method.
Saad et al. [15] and Mittal et al. [16] developed the BLIINDS-II and BRISQUE methods by using
the NSS of discrete cosine transform (DCT) coefficients and mean subtracted contrast normalized
(MSCN) coefficients, respectively. Moreover, there exist some aesthetic IQA methods. For example,
Sun et al. [17] proposed an alternative set of features for aesthetic estimation based on a visual
complexity principle. They extracted the visual complexity properties from an input image in terms
of their composition, shape, and distribution. Mavridaki et al. [18] introduced five feature vectors
for describing the photo’s simplicity, colorfulness, sharpness, pattern and composition to perform
the aesthetic quality evaluation. Although these 2D-BIQA methods and aesthetic IQA methods have
shown their performance superiority in predicting the quality of 2D images and aesthetic-related
images addressed by common distortion types, e.g., blockiness, blurriness, noise and aesthetic drop,
there is a large gap in predicting the quality of TMIs dominated by detail loss especially in the
bright and dark regions and color unnaturalness. The reasons for performance deviation can be
summarized as the following two aspects. First, NSS based features are extracted from the entire
image or sub-band, and can be usually regarded as global features, so the relevant local features
(e.g., local structure and texture information) are ignored. Remarkably, the detail loss of TMIs caused
by structural degradation is mainly reflected in bright and dark regions of images. Another problem
is that the extracted NSS features are based on luminance component of image, missing the crucial
role of color information on the human visual system (HVS). Therefore, it is necessary to explore the
special perceptual characteristics of TMIs to improve the performance of IQA methods.
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Actually, some BIQA methods specialized for TMIs (TM-BIQA) have been presented in the past
three years [19–26]. Gu et al. [19] designed a blind tone-mapped quality index (BTMQI) by analyzing
information fidelity, naturalness and structure. Considering that the brightest and darkest regions of
TMIs are prone to detail loss, Jiang et al. [20] proposed a blind TM-IQA (BTMIQA) method by combining
the detail features with naturalness and aesthetic features. Kundu et al. [21] utilized the NSS features
from the spatial domain and HDR gradient domain to form the HIGRADE method. Yue et al. [22]
extracted multiple quality-sensitive features including colorfulness, naturalness, and structure to
construct a TM-BIQA method. Jiang et al. [23] proposed a blind quality evaluator of tone-mapped
images (BLIQUE-TMI) by considering the impact of visual information, local structure and naturalness
on HVS, where the former two kinds of features are extracted based on sparse representation, and the
other ones are derived from color statistics. Zhao et al. [24] proposed a method that is mainly based on
local phase congruency, some statistical characteristics on the edge maps and opponent color space to
measure the image sharpness, halo effect and chromatic distortion, respectively. Chi et al. [25] designed
a new blind TM IQA method with image segmentation and visual perception, a feature clustering
scheme was proposed to quantify the importance of features. Fang et al. [26] extracted features from
global statistics model to characterize the naturalness and local texture features to capture the quality
degradation. However, these TM-BIQA methods still have the following limitations: (1) The color
information is completely ignored in the BTMQI and HIGRADE methods, and the aesthetic quality of
TMIs cannot be evaluated in the BLIQUE-TMI method. (2) For the BTMIQA method, the extracted
local features are too simple to characterize the visual perception for different brightness regions
(DB-regions) in TMIs, and the detail loss phenomenon in regions of normal exposure is also omitted.

Towards a more accurate evaluation for TMIs, a blind TMI quality assessment method based on
regional sparse response and aesthetics is proposed in this paper, denoted as RSRA-BTMI. The basic
consideration of RSRA-BTMI is that we attempt to dig some quality-aware features from imaging
and viewing properties of TMIs, i.e., we focus on exploring the specific perceptual characteristics for
DB-regions in TMIs, so that extracting both local and global features to portray the detail loss and color
unnaturalness. In summary, the main contributions of this paper are described as follows.

(1) Inspired by the viewing properties in visual physiology, i.e., the quality of images is perceived
by HVS from global to local regions, multi-dictionaries are specially designed for DB-regions of
TMIs and entire TMIs via dictionary learning. Moreover, the self-built TMIs training dataset for
dictionary learning in this study is available for the further research demand.

(2) Each region is sparsely represented to obtain the corresponding sparse atoms activity for describing
the regional visual information of TMIs, which is closely related to visual activity in the receptive
fields of simple cells. In addition, a regional feature fusion strategy based on entropy weighting
is presented to aggregate the above local features.

(3) Motivated by the fact that HVS prefers an image with saturated and natural color, the relevant
aesthetic features, e.g., contrast, color fidelity, color temperature and darkness, are extracted for
global chrominance analysis. Besides, residual information of entire TMIs is fully utilized to
simulate global perception of HVS, and the NSS based features extracted from residual images
are combined with the aesthetic features to form the final global features.

The rest of the paper is organized as follows: The proposed RSRA-BTMI method is described in
Section 2. The performance comparison results of RSRA-BTMI and other BIQA methods are presented
in Section 3. Finally, the conclusion is given in Section 4.

2. The Proposed RSRA-BTMI Method

Figure 1 depicts the framework of the proposed RSRA-BTMI method, including regional sparse
response feature extraction from DB-regions and global region of TMI in the sparse domain, and aesthetic
features extraction for distinguishing color distortion. To be specific, to characterize the specific
perceptual characteristics for DB-regions in TMIs, multi-dictionaries based on region segmentation via
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entropy are first learned to extract regional sparse response features, i.e., sparse atoms activity for each
region and global reconstruction residual statistics. Moreover, aesthetic features including contrast,
color fidelity, color temperature and darkness are extracted to portray color unnaturalness. All extracted
features are formed into a feature vector to predict the quality of TMI through random forest (RF).
The specific implementation of the RSRA-BTMI method is stated in the following subsections.

Figure 1. Framework of the proposed blind tone-mapped image (TMI) quality assessment method
based on regional sparse response and aesthetics (RSRA-BTMI).

2.1. Multi-Dictionary Learning Based on Region Segmentation

Different TMOs will inevitably cause detail loss in DB-regions of TMIs and this kind of distortion
usually affects the TMIs’ quality with specific means, which indicates the importance of detail
information in the DB-regions to IQA of TMI, especially in the bright and dark regions [20]. In the
proposed method, multi-dictionaries are first designed to obtain the regional sparse response features via
regional sparse representation and global reconstruction residual calculation. Remarkably, this section
is the foundation of the following feature extraction in the sparse domain. From the perspective of
neurophysiology [27], when visual neurons receive the external stimuli, the information carried by
the stimulus can be correctly perceived, while sparse representation is exactly consistent with the
perceptual process of the visual signal. Moreover, according to the previous studies about visual
signal processing, it has been proven that sparse representation can effectively match the visual
perception characteristics of mammalian organism and describe the image signals with their sparsity
and redundancy [28–30]. Therefore, sparse representation is used to identify the specific distortion of
TMI in this study, i.e., regional and global detail loss.

2.1.1. Constructing Dataset for Multi-Dictionary Learning

To obtain the perceptual features in the sparse domain, a novel TMI training dataset is constructed
as the basic of multi-dictionary learning. Specifically, we selected 20 pristine HDR images with different
kinds of scenes from existing HDR image datasets [31,32] and generated the corresponding distorted
versions processed with 15 classical TMOs [33]. To avoid the same TMI datasets used in dictionary
learning and quality assessment stages, the image contents contained in TMI training dataset were
distinct from those in the subsequent-used benchmark database for objective quality assessment
(i.e., ESPL-LIVE HDR database [34]), and Figure 2 depicts the partial scene contents, which includes
the indoor, outdoor and night scenes. Moreover, we artificially eliminated some low-quality distorted
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image under extreme conditions, such as abnormal exposure, annoying noise and indelible artifacts,
so as to construct the final TMI training dataset for multi-dictionary learning.

Figure 2. An example of the high dynamic range (HDR) image contents in the constructed TMI
training dataset.

2.1.2. TMI Segmentation for Multi-Dictionaries

Inspired by viewing properties in visual physiology, HVS tends to perceive the detail information
of TMIs from DB-regions, especially the bright and dark regions in an image. Therefore, an advanced
brightness segmentation algorithm via entropy [35] is first applied to divide a TMI into three types
of brightness regions, i.e., bright region, normal exposure region and dark region, denoted as Breg,
Nreg and Dreg, respectively, and the whole TMI is denoted as Greg. Figure 3 shows three TMIs from
ESPL-LIVE HDR database [34] and the corresponding brightness segmentation images, where the
parts of red, green and blue in images are Breg, Nreg and Dreg, respectively. Obviously, it can be found
that different TMIs appeared to have detail loss with different degrees in the three brightness regions.
Then, these segmented images were regarded as region masks for the following block extraction with
DB-regions. Specifically, TMIs were divided into multiple non-overlapping blocks with the same size,
and these blocks were categorized as three subsets via the obtained region masks. Finally, each image
in the TMI training dataset contained four kinds of blocks, that is, T = {TBreg , TNreg , TDreg , TGreg },
where TBreg , TNreg , TDreg and TGreg are the blocks in Breg, Nreg, Dreg and Greg, respectively.

Figure 3. Three TMIs and their corresponding brightness segmentation images, where the parts of red,
green and blue of images in the second row are the bright region, normal exposure region and dark
region, respectively.
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2.1.3. Multi-Dictionary Learning

To conduct regional sparse representation, multi-dictionaries based on brightness segmentation
were obtained first, which contained three regional dictionaries and one global dictionary. At present,
several dictionary learning algorithms have been proposed, and the principle idea is to find out a set
of representative atoms that can approach the training data optimally on the condition of specific
sparse constraint. Generally, let Dr

∈ Rn×m denote an over-complete dictionary, where m is the number
of atoms and every atom is an n-dimensional vector. Let T = {Ti}

N
i=1 denote the predivided TMI

blocks with the size of
√

n ×
√

n from the collected multi-dictionary sets, where Ti represents the
i-th block of DB-regions or the global region, Ti ∈ Rn, and N is the total number of blocks. In short,
the input source of dictionary learning is sampled from image block samples. In the proposed method,
taking Tr as the input, the multi-dictionaries Dr are obtained by solving an optimization problem.
Then, the optimization scheme can be defined as〈

Dr, Sr〉 = argmin‖sr
i ‖0, s.t.‖Tr

−DrSr
‖

2
2 ≤ t (1)

where Sr =
{
sr

i

}N

i=1
are the sparse coefficient of Tr acquired by Dr, r ∈

{
Breg, Nreg, Dreg, Greg

}
denotes the

category of region and t is the initial error threshold, which is set to 5 empirically. Here, the K-SVD
algorithm [36] is selected to solve the optimization scheme in Equation (1) due to its fast solution and
strong competitiveness.

To obtain the regional sparse responses, the multi-dictionaries about Breg, Nreg, Dreg and Greg were
obtained as shown in Figure 4. It can be found that the dictionary trained by TNreg contained more
details than the global dictionary, while the dictionary of TBreg had the minimal visual information,
as well as the dictionary of TDreg . In conclusion, each atom in the multi-dictionaries captured visual
information of DB-regions, which was in accordance with the perceptual characteristics of TMI.
Remarkably, the learned multi-dictionaries were not required to be updated later and could be used
directly as the target dictionaries for feature representation during the testing phase.

Figure 4. The learned multi-dictionaries. (a) The dictionary learned by normal exposure blocks; (b) the
dictionary learned by bright blocks; (c) the dictionary learned by dark blocks and (d) the dictionary
learned by all blocks.

2.2. Regional Sparse Response Feature Extraction

2.2.1. Sparse Atomic Activity in Each Region

Feature coding is an effective means to obtain a set of novel feature representations by transforming
the original feature space into the target dictionary space, and the corresponding activity of each
atom can be regarded as the final feature code. Here, we made a series of analyses to quantify the
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detail distortion of DB-regions. Firstly, we divided the distorted TMI into multiple non-overlapping
blocks with the same ways in the previous dictionary learning stage, and categorized them as four
subsets T̂r via the calculated region masks. Each kind of block can be sparsely represented with the
multi-dictionaries Dr to obtain the corresponding feature codes, and the above process is expressed as

X̂r
= argmin‖x̂r

i ‖0, s.t.‖T̂r
−DrX̂r

‖
2
2 ≤ t (2)

where X̂r
=

{
x̂r

i

}N

i=1
is the estimated sparse coefficient based on block representation.

r ∈
{
Breg, Nreg, Dreg, Greg

}
denotes the category of region, and the orthogonal matching pursuit (OMP)

algorithm is used to solve the optimization problem in Equation (2).
Actually, the obtained sparse coefficients can characterize the activity type of atoms in DB-regions,

so exploring the potential statistical rules of sparse coefficients is considered as a meaningful way for
feature representation. Since the sparse coefficients are made up of many values, for brevity, let SCcoeff
denote the all sparse coefficients, SCcoeff-l denote the sparse coefficients of less than zero and SCcoeff-g
denote the sparse coefficients of greater than zero. Moreover, SCcoeff-l and SCcoeff-g are extracted by
setting the other type of coefficients (i.e., SCcoeff-g and SCcoeff-l) to zero for analyzing their contributions
on sparse representation, respectively. Then, image reconstruction was conducted by only using one
type of coefficients to observe the restored TMIs and the corresponding histogram distribution.

Figure 5 depicts an example of the reconstructed results with different sparse coefficients obtained
by the global dictionary. From Figure 5, it can be found that the image reconstructed by SCcoeff-l
contained more information of the original TMI compared with the image reconstructed by SCcoeff-g,
which indicates that the atomic energy was mostly concentrated in SCcoeff-l. To further illustrate
the significant role of SCcoeff-l for identifying the detail loss of DB-regions in TMI, we selected
three TMIs generated by different TMOs and reconstructed them with the corresponding SCcoeff-l.
The reconstructed results and histogram statistics are shown in Figure 6. Obviously, the better the
quality of TMI (i.e., the higher mean opinion score (MOS)), the wider the histogram pixel range of
reconstructed image, which was consistent with the fact that high-quality TMI could maintain the
detail information of its original HDR image as much as possible. Since SCcoeff-l could reconstruct the
image well, the distortion information will also be mainly reflected in SCcoeff-l, and some redundancy
could be eliminated by aggregating the features with SCcoeff-l.
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Figure 5. Original TMI and its reconstructed versions with different sparse coefficients. (a) Original
TMI; (b) the reconstructed image with sparse coefficients greater than 0; (c) the reconstructed image
with sparse coefficients less than 0; (d) corresponding histogram of the image in (b,e) corresponding
histogram of the image in (c).
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Figure 6. Three TMIs from the ESPL-LIVE HDR database [29] and the corresponding histograms
of reconstructed images with SCcoeff-l. (a) TMI generated by DurandTMO (mean opinion score
(MOS) = 27.10); (b) TMI generated by FattalTMO (MOS = 47.99); (c) TMI generated by ReinhardTMO
(MOS = 60.30) and (d–f) corresponding histograms of reconstructed images in the first row. Note that a
higher MOS indicates a better quality in ESPL-LIVE HDR.

According to the above analysis for the sparse atom, visual information could be simply quantified
by the activity statistics of SCcoeff-l, which is expressed as:

X̂r′
=

[
x̂r′

1 , x̂r′
2 , . . . , x̂r′

N

]
∈ Rm×N (3)

Fr′
1 =

N∑
T=1

g
(
x̂r′

T

)
(4)

where x̂r′ is the obtained sparse feature vector for each image block, r′ ∈
{
Breg, Nreg, Dreg

}
denotes

the category of region, g(.) is the function for counting the frequency of SCcoeff-l. If x̂r′
T

is less than

zero, g
(
x̂r′

T

)
is 1, otherwise, g

(
x̂r′

T

)
is 0. Fr′

1 is the calculated activity statistical features, and the smaller

value of Fr′
1 indicates the lower activity of the corresponding region. For some TMIs without any

dark or bright blocks, the corresponding sparse coefficients in the bright or dark region were zero.
When they were stimulated by the visual primitive, these regions could not generate efficient responses.
Therefore, gathering the features Fr′

1 of DB-regions is an effective means to solve the difficulty caused
by no response.

To aggregate the sparse features extracted from three brightness regions, i.e., F
Breg

1 , F
Nreg

1 and F
Dreg

1 ,
we also designed a novel regional feature fusion strategy based on entropy weighting, which was
inspired by the evidence that entropy could reflect the visual information contained in images to some
extent. First, each block in the DB-regions was rearranged into a vector with the length of n and the
corresponding blocks were aggregated to obtain the matrices Mr′ . Then, the entropy weight wr′ for
each region was computed as

wr′ =
Er′∑

Er′ (5)

where Er′ is the obtained entropy of DB-regions by applying the entropy calculation operation to Mr′ .
Finally, the optimized sparse atomic activity statistics features F1 could be calculated as:

F1 =
∑

wr′Fr′
1 (6)
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where the dimension of F1, namely m, was set to 128, and we will give the specific explanations in Section 3.

2.2.2. Global Reconstruction Residual Statistics

In general, HVS first focuses on the global perception of an image unconsciously, and gradually
turns to some specific local regions [26]. In terms of global perception, high-quality TMI should
contain rich detail components and high naturalness, which are especially reflected in high frequency
information. Considering that residual information of images play a significant role in distortion
recognition, we performed the statistical analysis on global residual image for perceiving global detail
loss of TMI, and global residual image Ig can be simply obtained by calculating the difference between
the reconstructed TMI with pretrained global dictionary DGreg and original TMI.

Furthermore, the mean subtracted contrast normalized (MSCN) coefficients of the image appears
to have a certain statistical rule, that is, when an image is impaired with single or multiple distortion,
the relevant natural statistical distribution of the MSCN coefficient will be destroyed. Therefore,
the MSCN operation was conducted first on the global residual image Ig to quantize the distortion,
which is expressed as

Î(i, j) =
Ig(i, j) − µ(i, j)

σ(i, j) + 1
(7)

where Î(i, j) is the MSCN value of Ig at the position of (i, j), µ(i, j) and σ(i, j) are the local mean and
standard deviation of Ig, respectively.

Figure 7a depicts three histograms of MSCN coefficients under different TMOs (original images are
shown in Figure 6a–c, respectively). It can be found that the histograms of MSCN coefficients of residual
images present a statistical rule similar to Gaussian distribution, and have obvious distinguishing
ability for different TMOs. Therefore, generalized Gaussian distribution (GGD) was utilized to match
these MSCN coefficients effectively in this work, and the density function of GGD with zero mean is
given by

f
(
x;α, σ2

)
=

α

2βΓ(1/α)
exp[−(|x|/β)α] (8)

where β = σ
√

Γ(α−1)/Γ(α−3), Γ(.) is the standard Gamma function. α and σ2 controls the shape and
variance of Gaussian distribution, respectively. The two control parameters

(
α, σ2

)
constitute the first

set of compensation features for detecting the global detail loss of TMIs.

Figure 7. The histograms of the mean subtracted contrast normalized (MSCN) coefficients and paired
product coefficients of residual image under three TMOs. (a) Histogram of MSCN coefficients and
(b) histograms of paired products of MSCN coefficients.

In addition, we also explored the statistical rules among the neighboring pixels of residual image,
and the relevant pairwise products of neighboring MSCN coefficients along four directions were
calculated as

H(i, j) = Î(i, j)Î(i, j + 1) (9)

V(i, j) = Î(i, j)Î(i + 1, j) (10)
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D1(i, j) = Î(i, j)Î(i + 1, j + 1) (11)

D2(i, j) = Î(i, j)Î(i + 1, j− 1) (12)

where H(i, j), V(i, j), D1(i, j) and D2(i, j) characterize the statistical relationships along the horizontal,
vertical, main diagonal and subdiagonal directions, respectively. Figure 7b is three histograms of paired
products of MSCN coefficients under different TMOs, which also shows strong distortion identification
of adjacent coefficients. To fit the above presented regular structure accurately, asymmetric generalized
Gaussian distribution (AGGD) is applied in each pairwise product of coefficients, which is defined as

f
(
x; v, σ2

l , σ2
r

)
=


v

(βl+βr)Γ(v−1)
exp

(
−

(
−x
βl

)v)
, x < 0

v
(βl+βr)Γ(v−1)

exp
(
−

(
−x
βr

)v)
, x ≥ 0

(13)

η = (βr − βl)
Γ(2/v)
Γ(1/v)

(14)

where βl = σl
√

Γ(v−1)/Γ(v−3) and βr = σr
√

Γ(v−1)/Γ(v−3). v controls the shape of the distribution,
σ2

l and σ2
r are two scale parameters. The control parameters

(
η, v, σ2

l , σ2
r

)
of each paired product yield the

second set of compensation features, and are combined with
(
α, σ2

)
to form the global reconstruction

residual statistical features, denoted as F2, whose dimension is 36.
In conclusion, the final regional sparse response features consist of two types of feature sets, i.e.,

sparse atomic activity and global reconstruction residual statistics, which describe the regional and
global visual information in the sparse domain, respectively.

2.3. Aesthetic Feature Extraction

Although the trend of the presented regional sparse response features is roughly in accordance
with the subjective perception of TMIs caused by detail loss, the other perceptual factor in TMI
(i.e., color) cannot be ignored due to the color unnaturalness of scenes, as depicted in the first row of
Figure 6. It can be clearly observed that different visual effects would be produced by different TMOs
under the same HDR image. For example, the MOS of TMI generated by DurandTMO with relatively
bright but unnatural color was lowest, while the TMI obtained by ReinhardTMO reflected higher
contrast than others and had the highest MOS value. Therefore, for the whole TMI, some perceptual
features, such as global contrast, color fidelity, color temperature and darkness, were also extracted in
this subsection, which are jointly called as aesthetics.

2.3.1. Global Contrast

Contrast tends to reflect the relationship among pixels, which cannot be clearly expressed by the
sparse coefficient in the sparse domain and HVS will pay more attention to the overall contrast of the
image than the absolute brightness. Therefore, Michelson contrast Cm and root mean square Crms were
selected to characterize the overall contrast relating to the color naturalness of TMI, and the above
features were extracted in the HSI color space, which is expressed as

Cm =
Imax − Imin

Imax + Imin
(15)

Crms =

√√√√
1

WH

H−1∑
i=0

W−1∑
j=0

(
Ii j − I

)2
(16)

where Imax and Imin were the largest and smallest pixel values of the image, respectively. W and H
are the width and height of TMI, respectively. I is the average value of pixels. The two parameters
(Cm, Crms) form the global contrast feature set and denoted as 2-dimensional F3.
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2.3.2. Color Fidelity

When contrast is guaranteed, color fidelity is also considered as an important feature to capture
the color saturation of TMIs, which can be simply calculated by image color invariance descriptors.
Since LMS space can simulate the response of cones in the retina and the three types of LMS cones can
correspond to two opposing colors, which is called antagonism [37], we transformed the image data
into the logarithmic domain so that three major orthogonal non-correlated spines (denoted as l, ς and
τ) were computed by

l =

(
L̂ + M̂ + Ŝ

)
√

3
, ς =

(
L̂ + M̂− 2Ŝ

)
√

6
, τ =

(
L̂− M̂

)
√

2
(17)

where L̂, M̂ and Ŝ are the L, M and S channels after logarithm operation, deaveraging and normalization,
respectively. Surprisingly, similar statistic rules are presented in the histograms of l, ς and τ coefficients,
which can also be fit by GGD. Therefore, six parameters (the shape and variance parameters of the
three channels) form the color fidelity feature set and denoted as 6-dimensional F4.

2.3.3. Color Temperature

Color temperature reflects the spectral composition of the light source and has been applied
successfully in many fields, such as photography, video recording and publishing. Generally, the level
of color temperature will directly affect the brightness and contrast of images, which is closely related
to the color perception of the light source. Therefore, color temperature [38] is used to detect the color
unnaturalness of TMIs in this study, and can be defined as

CCCT =
(
449p3 + 3525p2 + 6823.3p + 5520.33

)
(18)

where
p =

a− 0.3320
0.1858− b

, a =
X

X + Y + Z
, b =

Y
X + Y + Z

(19)

Among them, X, Y and Z represent the three-channel values of XYZ color space converted from
RGB color space. Then, 5-bin histogram statistics were performed on the obtained color temperature
map, and five frequency values were taken as the final color temperature feature set, denoted as F5,
whose dimension was 5.

2.3.4. Darkness

Darkness depicts the proportion of pixels with low brightness values in the image, and has a
great impact on color unnaturalness. If the whole image looks dim, its subjective quality perceived
by HVS is more terrible than ones with perfect brightness. Inspired by the three-point method in
camera science, a TMI was first evenly divided into three blocks from top to bottom, and the mean
pixel value of TMI was calculated. Then, the proportions of three blocks and the whole image whose
brightness was less than the mean pixel value were computed and these four values were used as the
final darkness feature set, denoted as 4-dimensional F6.

2.4. Quality Regression

In brief, a total of 181-dimensional quality-aware features were extracted from a TMI via regional
sparse response and aesthetics analysis, denoted as F = {F1, F2, F3, F4, F5, F6}, where the former
two were regional sparse response features and the other four are aesthetic features. After feature
extraction, the feature space was mapped to predict the quality Q of TMI by quality regression, which is
expressed as

Q = ψ(F) (20)

where ψ(.) is the mapping function achieved by machine learning. Due to the strong prediction
accuracy of random forest (RF), RF was used to obtain the mapping function in this study.
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3. Experiment Results and Discussion

To verify the performance of the proposed RSRA-BTMI method, the ESPL-LIVE HDR [34] database
was used to make comparisons between the proposed method and existing state-of-the-art BIQA
methods. The database was generated by three different types of HDR image processing algorithms,
including TMO, multi-exposure fusion and post-processing. The images processed by TMOs and their
corresponding subjective scores were utilized in the experiment. The basic situation of TMIs in the
ESPL-LIVE HDR database is shown in Table 1. It contained a total of 747 TMIs degraded by TMOs.

Table 1. TMIs details of the ESPL-LIVE HDR database.

Database Tone-Mapping Operator Number of Images MOS

ESPL-LIVE HDR

WardHistAdjTMO 181 0–100
DurandTMO 187 0–100
FattalTMO 187 0–100

ReinhardTMO 192 0–100

In order to validate the accuracy of the method, 80% of the image samples in the database were
selected as the training set to train a TM-IQA model, which was used to predict the quality of the
remaining 20% image samples. The scenarios of the training set and testing set were independent of
each other. Then, to evaluate whether the method is statistically consistent with visual perception,
it is necessary to compare the predicted scores with subjective ratings. According to the objective IQA
standard proposed by the Video Quality Expert Group (VQEG), Pearson linear correlation coefficient
(PLCC), Spearman rank-order correlation coefficient (SROCC) and root mean squared error (RMSE)
were employed to validate the consistence. With experience, a method correlates well with subjective
scores if PLCC and SROCC are close to 1 and RMSE is close to 0. In addition, to get the reliable results
of the proposed RSRA-BTMI method, the above procedure was repeated 1000 times using randomly
divided training and testing sets. Finally, we reported the median value of performance index obtained
from the 1000 random trails as the final performance index.

3.1. Parameter Setting and Feature Analysis of the Proposed RSRA-BTMI Method

As can be found from the feature extraction in Section 2, the size of some parameters needs to
be set. Actually, the size of the presegmented block of TMI for dictionary learning will affect what
the block contains. Specially, the larger the block, the greater the probability that the block contains
different luminance content, and the operation of block based regional subset partition is more difficult.
This will affect multi-dictionary learning and accurate extraction of sparse feature vector. However,
the smaller of blocks will cause the higher complexity and lower efficiency of the proposed method.
Therefore, the block size is set to a moderate value 8 × 8, and the dictionary size m is set to 128. m also
determines the size of the final feature vector, so the feature size extracted from each region in the
sparse domain is 128.

As described in Section 2, there were several types of features extracted in this work. Sparse atomic
activity based on regional entropy weighting F1 and auxiliary statistics based on global reconstruction
residual F2 represent regional sparse response features in the sparse domain. Contrast F3, color fidelity
F4, color temperature F5 and darkness F6 constitute the aesthetic features. Actually, most of the
components in the sparse eigenvector were zero, and the non-zero component justified that the sample
TMI had a corresponding response in the pretrained dictionary prototype. From a biological point of
view, there were a series of visual neurons in the mammalian visual system. Visual neurons can sparsely
encode the stimulus, that is, when a specific external stimulus is received, the information carried by
the stimulus can be correctly perceived, as long as a small number of corresponding neurons accept
the stimulus. Therefore, the sparse representation coefficients based on multi-dictionaries characterize
the neuron state under a particular stimulus. The non-zero positions indicate that the neuron receives
the stimulus, and the zero portions indicate that the neuron is not stimulated. Therefore, the sparse
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decomposition process of images is a sparse response of a neuron to a specific stimulus. A TMI to
be assessed is transformed into sparse coefficients, and the sparse characteristics of each coefficient
contain the essential features of the TMI. The feature extraction from the sparse domain will be more
visually perceptible than the original image pixels. The more SCcoeff-l represents that the more stimuli
are received. To percept the global distortion, the global reconstruction residual statistics feature F2

was extracted to assist F1. The aesthetic features F3, F4, F5 and F6 were also considered because color
distortion is not negligible in TMIs.

To analyze the feature contribution, the performances of each type of features were separately
evaluated on the ESPL-LIVE HDR database. In addition, the combination contribution of F1 and
F2 in the sparse domain was also given to confirm the validity of the proposed features, as well as
the combination of aesthetic features F3, F4, F5 and F6. PLCC, SROCC and RMSE were used as the
performance criteria. These results are shown in Table 2. We could observe that the separate feature
shows good performance alone, and a better performance could be achieved when the features were
incorporated together. This makes us believe that the proposed features are complementary with
each other.

Table 2. Performance of different feature types in the proposed method.

Features
TMIs

PLCC SROCC SROCC-STD RMSE

F1 0.7163 0.6770 0.0435 7.1565
F2 0.6542 0.6001 0.0494 7.7211

F1 + F2 0.7782 0.7365 0.0379 6.4265

F3 0.7399 0.6916 0.0380 6.8578
F4 0.6532 0.6111 0.0490 7.7180
F5 0.6980 0.6272 0.0496 7.3233
F6 0.7306 0.6272 0.0498 7.0143

F3 + F4 + F5 + F6 0.8011 0.7678 0.0319 6.1003

All 0.8266 0.7972 0.0312 5.7520

In the previous analyses in Section 2, it can be known that SCcoeff-g had less effect on sparse
reconstruction, but whether it had the ability to distinguish a high or poor-quality of the image or not
remains to be validated. By the same proposed process of sparse atomic activity feature extraction in
Section 2, sparse atomic activity statistics of different portions, such as SCcoeff-g and the combination
of SCcoeff-l and SCcoeff-g, were used to measure the performance for quality assessment. In Table 3,
SCcoeff-lg is represented for the combination of SCcoeff-l and SCcoeff-g.

Table 3. Performance of different sparse atomic activity features.

Activity of Different Sparse Coefficients
TMIs

PLCC SROCC SROCC-STD RMSE

SCcoeff-g 0.7098 0.6706 0.0438 7.2417
SCcoeff-lg 0.7086 0.6698 0.0435 7.2410
SCcoeff-l 0.7163 0.6770 0.0435 7.1565

Table 3 lists three types of features about the activity of SCcoeff-g, SCcoeff-lg and SCcoeff-l. It can be
found that SCcoeff-g and SCcoeff-lg also exhibited good quality discrimination performance, and even
exceeded the performance of the methods such as BTMQI, which will be shown later. According to the
comparison, the portion of SCcoeff-l was selected as the final fusion feature in the sparse domain.

In addition, to verify the advantage of multi-dictionaries in the proposed RSRA-BTMI method, Table 4
lists the experimental analysis of single dictionary and multi-dictionaries. In Table 4, the performance
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obtained by combining multi-dictionaries with aesthetic characteristics was better than that obtained
by combining single dictionary with aesthetic characteristics, here, they were denoted as ‘M + A’ and
‘S + A’, respectively. It is mainly attributed that those multi-dictionaries take more account of the different
characteristics of HDR images after the TM process in DB-regions. Together with aesthetics, it can better
perceive the detail loss in the DB-regions and color unnaturalness.

Table 4. Performance comparison of multi-dictionaries and single dictionary with aesthetics.

Features
TMIs

PLCC SROCC SROCC-STD RMSE

S + A 0.8058 0.7699 0.0330 6.0572
M + A 0.8266 0.7972 0.0312 5.7520

To clearly show a high correlation of aesthetic features with subjective scores, we trained a quality
prediction model by aesthetic features. According to the trained quality prediction model, we used
the aesthetic features of different distorted TMIs to predict the quality, the results are shown in the
following Figure 8. It can be found that the more natural TMI is, the higher the predicted quality value
(i.e., Q) will be, and also a companion with a higher MOS value.
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Figure 8. The predicted quality (i.e., Q) of different TMIs with their corresponding MOS values.
(a) MOS = 35.06; Q = 35.1305; (b) MOS = 44.61; Q = 48.3781; (c) MOS = 49.23; Q = 51.1368;
(d) MOS = 35.14; Q = 34.1305; (e) MOS = 44.51; Q = 48.7145; (f) MOS = 52.41; Q = 53.9768;
(g) MOS = 40.64; Q = 37.7629; (h) MOS = 54.86; Q = 51.2037 and (i) MOS = 59.71; Q = 56.8727.

3.2. Influence of Training Set Sizes

In order to study the influence of different training sets on quality prediction results, PLCC and
SROCC values obtained via different training sets were also analyzed, as shown in Table 5. The training
set size was set as 10–90%, and we could draw the following conclusions via the results in the Table 5:
(1) with the increasing of the training set, PLCC and SROCC values also increased gradually, which is
consistent with the conclusion of the existing learning-based BIQA method and (2) when the training
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set was less than 20%, the performance dropped significantly, but it also had better performance than
other existing methods, such as BTMQI shown in the Table 6.

Table 5. Performance with different train-test sizes.

Train-Test
ESPL-LIVE

PLCC SROCC

10–90% 0.7379 0.7054
20–80% 0.7714 0.7416
30–70% 0.7873 0.7562
40–60% 0.7961 0.7659
50–50% 0.7998 0.7684
60–40% 0.8056 0.7757
70–30% 0.8124 0.7813
80–20% 0.8266 0.7972
90–10% 0.8301 0.8043

Table 6. Performance comparison on the ESPL-LIVE HDR database.

Type Methods PLCC SROCC RMSE

2D-BIQA

C-DIIVINE [14,21] 0.453 0.453 9.167
DIIVINE [13,21] 0.530 0.523 8.805

BLIINDS-II [15,21] 0.4421 0.4120 9.330
BRISQUE [16,21] 0.3701 0.3402 9.535

OG [39] 0.4993 0.4899 8.8637

TM-BIQA

BTMQI [19,20] 0.6914 0.6778 /
HIGRADE [20,21] 0.7940 0.7600 /

Yue’s [22] 0.7422 0.7356 6.713
BTMIQA [20] 0.8234 0.7835 /

BLIQUE-TMI [23] 0.7120 0.7040 /
Chi’s [25] 0.8301 0.7887 5.7193

Proposed (RSRA-BTMI) 0.8266 0.7972 5.7520

Proposed with Fc (RSRA-BTMI) 0.8365 0.8076 5.5408

3.3. Feature Selection

Since the total 181-dimensional features may cause an overfitting situation, we made an experiment
to eliminate redundancy from the total features. RF has an ability to detect the importance of features,
so it can well guide the feature selection work. Specifically, we utilized RF to predict the importance of
features extracted in the ESPL-LIVE HDR database as shown in Figure 9 [23]. It can be found that
different features had different importance. To determine the best feature dimension, we utilized
different dimension of features to build quality prediction model and evaluate the corresponding
performance. As shown in Figure 10, it can be found that the performance of PLCC and SROCC was
best when the dimension of feature was 56. For brevity, the feature set after importance selection is
expressed by ‘Fc’ in the following description.

Figure 9. Importance ranking of different features.



Entropy 2020, 22, 850 16 of 20

Figure 10. Performance of Pearson linear correlation coefficient (PLCC) and Spearman rank-order
correlation coefficient (SROCC) values with different feature dimensions. (a) PLCC value of
10–60 dimensional features; (b) PLCC value of 40–60 dimensional features; (c) SROCC value of
10–60 dimensional features and (d) SROCC value of 40–60 dimensional features.

3.4. Overall Performance Comparison

In order to prove the effectiveness of the proposed RSRA-BTMI method, it was compared with the
existing advanced BIQA methods. Since the ESPL-LIVE HDR database did not provide the original
HDR reference image, the FR-IQA methods designed for TMIs could not be utilized on the database
directly. The proposed RSRA-BTMI method was not compared with the existing FR-IQA methods.
Table 5 shows the performance comparisons between the proposed RSRA-BTMI method and two types
of existing IQA methods. The first type is the 2D-BIQA methods specialized for ordinary LDR images
based on natural scene statistical features, including C-DIIVINE [14], DIIVINE [13], BLIINDS-II [15],
BRISQUE [16] and OG [39]. The other type is specifically designed for TM-BIQA, including BTMQI [19],
HIGRADE [21], Yue’s [22], BTMIQA [20], BLIQUE-TMI [23] and Chi’s [25].

From Table 6, it can be found that the performance of the TM-BIQA methods was far superior to
the 2D-BIQA methods for TMIs’ quality assessment because the TMIs’ distortion types were different
from those of ordinary LDR images. In general, the distortion of LDR images included some common
distortions, such as encoding distortion, and Gaussian noise. However for a TMI, its distortion mainly
reflected in the color unnaturalness and the detail loss especially in its Breg and Dreg. Therefore, it is
unsuitable to directly use the 2D-BIQA methods to evaluate the TMIs’ quality. First of all, obviously,
as the 2D-BIQA methods, C-DIIVINE, DIIVINE, BLIINDS-II, BRISQUE and OG only consider the
corresponding distortions of ordinary LDR images, such as JPEG, JP2K compression, blur, white noise,
etc., the quality prediction performances of these 2D-BIQA methods used on TMIs were usually poor,
and their PLCC and SROCC values were very low, only about 0.530 and 0.523 at the best. Secondly,
the PLCC values of the existing TM-BIQA methods were much higher than those of the 2D-BIQA
methods, as well as the SROCC values. Among the TM-BIQA methods, BTMQI mainly considered the
details and structure preservation degree of TMIs, but did not consider the color distortion carefully,
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which had a great impact on the TMIs’ quality. HIGRADE also spares more effects on the structure
and naturalness, but neglects the color distortion. The BTMIQA method mainly uses the local entropy
to perceive the detail loss of TMIs but it omits the information loss in the normal exposure region.
The other methods also have room for improvement. The proposed method applies sparse perception
with multi-dictionaries to extract main features of TMI’s DB-regions, which not only can reduce visual
redundancy but also obtain the human visual perception response to different regions. Moreover,
it is clear that the proposed RSRA-BTMI method had better performance than the other methods.
It is mainly due to the truth that the proposed RSRA-BTMI method utilizes the compressed sensing.
Combining the regional sparse response with aesthetics can obtain the detail loss especially in Breg and
Dreg of TMIs, as well as the color distortion. Therefore, the proposed RSRA-BTMI method outperformed
the existing methods and was consistent with the subjective perception of the human vision. It is also
attributed to the fact that the proposed RSRA-BTMI method simulated the distortion process of TM in
the sparse domain.

Moreover, we also calculated the performance after feature importance selection based on the
proposed RSRA-BTMI method. Clearly, the feature selection used further improved the performance
of the proposed RSRA-BTMI method.

3.5. Discussion

Due to the particularity of TMIs in imaging and viewing properties, two kinds of perceptual factors
ought to be considered in the TM-BIQA method, i.e., detail loss and color unnaturalness. In this paper,
we proposed an RSRA-BTMI method by considering the impact of DB-regions and the global region of
TMI on human subjective perception, whose performance on the ESPL-LIVE HDR database was better
than other competing 2D-BIQA and TM-BIQA methods. From the perspective of semantic invariance
in DB-regions of TMIs, multi-dictionaries were specially designed so that each brightness region could
be sparsely represented to describe the regional visual information. Moreover, global reconstruction
residual statistics were also conducted to identify the high frequency information loss and utilized as
the compensation features in the sparse domain. For the color unnaturalness, several color related
metrics, such as contrast, color fidelity, color temperature and darkness, were analyzed and discussed
carefully. As an efficient metric, the proposed RSRA-BTMI method could not only serve as the quality
monitor in the end-to-end TMI processing pipeline, but also promoted the development of some
relevant technologies, such as tone mapping, image enhancement and denoising of TMI.

Although the proposed RSRA-BTMI method achieved excellent results in evaluating TMIs
degraded with detail loss and color distortion, there were still limitations in some respects. First,
several special distortions may appear in the actual imaging process, e.g., abnormal exposure,
violent noise and indelible artifacts. Obviously, the introduction of an artifact or noise will greatly
increase the high frequency information of the image, but it is not belonging to the component
of positive detail information in images and usually causes terrible visual perception. Therefore,
the presented global reconstruction residual statistics will produce the opposite result in this special
case. Second, for the proposed method, there is a blocking operation on TMI before multi-dictionary
learning for DB-regions. However, fixed size blocks may result in regions of different brightness
within one TMI block, which is not conducive to multi-dictionary learning. Thus, a more reasonable
and efficient way to improve the application scope of the proposed RSRA-BTMI method is worth
being explored.

4. Conclusions

In this paper, a blind tone-mapped image quality assessment method based on regional sparse
response and aesthetics (RSRA-BTMI) was proposed by designing novel local and global feature subsets.
It is mainly inspired by the fact that the detail loss and color unnaturalness phenomena in tone-mapped
images (TMIs) were perceived by human visual system from global to local patterns. In terms of local
features, multi-dictionaries were first trained from different brightness regions (DB-regions) in TMIs.
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Then the sparse atoms activities for DB-regions were calculated to portray regional visual information
of TMIs. Finally, a regional feature fusion strategy based entropy weighting was designed to aggregate
the above local features. In terms of global features, the statistics of residual information obtained
by sparse representation was utilized as a compensation feature in the sparse domain, and a set of
aesthetic features, such as contrast, color fidelity, color temperature and darkness, were also extracted
to characterize the color unnaturalness of TMIs. Experimental results on the ESPL-LIVE HDR database
demonstrated the superiority of the proposed RSRA-BTMI method. In future work, we are about to
expand the practicability of dictionary learning and sparse representation for further exploring the
perceptual factors in TMIs.
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